| Citation: | TANG Y,LI Y D,WANG D B,et al.,2025. Chronological, geochemical characteristics and tectonic evolution significance of the Sanyan eclogites in the Jinsha River suture zone, eastern Xizang[J]. Journal of Geomechanics,31(4):557−575 doi: 10.12090/j.issn.1006-6616.2025053 |
| [1] |
BEBOUT G E, 2007. Metamorphic chemical geodynamics of subduction zones[J]. Earth and Planetary Science Letters, 260(3-4): 373-393. doi: 10.1016/j.jpgl.2007.05.050
|
| [2] |
CHUNG S L, LEE T Y, LO C H, et al., 1997. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone[J]. Geology, 25(4): 311-314. doi: 10.1130/0091-7613(1997)025<0311:IEPTCE>2.3.CO;2
|
| [3] |
DAN W, ZHANG X Z, CHEN Y X, et al., 2025. Metamorphic evolution of Mesozoic microcontinent suture zones in the Tibet region[J]. Earth-Science Reviews, 268: 105174. doi: 10.1016/j.earscirev.2025.105174
|
| [4] |
ERNST W G, LIOU J G, 1995. Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belts[J]. Geology, 23(4): 353-356. doi: 10.1130/0091-7613(1995)023<0353:CPTSOT>2.3.CO;2
|
| [5] |
FAN W M, PENG T P, WANG Y J, 2009. Triassic magmatism in the southern Lancangjiang zone, southwestern China and its constraints on the tectonic evolution of Paleo-Tethys[J]. Earth Science Frontiers, 16(6): 291-302. (in Chinese with English abstract)
|
| [6] |
FAURE M, LEPVRIER C, VAN NGUYEN V, et al., 2014. The South China block-Indochina collision: where, when, and how?[J]. Journal of Asian Earth Sciences, 79: 260-274. doi: 10.1016/j.jseaes.2013.09.022
|
| [7] |
FENG Q L, YE M, ZHANG Z J, 1997. Early carboniferous radiolarians from western Yunnan[J]. Acta Micropalaeontologica Sinica, 14(1): 79-92. (in Chinese with English abstract)
|
| [8] |
GONG X D, TANG Y, QIN Y D, et al., 2020. Late Triassic Collision of Jinshajiang Suture Belt: Geochronological, Geochemical and Hf Isotope Evidences from Quartz Monzonite in Gonjo Area[J]. Earth Science, 45(8): 2905-2919. (in Chinese with English abstract)
|
| [9] |
GUAN C, YAN M D, ZHANG W L, et al., 2021. Paleomagnetic and chronologic data bearing on the Permian/Triassic boundary position of Qamdo in the eastern Qiantang Terrane: implications for the closure of the Paleo-Tethys[J]. Geophysical Research Letters, 48(6): e2020GL092059. doi: 10.1029/2020GL092059
|
| [10] |
HUANG F, XU J F, ZENG Y C, et al., 2017. Slab breakoff of the Neo‐Tethys Ocean in the Lhasa terrane inferred from contemporaneous melting of the mantle and crust[J]. Geochemistry, Geophysics, Geosystems, 18(11): 4074-4095. doi: 10.1002/2017GC007039
|
| [11] |
HUANG K N, OPDYKE N D, 2016. Paleomagnetism of the Upper Triassic rocks from south of the Ailaoshan Suture and the timing of the amalgamation between the South China and the Indochina Blocks[J]. Journal of Asian Earth Sciences, 119: 118-127. doi: 10.1016/j.jseaes.2015.12.005
|
| [12] |
JIAN P, LIU D Y, SUN X M, 2008. SHRIMP dating of the permo-carboniferous Jinshajiang ophiolite, southwestern China: geochronological constraints for the evolution of Paleo-Tethys[J]. Journal of Asian Earth Sciences, 32(5-6): 371-384. doi: 10.1016/j.jseaes.2007.11.006
|
| [13] |
JIAN P, LIU D Y, KRÖNER A, et al., 2009a. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province[J]. Lithos, 113(3-4): 767-784. doi: 10.1016/j.lithos.2009.04.006
|
| [14] |
JIAN P, LIU D Y, KRÖNER A, et al., 2009b. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (Ⅰ): Geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks[J]. Lithos, 113(3-4): 748-766. doi: 10.1016/j.lithos.2009.04.004
|
| [15] |
LE BAS M J, LE MAITRE R W, STRECKEISEN A, et al., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 27(3): 745-750. doi: 10.1093/petrology/27.3.745
|
| [16] |
LI J L, 2020. Blueschist: a window into high-pressure/low-temperature metamorphism and subduction zone dynamics[J]. Science China Earth Sciences, 63(12): 1852-1867. doi: 10.1007/s11430-019-9630-2
|
| [17] |
