Zircon U-Pb dating of the Dizhuanggou Formation, Changjiaoba Group in the South Qinling Belt and its tectonic significance
-
摘要: 长角坝群出露于南秦岭佛坪地区,是该构造带内残留的少数研究程度较低的地层之一,其物质组成、形成时代一直缺乏准确的限定,进而制约了对南秦岭的构造归属和构造演化的深入研究。文章对长角坝群内低庄沟组变质沉积岩开展了岩石学和锆石U-Pb年代学研究,结果显示所取2个样品的碎屑锆石年龄主要峰值为810~835 Ma, 最年轻的年龄区间为600~700 Ma,最大沉积时代为新元古代。这与同为长角坝群、出露最广泛的泥盆纪黑龙潭组具有明显的时代差异,显示了长角坝群物质组成的复杂性。此外,低庄沟组的碎屑锆石年龄谱系特征与用于对比测试的另一个碎屑锆石最小年龄峰值为718 Ma、主要峰值为810 Ma的佛坪群样品高度相似,结合二者的岩石学及野外地质特征,认为二者共同构成了南秦岭西部的过渡性基底,与南秦岭带内宁陕断裂以东的过渡性基底−武当群、耀岭河群具有明显的可对比性。长角坝群新元古代物质的识别还为佛坪地区变质单元的划分提供了新的依据,进而梳理出成层性、变质程度不同的3个单元,为南秦岭中生代造山演化过程的恢复提供了佐证 。Abstract:
Objective The Changjiaoba Group, located in the Foping area of the South Qinling Belt, is one of the few poorly-studied strata in the belt. The lack of an accurate composition and formation age of these strata has restricted research on the tectonic affinity and evolution of the South Qinling Belt. Method This paper investigates the petrological characteristics and zircon U-Pb chronology of two metasedimentary rocks from the Dizhuanggou Formation of the Changjiaoba Group. Results The results show that the dominant peak detrital zircon dates of the two samples were approximately 810–835 Ma, with the youngest date range being approximately 600–700 Ma, indicating that the maximum depositional age was Neoproterozoic. This age spectrum differs significantly from that of the most exposed Devonian Heilongtan Formation of the Changjiaoba Group, but is highly similar to that of another sample from the Foping Group, which has a minimum age peak of 718 Ma and a major peak at 810 Ma. In addition, metamorphic zircons from the Dizhuanggou Formation and the Foping Group yielded ages of 207 Ma and 193 Ma, respectively. Conclusion The distinct depositional age of the Changjiaoba Group indicate the complexity of its composition. Combined with the petrological and field geological features, the Dizhuanggou Formation and a Neoproterozoic strata of the Foping Group are considered to form the transitional basement of the western South Qinling Belt. This is comparable to the transitional basement of the Wudang and Yaolinghe Groups east of the Ningshan Fault in the South Qinling Belt. Significance The identification of Neoproterozoic and Mesozoic materials in the Changjiaoba Group provides a new basis for the division of metamorphic units in the Foping area, identifying three units with different degrees of layering and metamorphism, which, in turn, facilitates understanding of the Mesozoic orogenic process in the South Qinling Belt. -
Key words:
- South Qinling Belt /
- Changjiaoba Group /
- detrital zircon /
- Neoproterozoic /
- unit division
-
0. 引言
秦岭造山带是中国南、北两大陆块−扬子陆块、华北陆块碰撞拼合的产物(张国伟等, 2001),其长期而复杂的演化历程既为研究大陆的增生、消减提供了丰富的资源,同时也增加了反演和解析造山演化历史的难度。21世纪以来,大量学者通过对南秦岭地区广泛而深入的研究,在地层组合(张国伟等,2001,2015,2019;Yan et al.,2006,2012;Ling et al.,2008;王宗起等,2009;Dong and Santosh,2016;刘志慧等,2018)、岩浆作用(刘树文等,2011;Li et al.,2015;Wang et al.,2015;Zhang et al.,2016a;Hu et al.,2020)、变质作用(魏春景和张翠光,2002;李三忠等,2003;梁莎等,2013;陈龙耀等,2019;Hu et al.,2019;刘志慧等,2019)、构造变形特征(张国伟等,2001,2015;陈虹等,2010;查显锋等,2010;胡健民等,2011;Dong and Santosh,2016;刘志慧等,2019)等方面都取得了丰硕成果,但同时也存在诸多的争议。这其中南秦岭地区的地层组成和形成时代就是亟需解决的基本问题之一。
南秦岭作为秦岭造山带的主要组成单元,和秦岭造山带一样被认为具有太古宙结晶基底、中—新元古代过渡性基底和新元古代至显生宙的沉积盖层的结构特征(张国伟等,2001,2015,2019)。然而目前的报道显示,2种类型的基底都主要分布于宁陕断裂以东的南秦岭地区(周鼎武等,1998;李怀坤等,2003;蔡志勇等,2007;凌文黎等,2007,2010;Zhu et al.,2014),断裂以西则从未报道过过渡性基底的存在,甚至结晶基底的存在与否也未达成共识。出露于宁陕断裂以西的佛坪杂岩,具有丰富的岩石地层组合,成为揭示南秦岭组成结构的重要突破口。佛坪杂岩中叠置在最底层的佛坪群曾被认为是太古宙或古元古代的结晶基底(王根宝,1997;李亚林等,2000;张宗清等,2004),然而新的研究将其修正为中、新元古代,并否定了其结晶基底的性质(刘志慧等,2018;Zhang et al.,2023a)。佛坪群之上的长角坝群作为沉积盖层,其沉积时代最早被限定为早元古代(李亚林等,2000),近年来的研究又将其划分至显生宙,存在泥盆—石炭纪/奥陶纪等认识(刘志慧等,2018;Zhang et al.,2023b;Wang et al.,2024)。然而长角坝群的物质组成实际并未得到准确识别,比如内部各岩组的归属、接触关系的不确定性,使得其沉积时代的测定结果欠缺说服力。
为了解决以上问题,文章以佛坪地区为研究区,对长角坝群的变质沉积岩展开了岩石学和锆石年代学研究。通过对尚未有准确年龄记录的低庄沟组的沉积时代、物质属性的判定,来重新认识长角坝群,并对佛坪地区的地层格架进行补充修正,借此探析南秦岭的地层组成和结构,并为后续地区演化的研究提供前期基础。
1. 区域地质背景
秦岭造山带东连祁连−昆仑造山带,西接大别−苏鲁造山带,是中国大陆中部横亘东西的大型复合造山系统。现今对其构造单元的划分往往以商丹断裂带为界,分为北秦岭和南秦岭2个构造带(图1a;Mattauer et al.,1985;Hsü et al.,1987;许志琴等,1988;王清晨等,1989;张国伟等,2001,2015)。北秦岭构造带以洛南−栾川断裂为北界与华北板块南缘相隔,以商丹断裂带为南界与南秦岭构造带相隔,主要由前寒武纪基底(秦岭岩群)、新元古代变质沉积岩和变质火山岩(宽坪岩群)、早古生代变质火山岩系(二郎坪岩群和丹凤岩群)和浅变质沉积地层组成(Dong et al.,2011;Dong and Santosh,2016),此外还包含有新元古代早期(910~980 Ma)、早古生代(400~507 Ma)和中生代早期(180~250 Ma)侵入的花岗岩类(Wang et al.,2015)。