LIANG Q K, KANG H, CHEN Y L, et al., 2023. U-Pb-Hf Isotope compositions of detrital zircons from Tongtian River Sediments of Northern-Central Tibetan Plateau: implications for the closure of the Jinshajiang Ocean[J]. Geochemistry, 83(4): 126018. doi: 10.1016/j.chemer.2023.126018
|
| [18] |
LIN W, WANG Y, LIU F, et al., 2025. Indochina orogenic belt and related geodynamics[J]. Science China Earth Sciences, 68(6): 1691-1715. doi: 10.1007/s11430-024-1499-5
|
| [19] |
LIU X C, HU J, CHEN L Y, et al., 2021. Oceanic-type high-temperature eclogites from Hainan Island, South China: General characteristics and unsolved problems[J]. Acta Petrologica Sinica, 37(1): 143-161. (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.01.10
|
| [20] |
LIU Y S, HU Z C, GAO S, et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
|
| [21] |
MARUYAMA S, LIOU J G, TERABAYASHI M, 1996. Blueschists and eclogites of the world and their exhumation[J]. International Geology Review, 38(6): 485-594. doi: 10.1080/00206819709465347
|
| [22] |
MCDONOUGH W F, SUN S S, 1995. The composition of the Earth[J]. Chemical Geology, 120(3-4): 223-253. doi: 10.1016/0009-2541(94)00140-4
|
| [23] |
MESCHEDE M, 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb 1bZr 1bY diagram[J]. Chemical Geology, 56(3-4): 207-218. doi: 10.1016/0009-2541(86)90004-5
|
| [24] |
MIYASHIRO A, 1974. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 274(4): 321-355. doi: 10.2475/ajs.274.4.321
|
| [25] |
MULLEN E D, 1983. MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, 1983, 62(1): 53-62.
|
| [26] |
NAKANO N, OSANAI Y, MINH N T, et al., 2008. Discovery of high-pressure granulite-facies metamorphism in Northern Vietnam: constraints on the Permo-Triassic indochinese continental collision tectonics[J]. Comptes Rendus Géoscience, 340(2-3): 127-138.
|
| [27] |
NAKANO N, OSANAI Y, SAJEEV K, et al., 2010. Triassic eclogite from northern Vietnam: inferences and geological significance[J]. Journal of Metamorphic Geology, 28(1): 59-76. doi: 10.1111/j.1525-1314.2009.00853.x
|
| [28] |
NING W B, KUSKY T, WANG L, et al., 2022. Archean eclogite-facies oceanic crust indicates modern-style plate tectonics[J]. Proceedings of the National Academy of Sciences of the United States of America, 119(15): e2117529119.
|
| [29] |
PEARCE J A, 1982. Trace element characteristics of lavas from destructive plate boundaries[M]//THORPE R S. Orogenic andesites and related rocks. Chichester: John Wiley & Sons: 525-548.
|
| [30] |
PEARCE J A, 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 100(1-4): 14-48. doi: 10.1016/j.lithos.2007.06.016
|
| [31] |
SONG P P, DING L, LI Z Y, et al., 2015. Late Triassic paleolatitude of the Qiangtang block: implications for the closure of the Paleo-Tethys Ocean[J]. Earth and Planetary Science Letters, 424: 69-83. doi: 10.1016/j.jpgl.2015.05.020
|
| [32] |
SPANDLER C, HERMANN J, ARCULUS R, et al., 2004. Geochemical heterogeneity and element mobility in deeply subducted oceanic crust; insights from high-pressure mafic rocks from New Caledonia[J]. Chemical Geology, 206(1-2): 21-42. doi: 10.1016/j.chemgeo.2004.01.006
|
| [33] |
SUN X M and JIAN P, 2004. The Wilson cycle of the Jinshajiang paleo-Tethys Ocean, in western Yunnan and western Sichuan provinces[J]. Geological Review, 50(4): 343-350. (in Chinese with English abstract)
|
| [34] |
TANG Y, QIN Y D, GONG X D, et al., 2020. Discovery of eclogites in Jinsha River suture zone, Gonjo County, eastern Tibet and its restriction on Paleo-Tethyan evolution[J]. China Geology, 3(1): 83-103. doi: 10.31035/cg2020003
|
| [35] |
TANG Y, QIN Y D, GONG X D, et al., 2022. Determination of material composition of Jinshajiang tectonic mélange belt in Gonjo-Baiyu area, eastern Tibet[J]. Sedimentary Geology and Tethyan Geology, 42(2): 260-278. (in Chinese with English abstract)
|
| [36] |
TANG Y, QIN Y D, GONG X D, et al., 2023. Petrology, geochemistry and Ar-Ar geochronology of eclogites in Jinshajiang orogenic belt, Gonjo area, eastern Tibet and restriction on Paleo-Tethyan evolution[J]. China Geology, 6(2): 285-302.