图 1 研究区位置图T—三叠纪;D—泥盆纪;Pt—元古宙a— 秦岭造山带大地构造略图(据张国伟等,2001;李三忠等,2003;Dong et al.,2011;Zhao and Cawood,2012;Hu et al.,2016修改); b— 佛坪地区地质简图 (据陕西省地质矿产局,1999修改)Figure 1. Location of the study area(a) Simplified tectonic map of the Qinling orogenic belt (modified after Zhang et al., 2001; Li et al., 2003; Dong et al., 2011; Zhao and Cawood, 2012; Hu et al., 2016); (b) Geological sketch map of the Foping area (modified after Brueau of Geology and Mineral Resources of Shaanxi Province, 1999)T—Triassic; D—Devonian; Pt—Proterozoic商丹带以南的南秦岭构造带则是以勉略断裂带为南界与扬子陆块相隔,由零星出露的前寒武纪基底和大面积分布的角闪岩相−绿片岩相的沉积盖层所组成。其中,前寒武纪地层主要包括被认为是结晶基底的陡岭群(Hu et al.,2013,2018;Liu and Zhang,2013;Shi et al.,2013;Wu et al.,2014;Nie et al.,2016)、佛坪群(王根宝,1997;李亚林等,2000;张宗清等,2004)和被认为是过渡性基底的武当群、耀岭河群等(张国伟等,2001;Dong et al.,2011;Dong and Santosh,2016)。其与上覆的震旦纪—石炭纪的盖层呈构造接触(张国伟等,2001,2015;Dong et al.,2017),并共同被呈带状分布的早中生代岩浆岩大面积侵入(Dong et al.,2012;Li et al.,2015;Wang et al.,2015;Deng et al.,2016;Hu et al.,2017,2018,2020)。而新元古代侵入体则主要包括马道、汉阴、小磨岭杂岩等(Hu et al.,2016;Zhang et al.,2016b;Dong et al.,2017)。南秦岭还发育着多种类型的变质作用,包括在构造带北部发育的晚古生代低压变质作用(江媛媛等,2017;Chen et al.,2020);在构造带东部(Mattauer et al.,1985;许志琴等,1988;Ratschbacher et al.,2003)和南侧边界勉略断裂带内发育高压变质作用(李三忠等,2000;梁莎等,2013;Liao et al.,2021);以及在秦岭造山带腹地以佛坪穹隆为中心向外发育的南秦岭地区最典型、最具代表性的早中生代中低压递增变质作用(Wei et al.,1999;李三忠等,2003;张国伟等,2015;刘志慧等,2019)。
南秦岭的佛坪杂岩是构成区内特征性地质体佛坪穹隆的主体,也是揭示南秦岭物质组成和演化过程的重要载体。早期的地质调查将佛坪地区的地层单元进行了划分,形成了由佛坪群、长角坝群、龙草坪片麻岩套以及零星出露的九关沟斜长角闪岩组成的佛坪杂岩的初步认识(陕西省地质矿产局,1999;图1b)。按照由下至上的层序,最底层为佛坪群,主要呈残片状产出于穹隆核部,变质程度较高,达到高角闪岩相−麻粒岩相,因而佛坪群曾被认为是南秦岭早期的结晶基底之一(王根宝,1997;李海平,1998;李亚林等,2000)。岩石组合主要包括黑云斜长(二长)片麻岩、(矽线石)石榴黑云斜长(二长或钾长)片麻岩岩、角闪斜长片麻岩和二辉麻粒岩等,形成时代最初被认为是太古宙,之后被先后修正为古元古代(张宗清等,2004)和目前最新的中、新元古代(刘志慧等,2018;Zhang et al.,2023a)。龙草坪片麻岩套出露于佛坪穹隆北侧,与佛坪群一样经历了高角闪岩相−麻粒岩相的变质作用,曾是该地区另外一个被当作太古代结晶基底的岩石地层单元。主要由角闪斜长片麻岩−黑云斜长片麻岩组成,包括滴水岩组(黑云二长片麻岩、黑云斜长片麻岩等),南沟岩组(黑云角闪二长片麻岩、角闪黑云斜长片麻岩等)和温泉岩组(黑云斜长片麻岩、角闪黑云钾长片麻岩等)(陕西省地质矿产局,1999;陕西省地质调查院,2017)。刘志慧等(2018)通过碎屑锆石U-Pb定年将这套看似古老的似层状侵入岩的时代修正为泥盆纪。向上为九关沟斜长角闪岩,产出于基底和盖层间大型的剥离断层中,原岩为火山岩,由于其主要以透镜体形式零星存在于九关沟一带,研究程度较低,其形成时代仅早期有记载为中元古代~1447 Ma(常宏等,1998),但有研究显示出露于构造带南侧勉略带中与之类似的斜长角闪岩的原岩时代为新元古代~800 Ma(Liao et al.,2021)。
剥离断层之上是层状变质沉积岩长角坝群,包含沙坝组、黑龙潭组和低庄沟组,沙坝组为碳酸盐岩,包括纯大理岩和硅酸盐大理岩两类。黑龙潭组为一套石英岩类,包括纯石英岩、石墨石英岩、黑云石英岩和透闪石英岩。低庄沟组包括透闪变粒岩、黑云变粒岩、黑云石英片岩、黑云斜长片麻岩、石榴(矽线)黑云(二云)斜长片(麻)岩等(陕西省地质矿产局, 1999)。黑龙潭组分布最广,低庄沟组层厚最大,三组岩石呈构造叠置,未见明显层序,但有学者将沙坝组归为该群内最上层(张诜等,2022)。长角坝群的形成时代最早被限定在早—中元古代,被认为自下而上应为细碎屑岩−泥质岩−碳酸盐岩建造(陕西省地质矿产局,1999),亦曾被当成中元古代孔兹岩系(陈陇刚和代新宇,1999)。较新的研究成果则将其划入奥陶纪/泥盆纪—石炭纪(刘志慧等,2018;Zhang et al.,2023b;Wang et al.,2024),仍存在较大差异。
2. 样品和分析方法
长角坝群可以进行碎屑锆石定年的变质沉积岩主要存在于黑龙潭组和低庄沟组中,沙坝组则是碳酸盐岩地层。由于黑龙潭组已经获得了有效的年龄结果,因而此次实验样品的采集主要是来自低庄沟组。2个测年样品分别采自佛坪穹隆东缘的柴家关地区(FP105-3)和穹隆西缘的岳坝地区(FP141-5)。佛坪群作为对比参照,也对其进行了采样,由于已经在穹隆核部出露最集中的地区获得了有效的年代学结果,此次选择了零星出露于穹隆边部陈家坝一带的样品(FP110-5)进行测试,采样位置见图1b。
2.1 样品描述
低庄沟组样品FP105-3为条带状石榴黑云斜长片麻岩(图2a),采自宁陕县柴家关村九关沟桥西南(33°34′12.8″N; 107°49′42.8″E)。岩石呈斑状变晶结构,片麻状构造。主要矿物包含石榴石(~10%)、矽线石(3%~5%)、黑云母(25%~30%)、长石(30%~35%)和石英(~20%)等,另含少量石墨、钛铁矿等暗色矿物,副矿物有锆石、独居石等。变斑晶石榴石粒径大者可达8 mm,多数5~6 mm,含有黑云母、长石、石英等矿物包体,石榴石及黑云母边缘可见绿泥石化(图2b)。
图 2 佛坪地区新元古代岩石样品野外露头照片及显微镜单偏光照片Grt—石榴石;Bt—黑云母;Sill—矽线石;Pl—斜长石;Q—石英a— 长角坝群低庄沟组样品FP105-3野外照片;b— FP105-3单偏光照片;c—长角坝群低庄沟组样品FP141-5野外照片;d— FP141-5单偏光照片;e— 佛坪群样品FP110-5野外照片;f— FP110-5单偏光照片Figure 2. Photographs and photomicrographs of the Neoproterozoic samples in the Foping area(a) Outcrop of sample FP105-3 from the Dizhuanggou Formation; (b) Photomicrograph of sample FP105-3; (c) Outcrop of sample FP141-5 from the Dizhuanggou Formation; (d) Photomicrograph of sample FP141-5; (e) Outcrop of sample FP110-5 from the Foping Group; (f) Photomicrograph of sample FP110-5 Grt—garnet; Bt—biotite; Sill—sillimanite; Pl—plagioclase; Q—quartz低庄沟组样品FP141-5同样为条带状石榴黑云斜长片麻岩(图2c),采自佛坪县岳坝镇店子坪一带(33°32′18.3″N;108°08′03.8″E)。中粗粒、斑状变晶结构,片麻状构造。主要矿物包含石榴石(~15%)、矽线石(~5%)、黑云母(35%~40%)、长石(~30%)和石英(15%~20%)等,暗色矿物主要为钛铁矿,副矿物有锆石、独居石等。变斑晶石榴石粒径普遍可达1 mm,石榴石内含有黑云母、石英以及十字石等矿物包裹体。基质中黑云母定向排列,指示片麻理方向(图2d)。
佛坪群样品FP110-5为粗粒含石榴黑云斜长片麻岩(图2e),采自宁陕县四亩地镇古里沟村东侧(33°30′10.6″N;108°06′42.4″E)。斑状变晶结构,片麻状构造,与低庄沟组2个样品相比,虽仍发育淡色深熔条带,但条带更细且少,同时该样品矿物粒度更大。石榴石变斑晶粒径大者可达20 mm,粒径小者 ~2 mm。矿物组成大体相似,包括石榴石(~10%)、矽线石(3%~5%)、黑云母(25%~30%)、长石(30%~35%)和石英(~20%)等。黑云母定向排列,指示片麻理方向(图2f)。
2.2 分析方法
锆石的单矿物分离、制靶在河北廊坊宇能(宇恒)岩石矿物分选技术服务有限公司完成,透射光、反射光和阴极发光照相在北京锆年领航科技有限公司完成。LA-ICP-MS锆石微区U-Pb同位素测定在自然资源部古地磁与古构造重建重点实验室分析完成。其中,激光剥蚀系统是美国相干(Coherent)公司生产的GeoLas HD ArF 准分子激光器,波长为193 nm。其与安捷伦科技公司生产的Agilent 7900等离子质谱仪(ICP-MS)联机共同构成实验的测试系统。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度, 二者在进入ICP之前通过一个T型接头混合。在等离子体中心气流(Ar+He)中加入了少量氮气, 以提高仪器灵敏度、降低检出限和改善分析精密度(Hu et al.,2008)。另外,激光剥蚀系统配置了一个信号平滑装置, 即使激光脉冲频率低达1 Hz,采用该装置后也能获得光滑的分析信号(Hu et al.,2015)。此次分析的激光束斑为24 μm,所用频率皆为5 Hz。U-Pb 同位素定年和微量元素含量处理中采用锆石标准91500 和玻璃标准物质NIST610 作外标分别进行同位素和微量元素分馏校正。每个时间分辨分析数据包括20~30 s 空白信号和50 s 样品信号。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Pb 同位素比值和年龄计算)采用软件ICP-MS DataCal (Liu et al.,2008,2010)完成。锆石样品的U-Pb 年龄谐和图绘制和年龄加权平均计算采用Isoplot/Ex_ver3(Ludwig,2003)完成。
3. 分析结果
所有样品皆选取谐和度>90%的数据点进行统计(原始数据见附表),并按照一般原则,对于≤1000 Ma的数据点取206Pb/238U年龄值,>1000 Ma的数据点则取207Pb/206Pb年龄值。从锆石的阴极发光(CL)图像来看(图3),锆石形态大小多样,长柱状、短柱状、次圆状均有发育。绝大部分锆石具有一定的磨圆度,具有明显的震荡环带结构,显示碎屑锆石的特征。锆石颗粒普遍含有狭窄的生长边,个别生长边较宽,亦可作为独立颗粒出现,发育扇状环带或无−弱分带,属于变质成因。具体分析结果如下。
图 3 佛坪地区新元古代样品碎屑锆石的阴极发光(CL)图像红色圆圈为锆石测点位置,黄色年龄数据来自岩浆锆石,蓝色年龄数据来自变质锆石a— 长角坝群低庄沟组样品FP105-3的碎屑锆石特征;b— 长角坝群低庄沟组样品FP141-5的碎屑锆石特征;c—佛坪群样品FP110-5的碎屑锆石特征Figure 3. Cathodoluminescence (CL) images of detrital zircons from the Neoproterozoic samples(a) FP105-3 from the Dizhuanggou Formation, Changjiaoba Group; (b) FP141-5 from the Dizhuanggou Formation, Changjiaoba Group; (c) FP110-5 from the Foping Group Red circles are analytical spots, yellow dates numbers are from magmatic zircons, while blue dates numbers are from metamorphic zircons.低庄沟组样品FP105-3中的锆石颗粒呈柱状−次圆状(图3a),粒径在 50~100 μm之间,长宽比1.1~2.2,Th/U= 0.14~2.07,绝大部分Th/U> 0.4。该样品碎屑锆石中共获得120个年龄分析点,去掉6个谐和度不高于90%的分析点后,获得的年龄主要峰值为810 Ma,次要年龄峰值840 Ma,其他则零星散布在550~670 Ma和950~1000 Ma,~2000 Ma和~2450 Ma。其中最年轻的一颗碎屑锆石年龄为541 Ma,最小的年龄峰值为604 Ma (n=3;图4a、4b)。
图 4 佛坪地区新元古代样品碎屑锆石U-Pb年龄谐和图与频率分布直方图a—样品FP105-3的碎屑锆石U-Pb年龄谐和图;b—样品FP105-3的碎屑锆石U-Pb年龄频率分布直方图;c—样品FP141-5的碎屑锆石U-Pb年龄谐和图;d—样品FP141-5的碎屑锆石U-Pb年龄频率分布直方图;e—样品FP110-5的碎屑锆石U-Pb年龄谐和图;f—样品FP110-5的碎屑锆石U-Pb年龄频率分布直方图Figure 4. U-Pb concordia and age probability density diagrams of detrital zircons from the Neoproterozoic rock samples in the Foping area(a) Zircon U-Pb concordia diagrams of sample FP105-3; (b) Zircon U-Pb age histogram probability density diagrams of sample FP105-3; (c) Zircon U-Pb concordia diagrams of sample FP141-5; (d) Zircon U-Pb age histogram probability density diagrams of sample FP141-5; (e) Zircon U-Pb concordia diagrams of sample FP110-5; (f) Zircon U-Pb age histogram probability density diagrams of sample FP110-5低庄沟组样品FP141-5中的锆石颗粒呈长柱状−次圆状(图3b),粒径在60~130 μm之间,长宽比1.2~3.2,除去9个Th/U<0.01的变质锆石外,其他颗粒Th/U= 0.32~2.10,绝大部分Th/U> 0.4。该样品共获得129个年龄分析点,去掉12个谐和度不高于90%的分析点,以及前述的变质锆石分析点,在剩余的108个碎屑锆石分析点中获得的年龄主要峰值为835 Ma,2个次要峰值分别为755 Ma和905 Ma,此外在1800~2100 Ma, 2400~2900 Ma也都显示了少量年龄分布。其中最年轻的一颗碎屑锆石年龄为526 Ma,最小的年龄峰值为698 Ma (n=3;图4c、4d)。7个变质年龄分析点年龄分布较为集中,加权平均年龄为207±3 Ma(MSWD=2.5, n=7)。
佛坪群样品FP110-5中的锆石颗粒呈长柱状−次圆状(图3c),粒径在50~150 μm之间,长宽比1.1~2.9,Th/U= 0.01~1.76,大部分Th/U> 0.4。该样品共获得120个年龄分析点,去掉9个谐和度不高于90%的分析点以及5个变质年龄分析点(Th/U<0.02)后,剩余106个碎屑锆石分析点获得的年龄主要峰值为810 Ma,1个次要年龄峰值860 Ma和1个弱峰约970 Ma,另外1900~2800 Ma的年龄区间也有持续的年龄分布。其中最年轻的一颗碎屑锆石年龄为479 Ma,最小的年龄峰值为718 Ma (n=4;图4e、4f)。全部5个变质年龄分析点中4个集中在192~195 Ma,其加权平均年龄为193±2 Ma (MSWD=0.5, n=4) ,另一个为224 Ma。
4. 讨论
4.1 低庄沟组的地层时代
长角坝群是由不含碎屑成分的沙坝组碳酸盐岩和含有沉积碎屑的黑龙潭组、低庄沟组组成,并长期被视为南秦岭早中元古代的沉积盖层(李亚林等,2000)。后期南秦岭多地的沉积盖层在新的研究中被不断更正至显生宙,刘志慧等(2018)在对佛坪地区进行地层再识别时获得了长角坝群中黑龙潭组变质沉积岩的碎屑锆石年代学信息,并将其限定在泥盆纪。这一结果也与Zhang et al.(2023b) 的研究相吻合。然而随着研究的不断深入,研究团队对内部由构造叠置的3个岩组组成的长角坝群的组成或者划分提出了质疑,长角坝群不同的年代学信息可能是因样品来自不同岩组所造成的。通过对比和查验过往资料发现近年的研究主要采集自分布更广泛、成层性更好、变质程度相对更低、更易获得碎屑锆石的黑龙潭组的样品,遂在此次研究中对另1个含有碎屑成分的低庄沟组展开了年代学研究。2个样品碎屑锆石最小年龄峰值为604 Ma和698 Ma(最年轻3个锆石测点数据加权平均所得),低庄沟组的最大沉积时代为新元古代,碎屑锆石主要峰值时代为800±50 Ma。其明显不同于沉积时代为泥盆纪、主要年龄峰值为早古生代的黑龙潭组。因而,长角坝群并非由单一的沉积地层变质而来,在梳理地层探讨地区演化过程中需要谨慎对待。
此外,此次研究还对原佛坪群分散在穹隆中心以外的样品进行了采样研究。其最大沉积时代同样为新元古代晚期,年龄谱系与低庄沟组的样品高度相似,显示了二者相似的沉积物来源。这样的年代学特点也见于早前报道的佛坪穹隆中心处及龙草坪地区变质沉积岩的部分样品中(刘志慧等,2018)。也就是说在南秦岭西段的佛坪地区新元古代的沉积物普遍分布,只是由于此前未被识别或是被划入其他杂岩而没有得到充分的研究。这也造成了其原来所属岩群的时代和组成长期存在争议,形成了长角坝群两种截然不同的时代记录(陈陇刚等,1999;陕西省地质矿产局,1999;刘志慧等,2018;Zhang et al.,2023b;Wang et al.,2024)和对佛坪杂岩沉积物组成、时代的不同认识(陕西省地质矿产局,1989;王根宝,1997;张宗清等,2004;刘志慧等,2018;Zhang et al.,2023a)。而以上问题的出现,应该是中生代造山运动中构造−岩浆活动对沉积地层改造程度的差异所致,使得低庄沟组虽然在变质程度上较黑龙潭组和沙坝组更高,却因成层性较好而被归于作为盖层的长角坝群,而穹隆中心处的地层因强烈变质变形被统一归为结晶基底型佛坪岩群。
4.2 物源分析
此次所研究的3个变质沉积岩样品具有相似的年龄谱系图,最大沉积时代为新元古代600~720 Ma,与南秦岭耀岭河群(630~ 690 Ma)、扬子陆块西北缘华严寺地区南华系(635~720 Ma)的时代大致相当(蔡志勇等,2007;Zhu et al.,2014;邓乾忠等,2016;杨再兵等,2023);主要的峰值区间约为750~850 Ma,其他年龄零星分布在900~1000 Ma以及1800~2800 Ma,个别数据点落入540~700 Ma。在年龄图谱中呈现微弱的950 Ma、2000 Ma、2450 Ma等小峰。已有的锆石年代学研究资料表明,在扬子和南秦岭地区古老的基底如鱼洞子群、陡岭群中广泛存在着2.5~2.7 Ga的年龄记录(秦克令等,1992;张宗清等,2001;张欣等,2010;Hu et al.,2013;Wu et al.,2014),而1.85~2.2 Ga则是扬子克拉通北部基底各陆块拼贴聚合的时期(Ling et al.,2001;Wu et al.,2009;Xiong et al.,2009; Peng et al.,2012a;Yin et al.,2013;Li et al.,2014;Li and Zhao,2016;Qiu et al.,2018;Han et al.,2019;Li et al.,2020;韩庆森等,2020)。因而扬子克拉通可能成为1800~2800 Ma的碎屑锆石的物质来源。约1.1 Ga的扬子北缘神农架群,在约930~940 Ma拼贴到扬子克拉通(Peng et al.,2012b;Jiang et al.,2016;Deng et al.,2017;Lu et al.,2020)则可能为研究区新元古代地层提供了900~1000 Ma的物源。此外,佛坪群中发现的约1.1 Ga的中元古代地层(刘志慧等,2018)以及南秦岭近年来发现的形成于中—新元古代之交的小磨岭杂岩、铁佛殿岩体和马道杂岩(Hu et al.,2016)也都可能为研究区样品提供这一时期的物源。至于研究样品中最主要碎屑锆石年龄集中区间850~750 Ma的物质来源则相对更为清晰,因为这一时期在南秦岭、扬子陆块北缘和扬子陆块西北缘发生了剧烈的岩浆活动,集中爆发在630~850 Ma,630~950 Ma和720~870 Ma(Dong et al.,2011,2017;Bader et al.,2013;Wang et al.,2013,2016;Meng et al.,2015;Zhang et al.,2016b;Dong and Santosh,2016)。至于极个别晚于该地层最大沉积时代,且未能形成峰值的古生代年龄数据点,可能是后期受变质作用改造影响导致Pb丢失所致,并不具有实际指示意义。综上,研究区这套地层的形成在新元古代一直与南秦岭东部块体、扬子陆块及其北缘、西北缘的演化密切相关(图5),显示了明显的亲扬子属性。
图 5 研究区及其相邻区域年代学数据频谱对比图a—佛坪地区新元古代地层变质沉积岩碎屑锆石U-Pb年龄频率分布直方图(数据来源于刘志慧等,2018及文中);b— 南秦岭东段新元古代地体变质沉积岩碎屑锆石U-Pb年龄频率分布直方图(数据来源于李怀坤等,2003、 凌文黎等,2007,2010; 祝禧艳等,2008; 张永清等,2013;王嘉玮等,2021);c— 扬子地区火成岩结晶年龄(频率直方图及数据引自Zhang et al.,2023a)Figure 5. Age probability density diagrams of the samples from the study area and its adjacent regions(a) Ages of detrital zircons from the Neoproterozoic metasedimentary rocks in the Foping area (data are from this paper and Liu et al., 2018); (b) Ages of detrital zircons from the Neoproterozoic metasedimentary rocks in the eastern South Qinling area (data are from Li et al., 2003; Ling et al., 2007, 2010; Zhu et al., 2008 and Zhang et al., 2013); (c) Igneous ages from Yangtze block (diagram and data quoted from Zhang et al., 2023a)4.3 构造意义