|
| [37] |
VOLANTE S, BLEREAU E, GUITREAU M, et al. , 2023. Current applications using key mineral phases in igneous and metamorphic geology: perspectives for the future[M]//VAN SCHIJNDEL V, CUTTS K, PEREIRA I, et al. Minor minerals, major implications: using key mineral phases to unravel the formation and evolution of earth’s crust. London: The Geological Society of London: 57-121.
|
| [38] |
WANG B D, WANG L Q, WANG D B, et al., 2018. Tectonic evolution of the Changning-Menglian Proto-Paleo Tethys Ocean in the Sanjiang area, southwestern China[J]. Earth Science, 43(8): 2527-2550. (in Chinese with English abstract)
|
| [39] |
WANG B D, WANG L Q, WANG D B, et al., 2021. The temporal and spatial framework and its tectonic evolution of the Jinsha River arc-basin system, southwest China[J]. Sedimentary Geology and Tethyan Geology, 41(2): 246-264. (in Chinese with English abstract)
|
| [40] |
WANG D B, TANG Y, LUO L, et al., 2024. Timing of closure of the Jinshajiang Paleo-Tethys Ocean in eastern Tibet: Constraints from the Early - Middle Triassic unconformity and collision-related igneous rock in the eastern margin of Qamdo block[J]. Acta Petrologica Sinica, 40(12): 3801-3816. (in Chinese with English abstract)
|
| [41] |
WANG H N, LIU F L, LI J, et al., 2019a. Petrology, geochemistry and P-T-t path of lawsonite-bearing retrograded eclogites in the Changning-Menglian orogenic belt, southeast Tibetan Plateau[J]. Journal of Metamorphic Geology, 37(4): 439-478. doi: 10.1111/jmg.12462
|
| [42] |
WANG H N, LIU F L, SUN Z B, et al. , 2021. Identification of continental-type eclogites in the Paleo-Tethyan Changning–Menglian orogenic belt, southeastern Tibetan Plateau: implications for the transition from oceanic to continental subduction[J]. Lithos, 396-397: 106215.
|
| [43] |
WANG H N, LIU F L, WANG F, et al., 2022a. Metamorphic evolution and orogenic process related to the Eastern Paleo-Tethyan warm subduction and Indochina-South China collision[J]. Journal of Petrology, 63(12): egac114. doi: 10.1093/petrology/egac114
|
| [44] |
WANG L Q, PAN G T, LI D M, et al., 1999. The spatio-temporal framework and geological evolution of the Jinshajiang Arc-Basin systems[J]. Acta Geologica Sinica, 73(3): 206-218. (in Chinese with English abstract).