4.3.1 对南秦岭新元古代构造演化的启示
南秦岭新元古代的构造演化一直以来都是以宁陕断裂以东的地体(如武当群、耀岭河群等)为主体进行讨论,基于岩浆−沉积作用的研究形成了630~950 Ma间在扬子和南秦岭间经历了板块间由俯冲到裂解的演化过程的共识(刘仁燕等,2011;Bader et al.,2013;Wang et al.,2016;Zhang et al.,2016b;Hu et al.,2016;Dong et al.,2017),并确定了南秦岭在新元古代作为扬子陆块北缘的基本认识。然而,南秦岭构造带东部和西部在地质特征上存在诸多差异,东部的新元古代变质沉积地层出露较好,而西部被中生代侵入岩广泛改造,以东部地体得出的结论是否具有代表性需要进一步佐证。这也是少数学者仅认可宁陕断裂以东的南秦岭地区在新元古代属于扬子陆块的边缘的原因所在(孟庆任,2017)。
此次研究的佛坪地区位于宁陕断裂以西,区内发育多期岩浆作用,沉积地层被强烈改造,对其中的新元古代地层的研究刚好为以上问题的解决提供了参考。同时,在佛坪以西的地区也存在着相似的现象。Wang et al. (2024) 在马道地区的长角坝群中获得了一套基于变质沉积岩碎屑锆石研究的年代学数据,显示其形成时代不晚于奥陶纪(454 Ma),而在此之前基于该地区相应地层的最新研究则刚刚将其时代从太古代—古元古代修正为新元古代(Hu et al.,2016)。2个基于现今被广泛认可且较为先进的研究手段得出的迥异结果,也体现了长角坝群物质组成的非单一性。同时也意味着新元古代变质沉积地层在南秦岭西端仍可能存在。从其沉积时代特征、物质组成以及区域接触关系来看,这套地层可能和同样被中生代侵入岩强烈改造的九关沟角闪岩所代表的原火山岩层共同构成了南秦岭西部的过渡性基底。也就是说,依据南秦岭东段地体得出的认识,在西段是同样适用的。标志着南秦岭与扬子西北缘和北缘都具有密切相关性,南秦岭与扬子陆块在新元古代曾为一个共同地质体。
此外,基于南秦岭东段地体及其周缘岩浆事件研究所得成果一般认为860~950 Ma该地区处于俯冲相关构造背景下(刘仁燕等,2011;Zhang et al.,2016b;Hu et al.,2016;Dong and Santosh,2016;Dong et al.,2017),630~750 Ma则形成于裂谷背景下(周鼎武等,1999;李怀坤等,2003;Ling et al.,2008;夏林圻等,2008;Li and Zhao,2016;Dong et al.,2021),介于上述2期岩浆作用之间的100 Ma内广泛的岩浆作用(也就是研究区样品最主要碎屑物质来源时期)的性质和背景却长期存在争议,包括:多块体俯冲−增生模型( Dong and Santosh, 2016) 、安第斯弧模型(Zhao et al.,2010,2017) 、板块−裂谷模型(Zheng et al.,2007,2008) 和地幔柱模型(Wang et al.,2009;李献华等,2012) 等认识。而佛坪等地区的新元古代变质沉积地层的相继识别,可为后来学者通过地球化学、同位素等其他手段从南秦岭西段地体出发研究该段争议期演化提供前期基础。
4.3.2 对南秦岭中生代主造山期演化的启示
南秦岭造山带是中生代华北、华南两大板块在秦岭地区碰撞拼合的产物,也便成为研究这一造山演化过程的重要载体。基于岩浆、沉积、构造作用等角度的研究已经取得了大量成果,但却形成了各具特色的演化模型。变质作用因自身特点在恢复造山轨迹推导演化过程中具有得天独厚的优势,成为研究南秦岭中生代造山演化的重要手段。然而,自上世纪末至今,在整个南秦岭造山带,包括研究区所在佛坪地区,学者们却时常在相同地区获得看似差距不大但又难以归于同一时期的变质时代信息,形成了南秦岭地区~235 Ma至195 Ma长达近40 Ma的时间跨度(杨崇辉等,1999;张国伟等,2001;李三忠等,2003;梁莎等,2013;Wang et al.,2014;Zhang et al.,2018;刘志慧等,2019)。对该变质作用时间区段尚缺乏有效的梳理,导致在讨论其与地区诸如岩浆作用等的先后关系,以及带内标志性递增变质作用的成因等问题时存在较大分歧,进而相当程度上限制了对地区变质演化的精准恢复。
此次研究在对来自长角坝群低庄沟组和佛坪群的样品进行碎屑锆石定年时,也分别获得了2类不同的变质时代信息:低庄沟组样品记录的地层变质年龄为~207 Ma,佛坪群样品记录的时代为~195 Ma。这样的结果虽然样本较小,且看似在误差范围内一致,但却在南秦岭地区广泛存在(张瑞英等,2013,Zhang et al.,2018;刘志慧等,2019,Li et al.,2022, Wang et al.,2024,Liu et al.,2025),因而更应对应不同的演化阶段,而非划二为一。在空间上,处于佛坪穹隆中心的佛坪群普遍只记录了更年轻的变质时代信息,而稍早时期的变质记录则普遍可以被类似低庄沟组以及最上层的显生宙变质沉积盖层所记录。同时,只记录最年轻变质时代信息的岩石往往具有更高的变质级别(Wang et al.,2014;王东升等,2016;Zhang et al.,2018;刘志慧等,2019;陈龙耀等,2019)。也就是说同样形成于新元古代的低庄沟组和佛坪穹隆外围的佛坪群,与主要出露于穹隆中心的佛坪群不管沉积时代是否一致,都应分属于不同的变质单元。Liu et al.(2025)通过可以记录多阶段年龄信息的独居石获得的结果也表明佛坪乃至南秦岭皆可以划分为显生宙盖层、新元古代变质沉积地层和似结晶基底型佛坪群3个变质单元。佛坪群中心的高级变质呈现的结晶基底特征更大可能是受到区域内分期侵入的3期岩浆里最晚一期(~200 Ma)的花岗质岩浆的局部点状侵入而引起的。类似的在马道地区也出现了中心变质时代滞后于周围地层的特征(Wang et al.,2014,2024)。结合南秦岭多期侵入的岩浆作用表现出的特点(如较晚期岩浆作用仅在佛坪、马道等局部地区点状侵入,早期岩浆则沿构造带广泛分布;Hu et al.,2017,2018,2020),可以将之前跨度很大的中生代变质作用区别开来,理清不同期次岩浆作用与变质作用发生的先后顺序,分出早期区域变质作用时代和晚期因岩浆底侵引起的高温变质作用时代等。因此,长角坝群低庄沟组新元古代物质的识别不仅仅为南秦岭西段新元古代沉积地层的研究打开了窗口,也为佛坪地区变质单元的划分提供了新的依据,进而使得对南秦岭造山带主造山期演化的认识变得更加明朗。
5. 结论
(1) 长角坝群低庄沟组2件变质沉积岩的碎屑锆石年龄主要峰值为810~835 Ma, 最年轻的年龄区间为600~700 Ma,最大沉积时代为新元古代。远离穹隆中心的佛坪群变质沉积岩碎屑锆石年龄主要峰值为810 Ma,最小的年龄峰值为718 Ma,最大沉积时代同样为新元古代。
(2) 低庄沟组与佛坪群新元古代样品表现出相似的碎屑锆石年龄谱系特征,却与最大沉积时代为泥盆纪的长角坝群黑龙潭组显著不同,表明长角坝群并非由单一沉积地层变质而来。低庄沟组可能与现在佛坪群中的部分新元古界同属于一套地层。
(3) 佛坪地区这套新元古代地层的物质来源主要是扬子陆块及其西北缘、北缘,表明南秦岭构造带西段和东段一样,在新元古代都与扬子陆块紧密相连。
(4) 长角坝群中新元古代物质的识别为佛坪地区变质单元的划分提供了新的依据,有助于对以佛坪地区为代表的南秦岭构造带内不同地层间变质时代信息的梳理,进而使得地区中生代造山演化的过程更为明朗。
-
图 1 研究区位置图
T—三叠纪;D—泥盆纪;Pt—元古宙a— 秦岭造山带大地构造略图(据张国伟等,2001;李三忠等,2003;Dong et al.,2011;Zhao and Cawood,2012;Hu et al.,2016修改); b— 佛坪地区地质简图 (据陕西省地质矿产局,1999修改)
Figure 1. Location of the study area
(a) Simplified tectonic map of the Qinling orogenic belt (modified after Zhang et al., 2001; Li et al., 2003; Dong et al., 2011; Zhao and Cawood, 2012; Hu et al., 2016); (b) Geological sketch map of the Foping area (modified after Brueau of Geology and Mineral Resources of Shaanxi Province, 1999)T—Triassic; D—Devonian; Pt—Proterozoic
图 2 佛坪地区新元古代岩石样品野外露头照片及显微镜单偏光照片
Grt—石榴石;Bt—黑云母;Sill—矽线石;Pl—斜长石;Q—石英a— 长角坝群低庄沟组样品FP105-3野外照片;b— FP105-3单偏光照片;c—长角坝群低庄沟组样品FP141-5野外照片;d— FP141-5单偏光照片;e— 佛坪群样品FP110-5野外照片;f— FP110-5单偏光照片
Figure 2. Photographs and photomicrographs of the Neoproterozoic samples in the Foping area
(a) Outcrop of sample FP105-3 from the Dizhuanggou Formation; (b) Photomicrograph of sample FP105-3; (c) Outcrop of sample FP141-5 from the Dizhuanggou Formation; (d) Photomicrograph of sample FP141-5; (e) Outcrop of sample FP110-5 from the Foping Group; (f) Photomicrograph of sample FP110-5 Grt—garnet; Bt—biotite; Sill—sillimanite; Pl—plagioclase; Q—quartz
图 3 佛坪地区新元古代样品碎屑锆石的阴极发光(CL)图像
红色圆圈为锆石测点位置,黄色年龄数据来自岩浆锆石,蓝色年龄数据来自变质锆石a— 长角坝群低庄沟组样品FP105-3的碎屑锆石特征;b— 长角坝群低庄沟组样品FP141-5的碎屑锆石特征;c—佛坪群样品FP110-5的碎屑锆石特征
Figure 3. Cathodoluminescence (CL) images of detrital zircons from the Neoproterozoic samples
(a) FP105-3 from the Dizhuanggou Formation, Changjiaoba Group; (b) FP141-5 from the Dizhuanggou Formation, Changjiaoba Group; (c) FP110-5 from the Foping Group Red circles are analytical spots, yellow dates numbers are from magmatic zircons, while blue dates numbers are from metamorphic zircons.
图 4 佛坪地区新元古代样品碎屑锆石U-Pb年龄谐和图与频率分布直方图
a—样品FP105-3的碎屑锆石U-Pb年龄谐和图;b—样品FP105-3的碎屑锆石U-Pb年龄频率分布直方图;c—样品FP141-5的碎屑锆石U-Pb年龄谐和图;d—样品FP141-5的碎屑锆石U-Pb年龄频率分布直方图;e—样品FP110-5的碎屑锆石U-Pb年龄谐和图;f—样品FP110-5的碎屑锆石U-Pb年龄频率分布直方图
Figure 4. U-Pb concordia and age probability density diagrams of detrital zircons from the Neoproterozoic rock samples in the Foping area
(a) Zircon U-Pb concordia diagrams of sample FP105-3; (b) Zircon U-Pb age histogram probability density diagrams of sample FP105-3; (c) Zircon U-Pb concordia diagrams of sample FP141-5; (d) Zircon U-Pb age histogram probability density diagrams of sample FP141-5; (e) Zircon U-Pb concordia diagrams of sample FP110-5; (f) Zircon U-Pb age histogram probability density diagrams of sample FP110-5
图 5 研究区及其相邻区域年代学数据频谱对比图
a—佛坪地区新元古代地层变质沉积岩碎屑锆石U-Pb年龄频率分布直方图(数据来源于刘志慧等,2018及文中);b— 南秦岭东段新元古代地体变质沉积岩碎屑锆石U-Pb年龄频率分布直方图(数据来源于李怀坤等,2003、 凌文黎等,2007,2010; 祝禧艳等,2008; 张永清等,2013;王嘉玮等,2021);c— 扬子地区火成岩结晶年龄(频率直方图及数据引自Zhang et al.,2023a)
Figure 5. Age probability density diagrams of the samples from the study area and its adjacent regions
(a) Ages of detrital zircons from the Neoproterozoic metasedimentary rocks in the Foping area (data are from this paper and Liu et al., 2018); (b) Ages of detrital zircons from the Neoproterozoic metasedimentary rocks in the eastern South Qinling area (data are from Li et al., 2003; Ling et al., 2007, 2010; Zhu et al., 2008 and Zhang et al., 2013); (c) Igneous ages from Yangtze block (diagram and data quoted from Zhang et al., 2023a)
-
[1] BADER T, RATSCHBACHER L, FRANZ L, et al., 2013. The heart of China revisited, I. Proterozoic tectonics of the Qin mountains in the core of supercontinent Rodinia[J]. Tectonics, 32(3): 661-687. doi: 10.1002/tect.20024 [2] Bureau of Geology and Mineral Resources of Shaanxi Province, 1989. Regional geology of Shaanxi province[M]. Beijing: Geological Publishing House. (in Chinese) [3] Bureau of Geology and Mineral Resources of Shaanxi Province, 1999. The People’s Republic of China regional geological survey report of Foping (I48E015024), 1: 50000[R]. National Geological Archives. (in Chinese) [4] CAI Z Y, XIONG X L, LUO H, et al., 2007. Forming age of the volcanic rocks of the Yaolinghe group from Wudang block, southern Qinling mountain: constraint from Grain-Zircon U-Pb dating[J]. Acta Geologica Sinica, 81(5): 620-625. (in Chinese with English abstract [5] CHANG H, WANG X L, XIONG W, 1998. The composition of the basement of the Foping vault of South Qinling[J]. Northwestern Geology, 19(3): 6-11. (in Chinese) [6] CHEN H, HU J M, WU G L, et al., 2010. Study on the intracontinental deformation of the Mian-Lue suture belt, western Qinling[J]. Acta Petrologica Sinica, 26(4): 1277-1288. (in Chinese with English abstract [7] CHEN L G, DAI X Y, LI N, et al., 1999. The geological characteristic of bedded metamorphite series in middle Proterozoic in Foping area[J]. Journal of Xi’an Engineering University, 21(2): 19-23. (in Chinese with English abstract [8] CHEN L Y, LIU Z H, LIU X C, et al., 2019. Metamorphism and its relation of Magmatism of the Foping gneiss dome in the South Qinling tectonic belt[J]. Earth Science, 44(12): 4178-4185. (in Chinese with English abstract [9] CHEN L Y, LIU X C, QU W, et al., 2020. Metamorphic evolution and 40Ar/39Ar geochronology of the Wuguan complex, eastern Qinling area, China: implications for the late Paleozoic tectonic evolution of the Qinling orogen[J]. Lithos, 358-359: 105415. doi: 10.1016/j.lithos.2020.105415 [10] DENG H, PENG S B, POLAT A., et al., 2017. Neoproterozoic IAT intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton: Evidence for evolving tectonic settings[J]. Precambrian Research, 289: 75-94. doi: 10.1016/j.precamres.2016.12.003 [11] DENG Q Z, YANG Q X, MAO X W, et al., 2016. Study of Lithostratigraphic sequences and chronology of Middle-late Nanhua in Wudang-Suizhou area[J]. Resources Environment & Engineering, 30(2): 132-142. (in Chinese with English abstract [12] DONG Y P, ZHANG G W, FRANZ N, LIU X M, JOHANN G, CHRISTOPH H, 2011. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 41(3): 213-237. doi: 10.1016/j.jseaes.2011.03.002 [13] DONG Y P, LIU X M, ZHANG G W, et al., 2012. Triassic diorites and granitoids in the Foping area: Constraints on the conversion from subduction to collision in the Qinling orogen, China[J]. Journal of Asian Earth Sciences, 47: 123-142. doi: 10.1016/j.jseaes.2011.06.005 [14] DONG Y P, SANTOSH M, 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 29(1): 1-40. doi: 10.1016/j.gr.2015.06.009 [15] DONG Y P, SUN S S, YANG Z, et al., 2017. Neoproterozoic subduction-accretionary tectonics of the South Qinling Belt, China[J]. Precambrian Research, 293: 73-90. doi: 10.1016/j.precamres.2017.02.015 [16] DONG Y P, SUN S S, SANTOSH M, et al., 2021. Central China Orogenic belt and amalgamation of East Asian continents[J]. Gondwana Research, 100: 131-194. doi: 10.1016/j.gr.2021.03.006 [17] HAN Q S, PENG S B, POLAT A, et al., 2019. Petrogenesis and geochronology of Paleoproterozoic magmatic rocks in the Kongling complex: Evidence for a collisional orogenic event in the Yangtze craton[J]. Lithos, 342-343: 513-529. doi: 10.1016/j.lithos.2019.05.015 [18] HAN Q S, PENG S B, JIAO S J, 2020. Discovery and tectonic implications of Paleoproterozoic cold Subduction low-temperature/high-pressure Eclogitic Metapelites, Yangtze Craton[J]. Earth Science, 45(6): 1986-1998. (in Chinese with English abstract [19] HSÜ K J, WANG Q C, LI J L, et al., 1987. Tectonic evolution of Qinling Mountains, China[J]. Eclogae Geologicae Helvetiae, 80: 735-752. [20] HU Z C, GAO S, LIU Y S, et al., 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry, 23(8): 1093-1101. doi: 10.1039/b804760j [21] HU F Y, LIU S W, SANTOSH M, et al, 2016. Chronology and tectonic implications of Neoproterozoic blocks in the south Qinling Orogenic Belt, central China[J]. Gondwana Research, 30: 24-47. doi: 10.1016/j.gr.2015.01.006 [22] HU F Y, LIU S W, DUCEA M N, et al, 2017. The geochemical evolution of the granitoid rocks in the South Qinling Belt: insights from the Dongjiangkou and Zhashui intrusions, central China[J]. Lithos, 278-281: 195-214. doi: 10.1016/j.lithos.2017.01.021 [23] HU F Y, LIU S W, DUCEA M N, et al, 2018. Interaction among magmas from various sources and crustal melting processes during continental collision: insights from the Huayang intrusive complex of the South Qinling Belt, China[J]. Journal of Petrology, 59(4): 735-770. doi: 10.1093/petrology/egy042 [24] HU F Y, LIU S W, DUCEA M N, et al, 2020. Early Mesozoic magmatism and tectonic evolution of the Qinling Orogen: implications for oblique continental collision[J]. Gondwana Research, 88: 296-332. doi: 10.1016/j.gr.2020.07.006 [25] HU J, LIU X C, CHEN L Y, et al., 2013. A~2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen[J]. Chinese Science Bulletin, 58(28): 3564-3579. [26] HU J, LIU X C, QU W, et al., 2019. Mid-neoproterozoic amphibolite facies metamorphism at the northern margin of the Yangtze craton[J]. Precambrian Research, 326: 333-343. doi: 10.1016/j.precamres.2017.10.010 [27] HU J M, MENG Q R, CHEN H, et al., 2011. Tectonic evolution and implication of Ningshan Fault in the central part of Qinling Orogen[J]. Acta Petrologica Sinica, 27(3): 657-671. (in Chinese with English abstract [28] HU Z C, ZHANG W, LIU Y S, et al., 2015. “Wave” signal-smoothing and mercury-removing device for laser ablation Quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis[J]. Analytical Chemistry, 87(2): 1152-1157. doi: 10.1021/ac503749k [29] JIANG X F, PENG S B, POLAT A, et al., 2016. Geochemistry and geochronology of mylonitic metasedimentary rocks associated with the Proterozoic Miaowan ophiolite complex, Yangtze craton, China: Implications for geodynamic events[J]. Precambrian Research, 279: 37-56. doi: 10.1016/j.precamres.2016.04.004 [30] JIANG Y Y, XIANG H, ZHANG Z M, 2017. Metamorphic P-T path and tectonic implication of garnet-biotite schist of the Wuguan complex, Qinling orogen[J]. Acta Petrologica Sinica, 33(8): 2563-2574. (in Chinese with English abstract [31] LI H P, 1998. Discovery of Archean crystal complex in the Foping, Shaanxi Province[J]. Regional Geology of China, 17(3): 329-330. (in Chinese with English abstract [32] LI H K, LU S N, CHEN Z H, et al., 2003. Zircon U-Pb geochronology of rift-type volcanic rocks of the Yaolinghe Group in th South Qinling orogen[J]. , Geological Bulletin of China, 22(10): 755-781. [33] LI H Q, ZHOU W X, WEI Y X, et al., 2020. Two extensional events in the early evolution of the Yangtze Block, South China: Geochemical and isotopic evidence from two sets of Paleoproterozoic alkali porphyry in the northern Kongling Terrane[J]. Geological Journal, 55(9): 6296-6324. doi: 10.1002/gj.3802 [34] LI L M, LIN S F, DAVIS D W, et al., 2014. Geochronology and geochemistry of igneous rocks from the Kongling terrane: implications for Mesoarchean to Paleoproterozoic crustal evolution of the Yangtze Block[J]. Precambrian Research, 255: 30-47. doi: 10.1016/j.precamres.2014.09.009 [35] LI N, CHEN Y J, SANTOSH M, et al., 2015. Compositional polarity of Triassic granitoids in the Qinling Orogen, China: implication for termination of the northernmost paleo-Tethys[J]. Gondwana Research, 27(1): 244-257. doi: 10.1016/j.gr.2013.09.017 [36] LI Q W, ZHAO J H, 2016. Petrogenesis of the Wudang mafic dikes: implications of changing tectonic settings in South China during the Neoproterozoic[J]. Precambrian Research, 272: 101-114. doi: 10.1016/j.precamres.2015.10.019 [37] LI S K, ZHANG Y Q, JI J Q, et al, 2022. Orogen-parallel mid-lower crustal ductile flow during the late Triassic Qinling orogeny: structural geology and geochronology[J]. International Geology Review, 64(11): 1611-1634. doi: 10.1080/00206814.2021.1949639 [38] LI S Z, ZHANG G W, LI Y L, YANG Y Y, 2000. Discovery of granulite in the Mianxian-Lueyang suture zone, Mianxian area and its tectonic significance[J]. Acta Petrologica Sinica, 16(2): 220-226 (in Chinese with English abstract). [39] LI S Z, LAI S C, ZHANG G W, et al., 2003. Metamorphic dynamics of the Mian-Lüe suture zone of Qinling Orogenic belt and the southern Qinling Block[J]. Chinese Journal of Geology, 38(2): 137-154. (in Chinese with English abstract [40] LI X H, LI X W, HE B, 2012. Building of the South China block and its relevance to assembly and breakup of Rodinia supercontinent: observations, interpretations and tests[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559. (in Chinese with English abstract [41] LI Y L, WANG G B, WANG C S, et al., 2000. Zircon U-Pb isotopic geochronology of the Longcaoping crystal complex in Southern Qinling[J]. Acta Mineralogica Sinica, 20(1): 50-54. (in Chinese with English abstract [42] LIANG S, LIU L, ZHANG C L, et al., 2013. Metamorphism and zircon U-Pb age of high-pressure mafic granulites in in Mian-Lüe suture zone, South Qinling orogen[J]. Acta Petrologica Sinica, 29(5): 1657-1674. (in Chinese with English abstract [43] LIAO X Y, LIU L, ZHAI M G, et al., 2021. Metamorphic evolution and Petrogenesis of garnet-corundum silica-undersaturated metapelitic granulites: A new case study from the Mianlüe Tectonic Zone of South Qinling, Central China[J]. Lithos, 392-393: 106154. doi: 10.1016/j.lithos.2021.106154 [44] LING W L, GAO S, ZHANG B R, et al., 2001. The recognizing of ca. 1.95 Ga tectono-thermal eventin Kongling nucleus and its significance for the evolution of Yangtze Block, South China[J]. Chinese Science Bulletin, 46(4): 326-329. doi: 10.1007/BF03187196 [45] LING W L, REN B F, DUAN R C, et al., 2007. Zircon U-Pb isotopic geochronology of Wudangshan Group, Yaolinghe Group and basic intrusions and its geological significance[J]. Chinese Science Bulletin, 52(12): 1445-1456(in Chinese) doi: 10.1360/csb2007-52-12-1445 [46] LING W L, REN B F, DUAN R C, et al., 2008. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication[J]. Chinese Science Bulletin, 53(14): 2192-2199. doi: 10.1007/s11434-008-0269-6 [47] LING W L, DUAN R C, LIU X M, et al., 2010. U-Pb dating of detrital zircons from the Wudangshan Group in the South Qinling and its geological significance[J]. Chinese Science Bulletin, 55(22): 2440-2448. doi: 10.1007/s11434-010-3095-6 [48] LIU J B, ZHANG L M, 2013. Neoproterozoic low to negative δ18O volcanic and intrusive rocks in the Qinling Mountains and their geological significance[J]. Precambrian Research, 230: 138-167. doi: 10.1016/j.precamres.2013.02.006 [49] LIU R Y, NIU B G, HE Z J, et al., 2011. LA-ICP-MS zircon U-Pb geochronology of the eastern part of the Xiaomaoling composite intrusives in Zhashui area, Shaanxi, China[J]. Geological Bulletin of China, 30(2-3): 448-460. (in Chinese with English abstract [50] LIU S W, YANG P T, LI Q G, et al., 2011. Indosinian granitoids and orogenic processes in the middle segment of the Qinling Orogen, China[J]. Journal of Jilin University (Earth Science Edition), 41(6): 1928-1943. (in Chinese with English abstract [51] LIU Y S, HU Z C, GAO S, et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [52] LIU Y S, HU Z C, ZONG K Q, et al., 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4 [53] LIU Z H, LUO M, CHEN L Y, et al., 2018. Stratigraphic framework and provenance analysis in the Foping area, the South Qinling tectonic belt: Constraints from LA-ICP-MS U-Pb dating of detrital zircons from the metasedimentary rocks[J]. Acta Petrologica Sinica, 34(5): 1484-1502. (in Chinese with English abstract [54] LIU Z H, CHEN L Y, QU W, et al., 2019. Early mesozoic metamorphism, Anataxis and deformation of Foping area in South Qinling belt: constrains from U-Pb Zircon dating[J]. Acta Geoscientica Sinica, 40(4): 545-562. (in Chinese with English abstract [55] LIU Z H, CHEN L Y, LIU X C, et al, 2025. Petrological and geochronological constraints on the genesis of the Foping gneiss dome, South Qinling Belt, central China[J]. Journal of Asian Earth Sciences, 277: 106406. doi: 10.1016/j.jseaes.2024.106406 [56] LU K, LI X H, ZHOU J L, et al., 2020. Early Neoproterozoic assembly of the Yangtze Block decoded from metasedimentary rocks of the Miaowan Complex[J]. Precambrian Research, 346: 105787. doi: 10.1016/j.precamres.2020.105787 [57] LUDWIG K R, 2003. User's manual for ISOPLOT 3.00: a geochronological toolkit for Microsoft excel[M]. Berkeley: Berkeley Geochronology Center. [58] MATTAUER M, MATTE P, MALAVIEILLE J, et al., 1985. Tectonics of the Qinling belt: build-up and evolution of eastern Asia[J]. Nature, 317(6037): 496-500. doi: 10.1038/317496a0 [59] MENG E, LIU F L, DU L L, et al., 2015. Petrogenesis and tectonic significance of the Baoxing granitic and mafic intrusions, southwestern China: evidence from zircon U-Pb dating and Lu-Hf isotopes, and whole-rock geochemistry[J]. Gondwana Research, 28(2): 800-815. doi: 10.1016/j.gr.2014.07.003 [60] MENG Q R, 2017. Origin of the Qinling mountains[J]. Scientia Sinica Terrae, 47(4): 412-420. (in Chinese) doi: 10.1360/N072016-00422 [61] NIE H, YAO J, WAN X, et al., 2016. Precambrian tectonothermal evolution of South Qinling and its affinity to the Yangtze Block: evidence from zircon ages and Hf-Nd isotopic compositions of basement rocks[J]. Precambrian Research, 286: 167-179. doi: 10.1016/j.precamres.2016.10.005 [62] PENG M, WU Y B, GAO S, et al., 2012a. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: constraints on petrogenesis and geologic implications[J]. Gondwana Research, 22(1): 140-151. doi: 10.1016/j.gr.2011.08.012 [63] PENG S B, KUSKY T M, JIANG X F, et al., 2012b. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: Implications for South China’s amalgamation history with the Rodinian supercontinent[J]. Gondwana Research, 21(2-3): 577-594. doi: 10.1016/j.gr.2011.07.010 [64] QIN K L, SONG S S, HE S P, 1992. The geological characteristics of the Yudongzi granite-greenstone terrain and its gold-bearing property in Mianluening area Shaanxi[J]. Northwest Geoscience, 13(1): 65-74. (in Chinese with English abstract [65] QIU X F, ZHAO X M, YANG H M, et al., 2018. Geochemical and Nd isotopic compositions of the Palaeoproterozoic metasedimentary rocks in the Kongling complex, nucleus of Yangtze craton, South China block: implications for provenance and tectonic evolution[J]. Geological Magazine, 155(6): 1263-1276. doi: 10.1017/S0016756817000048 [66] RATSCHBACHER L, HACKER B R, CALVERT A, et al, 2003. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics, 366(1-2): 1-53. doi: 10.1016/S0040-1951(03)00053-2 [67] Shaanxi Institute of Geological Survey, 2017. The regional geology of China, Shaanxi province[M]. Beijing: Geological Publishing House: 1-1120. (in Chinese) [68] SHI Y, YU J H, SANTOSH M, 2013. Tectonic evolution of the Qinling orogenic belt, Central China: new evidence from geochemical, zircon U-Pb geochronology and Hf isotopes[J]. Precambrian Research, 231: 19-60. doi: 10.1016/j.precamres.2013.03.001 [69] WANG D S, WANG Z Q, ZHANG Y L, et al., 2014. Deformation structures of the Madao gneiss in South Qinling: structural analysis, geochronological constraints, and tectonic implications[J]. Acta Geologica Sinica-English Edition, 88(4): 1102-1119. doi: 10.1111/1755-6724.12276 [70] WANG D S, WANG Z Q, ZHANG Y L, et al., 2016. Metamorphism of Metasedimentary rocks in Madao area, South Qinling Accretionary complex belt[J]. Geoscience, 30(6): 1254-1266. (in Chinese with English abstract [71] WANG D S, WANG Z Q, WANG T, et al., 2024. Unraveling the early Paleozoic tectonic history of the South Qinling Belt: evidence from geochronology, geochemistry, and Sm-Nd isotopes of meta-sedimentary rocks[J]. Journal of Geochemical Exploration, 257: 107362. doi: 10.1016/j.gexplo.2023.107362 [72] WANG G B, 1997. Isotope chronology and its significances of Foping Gneiss System, South Qinling[J]. Northwest Geoscience, 18(2): 21-25. (in Chinese with English abstract [73] WANG J W, WANG G, WANG Z Q, et al., 2021. Genesis and tectonic significance of Mesozoic mafic rocks in the Wudang Mountain-Shiyan Belt, South Qinling Orogen: Constraints from geochemistry and zircon U-Pb, Hf isotopes[J]. Geological Review, 67(4): 869-885. (in Chinese with English abstract [74] WANG Q C, SUN S, LI J L, et al., 1989. The tectonic evolution of the Qinling Mountain Belt[J]. Chinese Journal of Geology (Scientia Geologica Sinica), 24(2): 129-142. (in Chinese with English abstract [75] WANG R R, XU Z Q, SANTOSH M, et al., 2016. Late Neoproterozoic magmatism in South Qinling, Central China: geochemistry, zircon U-Pb-Lu-Hf isotopes and tectonic implications[J]. Tectonophysics, 683: 43-61. doi: 10.1016/j.tecto.2016.05.050 [76] WANG X C, LI X H, LI W X, et al., 2009. Variable involvements of mantle plumes in the genesis of mid-Neoproterozoic basaltic rocks in South China: a review[J]. Gondwana Research, 15(3-4): 381-395. doi: 10.1016/j.gr.2008.08.003 [77] WANG X X, WANG T, ZHANG, C. L. , 2013. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process[J]. Journal of Asian Earth Sciences, 72, 129-151. [78] WANG X X, WANG T, ZHANG C L, 2015. Granitoid Magmatism in the Qinling Orogen, central China and its bearing on orogenic evolution[J]. Science China Earth Sciences, 58(9): 1497-1512. doi: 10.1007/s11430-015-5150-2 [79] WANG Z Q, YAN Q R, YAN Z, et al., 2009. New division of the main tectonic units of the Qinling Orogenic Belt, central China[J]. Acta Geologica Sinica, 83(11): 1527-1546. (in Chinese with English abstract [80] WEI C J, YANG C H, ZHANG S G, 1999. Metamorphism of the east sector of the southern Qinling orogenic belt and its geological significance[J]. Acta Geologica Sinica‐English Edition, 73(1): 65-77. doi: 10.1111/j.1755-6724.1999.tb00812.x [81] WEI C J, ZHANG C G. 2002. PT path of medium-pressure metamorphism of continental collision orogenic belt-Exemplified by the southern Qinling orogenic belt[J]. Acta Petrol Mineral, 21: 356-362. (in Chinese with English abstract [82] WU Y B, GAO S, GONG H J, et al., 2009. Zircon U-Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: refining the timing of Palaeoproterozoic high-grade metamorphism[J]. Journal of Metamorphic Geology, 27(6): 461-477. doi: 10.1111/j.1525-1314.2009.00826.x [83] WU Y B, ZHOU G Y, GAO S, et al., 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs[J]. Precambrian Research, 254: 73-86. doi: 10.1016/j.precamres.2014.08.004 [84] XIA L Q, XIA Z C, LI X M, et al., 2008. Petrogenesis of the Yaolinghe Group, Yunxi Group, Wudangshan Group volcanic rocks and basic dyke swarms from eastern part of the South Qinling Mountains[J]. Northwestern Geology, 41(3): 1-29. (in Chinese with English abstract [85] XIONG Q, ZHENG J P, YU C M, et al., 2009. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang: signification for the Yangtze continental cratonization in Paleoproterozoic[J]. Chinese Science Bulletin, 54(3): 436-446. doi: 10.1007/s11434-008-0401-7 [86] XU Z Q, LU Y L, TANG Y Q, et al. , 1988. The Formation of the East Qinling Moutian Chain—deformation, evolution and plate dynamics[M]. Beijing: China Environmental Science Press: 1-193. (in Chinese) [87] YAN Z, WANG Z Q, YAN Q R, et al., 2006. Devonian sedimentary environments and provenance of the Qinling orogen: constraints on late Paleozoic southward accretionary tectonics of the north China craton[J]. International Geology Review, 48(7): 585-618. doi: 10.2747/0020-6814.48.7.585 [88] YAN Z, WANG Z Q, YAN Q R, et al., 2012. Geochemical constraints on the provenance and depositional setting of the Devonian Liuling Group, East Qinling Mountains, central China: implications for the Tectonic evolution of the Qinling orogenic belt[J]. Journal of Sedimentary Research, 82(1): 9-20. doi: 10.2110/jsr.2012.4 [89] YANG C H, WEI C J, ZHANG S G, et al., 1999. U-Pb zircon dating of granulite facies rocks from the Foping area in the southern Qinling Mountains[J]. Geological Review, 45(2): 173-179. (in Chinese with English abstract [90] YANG Z B, PEI X Z, LI R B, et al., 2023. Provenance tracing of Detrital zircons from Nanhua system in Bikou Microblock, northwestern margin of Yangtze and its geological significance[J]. Sedimentary Geology and Tethyan Geology, 43(1): 226-248. (in Chinese with English abstract [91] YIN C Q, LIN S F, DAVIS D W, et al., 2013. 2.1-1.85 Ga tectonic events in the Yangtze Block, South China: petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia[J]. Lithos, 182-183: 200-210. doi: 10.1016/j.lithos.2013.10.012 [92] ZHA X F, DONG Y P, LI W, et al., 2010. Uplifting process of Foping dome in southern Qinling: constrained by structural analysis[J]. Geotectonica et Metallogenia, 34(3): 331-339. (in Chinese with English abstract [93] ZHANG G W, ZHANG B R, YUAN X C, et al. , 2001. Qinling Orogenic belt and continental dynamics[M]. Beijing: Science Press: 1-885. (in Chinese) [94] ZHANG G W, et al. , 2015. The Mianlue tectonic zone of the Qinling orogen and China continental tectonics[M]. Beijing: Science Press. (in Chinese) [95] ZHANG G W, GUO A L, DONG Y P, et al., 2019. Rethinking of the Qinling orogen[J]. Journal of Geomechanics, 25(5): 746-768. (in Chinese with English abstract [96] ZHANG H, YE R S, LIU B X, et al., 2016a. Partial melting of the South Qinling orogenic crust, China: evidence from Triassic migmatites and diorites of the Foping dome[J]. Lithos, 260: 44-57. doi: 10.1016/j.lithos.2016.05.007 [97] ZHANG H, LI S Q, FANG B W, et al., 2018. Zircon U-Pb ages and geochemistry of migmatites and granites in the Foping dome: evidence for Late Triassic crustal evolution in South Qinling, China[J]. Lithos, 296-299: 129-141. doi: 10.1016/j.lithos.2017.10.024 [98] ZHANG H, HE J, LI Y C, et al., 2023a. Neoproterozoic crustal growth and reworking in South Qinling, central China: Evidence from zircon U-Pb age and Hf isotopic composition of paragneiss in the Foping dome[J]. Journal of Asian Earth Sciences, 256: 105784. doi: 10.1016/j.jseaes.2023.105784 [99] ZHANG R Y, AO W H, SUN Y, 2013. The formation age, material composition and geological significance of intrusive rocks in the western part of South Qinling (Foping-Liuba area)[C]//National Symposium on Petrology and Geodynamics (Abstract). Guangzhou: Geological Society of China. (in Chinese) [100] ZHANG R Y, SUN Y, ZHANG X, et al., 2016b. Neoproterozoic magmatic events in the South Qinling Belt, China: implications for amalgamation and breakup of the Rodinia supercontinent[J]. Gondwana Research, 30: 6-23. doi: 10.1016/j.gr.2015.06.015 [101] ZHANG R Y, AO W H, ZHAO Y, 2023b. U-Pb zircon ages and geochemistry of the Metasedimentary rocks from the Foping area in the South Qinling belt: evidence for early Devonian amalgamation between North China and South China blocks[J]. Journal of Earth Science, 34(4): 1112-1127. doi: 10.1007/s12583-022-1608-2 [102] ZHANG S, LIU J X, ZUO M, et al., 2022. Analysis on geological characteristics and metallogenic conditions of Yuanjiazhuang crystalline graphite deposit in the Foping area[J]. West-China Exploration Engineering, 34(4): 137-141. (in Chinese with English abstract [103] ZHANG X, XU X Y, SONG G S, et al., 2010. Zircon LA-ICP-MS U-Pb dating and significance of Yudongzi Group deformation granite from Lueyang area, western Qinling, China[J]. Geological Bulletin of China, 29(4): 510-517. (in Chinese with English abstract [104] ZHANG Y Q, ZHANG J, LI H K, et al., 2013. Zircon U-Pb geochronology of the meta-acidic volcanic rocks from the Wudangshan Group, southern Qinling mountains, central China[J]. Acta Geologica Sinica, 87(7): 922-930. (in Chinese with English abstract [105] ZHANG Z Q, ZHANG G W, TANG S H, et al., 2001. On the age of metamorphic rocks of the Yudongzi group and the Archean crystalline basement of the Qinling Orogen[J]. Acta Geologica Sinica, 75(2): 198-204. (in Chinese with English abstract [106] ZHANG Z Q, SONG B, TANG S H, et al., 2004. Age and material composition of the Foping metamorphic crystalline complex in the Qinling Mountians: SHRIMP zircon U-Pb and whole-rock Sm-Nd geochronology[J]. Geology in China, 31(2): 161-168. (in Chinese with English abstract [107] ZHAO G C, CAWOOD P A, 2012. Precambrian geology of China[J]. Precambrian Research, 222-223: 13-54. doi: 10.1016/j.precamres.2012.09.017 [108] ZHAO J H, ZHOU M F, ZHENG J P, 2010. Metasomatic mantle source and crustal contamination for the formation of the Neoproterozoic mafic dike swarm in the northern Yangtze Block, South China[J]. Lithos, 115(1-4): 177-189. doi: 10.1016/j.lithos.2009.12.001 [109] ZHAO J H, ASIMOW P D, ZHOU M F, et al., 2017. An Andean-type arc system in Rodinia constrained by the Neoproterozoic Shimian ophiolite in South China[J]. Precambrian Research, 296: 93-111. doi: 10.1016/j.precamres.2017.04.017 [110] ZHENG Y F, ZHANG S B, ZHAO Z F, et al., 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust[J]. Lithos, 96(1-2): 127-150. doi: 10.1016/j.lithos.2006.10.003 [111] ZHENG Y F, WU R X, WU Y B, et al., 2008. Rift melting of juvenile arc-derived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China[J]. Precambrian Research, 163(3-4): 351-383. doi: 10.1016/j.precamres.2008.01.004 [112] ZHOU D W, ZHANG C L, HUA H, et al., 1998. New knowledge about division and correlation of the Mid-and Neo-Proterozoic strata in the South Qinling[J]. Geological Journal of China Universities, 4(3): 350-357. (in Chinese with English abstract [113] ZHOU D W, ZHANG C L, ZHOU X H, et al., 1999. 40Ar-39Ar dating of basic dykes from Wudang block and their geology significance[J]. Acta Petrologica Sinica, 15(1): 14-20. (in Chinese with English abstract [114] ZHU X Y, CHEN F K, WANG W, et al., 2008. Zircon U-Pb ages of volcanic and sedimentary rocks of the Wudang group in the Qinling Orogenic belt within western Henan province[J]. Acta Geoscientia Sinica, 29(6): 817-829. [115] ZHU X Y, CHEN F K, NIE H, et al., 2014. Neoproterozoic tectonic evolution of South Qinling, China: evidence from zircon ages and geochemistry of the Yaolinghe volcanic rocks[J]. Precambrian Research, 245: 115-130. doi: 10.1016/j.precamres.2014.02.005 [116] 蔡志勇,熊小林,罗洪,等,2007. 武当地块耀岭河群火山岩的时代归属:单锆石U-Pb年龄的制约[J]. 地质学报,81(5):620-625. doi: 10.3321/j.issn:0001-5717.2007.05.005 [117] 常宏,王向利,熊伟,1998. 南秦岭佛坪穹窿基底组成[J]. 西北地质,19(3):6-11. [118] 陈虹,胡健民,武国利,等,2010. 西秦岭勉略带陆内构造变形研究[J]. 岩石学报,26(4):1277-1288. [119] 陈陇刚,代新宇,李宁,等,1999. 佛坪地区中元古代孔兹岩系地质特征[J]. 西安工程学院学报,21(2):19-23. [120] 陈龙耀,刘志慧,刘晓春,等,2019. 南秦岭佛坪片麻岩穹隆变质作用及与岩浆作用的关系[J]. 地球科学,44(12):4178-4185. [121] 邓乾忠,杨青雄,毛新武,等,2016. 湖北武当—随枣地区中—晚南华世岩石地层序列与年代学研究[J]. 资源环境与工程,30(2):132-142. [122] 韩庆森,彭松柏,焦淑娟,2020. 扬子克拉通古元古代冷俯冲低温-高压榴辉岩相变泥质岩的发现及其大地构造意义[J]. 地球科学,45(6):1986-1998. [123] 胡健民,孟庆任,陈虹,等,2011. 秦岭造山带内宁陕断裂带构造演化及其意义[J]. 岩石学报,27(3):657-671. [124] 江媛媛,向华,张泽明,2017. 秦岭造山带武关杂岩石榴黑云片岩的变质作用P-T轨迹与构造意义[J]. 岩石学报,33(8):2563-2574. [125] 李海平,1998. 陕西省佛坪发现太古宇结晶杂岩[J]. 中国区域地质,17(3):329-330. [126] 李怀坤,陆松年,陈志宏,等,2003. 南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学[J]. 地质通报,22(10):775-781. doi: 10.3969/j.issn.1671-2552.2003.10.005 [127] 李三忠,张国伟,李亚林,等,2000. 勉县地区勉略带内麻粒岩的发现及构造意义[J]. 岩石学报,16(2):220-226. doi: 10.3321/j.issn:1000-0569.2000.02.011 [128] 李三忠,赖绍聪,张国伟,等,2003. 秦岭勉(县-)略(阳)缝合带及南秦岭地块的变质动力学研究[J]. 地质科学,38(2):137-154. doi: 10.3321/j.issn:0563-5020.2003.02.001 [129] 李献华,李武显,何斌,2012. 华南陆块的形成与Rodinia超大陆聚合-裂解:观察、解释与检验[J]. 矿物岩石地球化学通报,31(6):543-559. doi: 10.3969/j.issn.1007-2802.2012.06.002 [130] 李亚林,王根宝,王成善,等,2000. 南秦岭龙草坪结晶杂岩锆石U-Pb同位素地质年代学研究[J]. 矿物学报,20(1):50-54. doi: 10.3321/j.issn:1000-4734.2000.01.009 [131] 梁莎,刘良,张成立,等,2013. 南秦岭勉略构造带高压基性麻粒岩变质作用及其锆石U-Pb年龄[J]. 岩石学报,29(5):1657-1674. [132] 凌文黎,任邦方,段瑞春,等,2007. 南秦岭武当山群、耀岭河群及基性侵入岩群锆石U-Pb同位素年代学及其地质意义[J]. 科学通报,52(12):1445-1456. doi: 10.3321/j.issn:0023-074X.2007.12.015 [133] 凌文黎,段瑞春,柳小明,等,2010. 南秦岭武当山群碎屑锆石U-Pb年代学及其地质意义[J]. 科学通报,55(12):1153-1161. [134] 刘仁燕,牛宝贵,和政军,等,2011. 陕西柞水地区小茅岭复式岩体东段LA-ICP-MS锆石U-Pb定年[J]. 地质通报,30(2-3):448-460. [135] 刘树文,杨朋涛,李秋根,等,2011. 秦岭中段印支期花岗质岩浆作用与造山过程[J]. 吉林大学学报(地球科学版),41(6):1928-1943. [136] 刘志慧,罗敏,陈龙耀,等,2018. 南秦岭佛坪地区地层格架与物源分析:变质沉积岩中碎屑锆石LA-ICP-MS U-Pb定年提供的制约[J]. 岩石学报,34(5):1484-1502. [137] 刘志慧,陈龙耀,曲玮,等,2019. 南秦岭佛坪地区早中生代变质-深熔-变形作用的锆石U-Pb年代学制约[J]. 地球学报,40(4):545-562. [138] 孟庆任,2017. 秦岭的由来[J]. 中国科学:地球科学,47(4):412-420. [139] 秦克令,宋述光,何世平,1992. 陕西勉略宁区鱼洞子花岗岩-绿岩地体地质特征及其含金性[J]. 西北地质科学,13(1):65-74. [140] 陕西省地质调查院,2017. 中国区域地质志-陕西志[M]. 北京:地质出版社:1-1120. [141] 陕西省地质矿产局,1989. 陕西省区域地质志[M]. 北京:地质出版社. [142] 陕西省地质矿产局,1999. 中华人民共和国区域地质调查报告:1:50000 佛坪县幅(I48E015024)[R]. 全国地质资料馆. [143] 王东升,王宗起,张英利,等,2016. 南秦岭增生杂岩带马道地区变泥质岩的变质作用[J]. 现代地质,30(6):1254-1266. [144] 王根宝,1997. 南秦岭佛坪片麻岩系同位素年代学及其地质意义[J]. 西北地质科学,18(2):21-25. [145] 王嘉玮,王刚,王宗起,等,2021. 南秦岭武当山十堰地区中生代镁铁质岩石成因与构造意义:岩石地球化学、锆石U-Pb年龄和Hf同位素制约[J]. 地质论评,67(4):869-885. [146] 王清晨,孙枢,李继亮,等,1989. 秦岭的大地构造演化[J]. 地质科学,24(2):129-142. [147] 王宗起,闫全人,闫臻,等,2009. 秦岭造山带主要大地构造单元的新划分[J]. 地质学报,83(11):1527-1546. doi: 10.3321/j.issn:0001-5717.2009.11.001 [148] 魏春景,张翠光,2002. 陆-陆碰撞造山带中压型变质作用的pT轨迹:以南秦岭佛坪地区为例[J]. 岩石矿物学杂志,21(4):356-362. doi: 10.3969/j.issn.1000-6524.2002.04.007 [149] 夏林圻,夏祖春,李向民,等,2008. 南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因[J]. 西北地质,41(3):1-29. [150] 许志琴,卢一伦,汤耀庆,等,1988. 东秦岭复合山链的形成-变形、演化及板块动力学[M]. 北京:中国环境科学出版社:1-193. [151] 杨崇辉,魏春景,张寿广,等,1999. 南秦岭佛坪地区麻粒岩相岩石锆石U-Pb年龄[J]. 地质论评,45(2):173-179. [152] 杨再兵,裴先治,李瑞保,等,2023. 扬子西北缘碧口微地块南华系碎屑锆石物源示踪及其地质意义[J]. 沉积与特提斯地质,43(1):226-248. [153] 查显锋,董云鹏,李玮,等,2010. 南秦岭佛坪隆起的成因探讨:构造解析的证据[J]. 大地构造与成矿学,34(3):331-339. [154] 张国伟,张本仁,袁学诚,等,2001. 秦岭造山带与大陆动力学[M]. 北京:科学出版社:1-885. [155] 张国伟,等,2015. 秦岭勉略构造带与中国大陆构造[M]. 北京:科学出版社. [156] 张国伟,郭安林,董云鹏,等,2019. 关于秦岭造山带[J]. 地质力学学报,25(5):746-768. doi: 10.12090/j.issn.1006-6616.2019.25.05.064 [157] 张瑞英,敖文昊,孙勇,2013. 南秦岭西段(佛坪-留坝地区)侵入岩系的形成时代、物质组成及其地质意义[C]//全国岩石学与地球动力学研讨会论文集. 广州:中国地质学会. [158] 张诜,刘锦兴,左猫,等,2022. 佛坪袁家庄晶质石墨矿区地质特征及成矿条件浅析[J]. 西部探矿工程,34(4):137-141. doi: 10.3969/j.issn.1004-5716.2022.04.049 [159] 张欣,徐学义,宋公社,等,2010. 西秦岭略阳地区鱼洞子杂岩变形花岗岩锆石LA-ICP-MS U-Pb测年及地质意义[J]. 地质通报,29(4):510-517. doi: 10.3969/j.issn.1671-2552.2010.04.004 [160] 张永清,张健,李怀坤,等,2013. 南秦岭武当山群变质酸性火山岩锆石U-Pb年代学[J]. 地质学报,87(7):922-930. doi: 10.3969/j.issn.0001-5717.2013.07.002 [161] 张宗清,张国伟,唐索寒,等,2001. 鱼洞子群变质岩年龄及秦岭造山带太古宙基底[J]. 地质学报,75(2):198-204. doi: 10.3321/j.issn:0001-5717.2001.02.008 [162] 张宗清,宋彪,唐索寒,等,2004. 秦岭佛坪变质结晶岩系年龄和物质组成特征-SHRIMP锆英石U-Pb年代学和全岩Sm-Nd年代学数据[J]. 中国地质,31(2):161-168. doi: 10.3969/j.issn.1000-3657.2004.02.007 [163] 周鼎武,张成立,华洪,等,1998. 南秦岭中、新元古代地层划分对比新认识[J]. 高校地质学报,4(3):350-357. [164] 周鼎武,张成立,周小虎,等,1999. 武当地块基性岩墙群40Ar-39Ar定年及其地质意义[J]. 岩石学报,15(1):14-20. doi: 10.3321/j.issn:1000-0569.1999.01.002 [165] 祝禧艳,陈福坤,王伟,等,2008. 豫西地区秦岭造山带武当群火山岩和沉积岩锆石U-Pb年龄[J]. 地球学报,29(6):817-829. doi: 10.3321/j.issn:1006-3021.2008.06.025 -