|
| [45] |
WANG Y, ZHANG L F, LI Z H, et al., 2019b. The exhumation of subducted oceanic‐derived eclogites: insights from phase equilibrium and thermomechanical modeling[J]. Tectonics, 38(5): 1764-1797. doi: 10.1029/2018TC005349
|
| [46] |
WANG Y, LIN W, FAURE M, et al., 2022b. Correlation among the Ailaoshan–Song Ma–Song Chay orogenic belts and implications for the evolution of the eastern Paleo-Tethys Ocean[J]. Tectonophysics, 843: 229618. doi: 10.1016/j.tecto.2022.229618
|
| [47] |
WEI B T, CHENG X, DOMEIER M, et al., 2025. A Cimmerian keystone: middle-late Triassic paleomagnetic and calcite geochronologic constraints on the South Qiangtang Block[J]. Earth and Planetary Science Letters, 664: 119442. doi: 10.1016/j.jpgl.2025.119442
|
| [48] |
WOOD D A, 1979. A variably veined suboceanic upper mantle-genetic significance for mid-ocean ridge basalts from geochemical evidence[J]. Geology, 7(10): 499-503. doi: 10.1130/0091-7613(1979)7<499:AVVSUM>2.0.CO;2
|
| [49] |
WOOD D A, 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 50(1): 11-30. doi: 10.1016/0012-821X(80)90116-8
|
| [50] |
WU F Y, WAN B, ZHAO L, et al., 2020. Tethyan geodynamics[J]. Acta Petrologica Sinica, 36(6): 1627-1674. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.06.01
|
| [51] |
WU Z, JI J P, WANG B D, et al. , 2021. Zircon U-Pb age, geochemical characteristics and constraints on the Jinshajiang Paleo-Tethys collision of Early-Middle Triassic Malasongduo Formation volcanic rocks from the Gongjue area, Eastern Tibet[J]. Geological Bulletin of China, 40(11), 1877-1891 (in Chinese with English abstract)
|
| [52] |
XU W, LIU L S, KOHN M J, et al., 2025. Late Triassic continental eclogite in the central Tibetan Plateau reveals 2500-km-long Paleo-Tethys continental subduction[J]. Geology, 53(1): 23-28. doi: 10.1130/G52796.1
|
| [53] |
XU Z Q, DILEK Y, CAO H, et al., 2015. Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides[J]. Journal of Asian Earth Sciences, 105: 320-337. doi: 10.1016/j.jseaes.2015.01.021
|
| [54] |
YAN Y G, ZHAO Q, ZHANG Y P, et al., 2019. Direct Paleomagnetic constraint on the closure of Paleo‐Tethys and its implications for linking the Tibetan and southeast Asian blocks[J]. Geophysical Research Letters, 46(24): 14368-14376. doi: 10.1029/2019GL085473
|
| [55] |
YANG L C, TANG Y, ZHU X P, et al., 2025. Magmatism during collisional orogenic processes in Early–Middle Triassic Jinsha River suture zone[J]. Sedimentary Geology and Tethyan Geology, 45(1): 168-186. (in Chinese with English abstract)
|
| [56] |
YU L, YAN M D, DOMEIER M, et al., 2022. New paleomagnetic and chronological constraints on the late triassic position of the eastern Qiangtang Terrane: implications for the closure of the Paleo-Jinshajiang Ocean[J]. Geophysical Research Letters, 49: e2021GL096902. doi: 10.1029/2021GL096902
|
| [57] |
YU L, YAN M D, DOMEIER M, et al., 2025. New paleomagnetic results from late triassic limestone of the Eastern Qiangtang Terrane: implications for the closure of the Paleo-Jinshajiang Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 657: 112610. doi: 10.1016/j.palaeo.2024.112610
|
| [58] |
YUMUL JR G P, ZHOU M F, WANG C Y, et al., 2008. Geology and geochemistry of the Shuanggou ophiolite (Ailao Shan ophiolitic belt), Yunnan Province, SW China: evidence for a slow-spreading oceanic basin origin[J]. Journal of Asian Earth Sciences, 32(5-6): 385-395. doi: 10.1016/j.jseaes.2007.11.007
|
| [59] |
ZHANG L F, WANG Y, 2020. The exhumation of high- and ultrahigh-pressure metamorphic terranes in subduction zone: Questions and discussions[J]. Science China Earth Sciences, 63(12): 1884-1903. doi: 10.1007/s11430-020-9579-3
|
| [60] |
ZHANG R Y, LO C H, CHUNG S L, et al., 2013. Origin and tectonic implication of ophiolite and eclogite in the Song Ma Suture Zone between the South China and Indochina Blocks[J]. Journal of Metamorphic Geology, 31(1): 49-62. doi: 10.1111/jmg.12012
|
| [61] |
ZHANG R Y, LO C H, LI X H, et al., 2014. U-Pb dating and tectonic implication of ophiolite and metabasite from the Song Ma suture zone, Northern Vietnam[J]. American Journal of Science, 314(2): 649-678. doi: 10.2475/02.2014.07
|
| [62] |
ZHENG Y F, 2012. Metamorphic chemical geodynamics in continental subduction zones[J]. Chemical Geology, 328: 5-48. doi: 10.1016/j.chemgeo.2012.02.005
|
| [63] |
ZHENG Y F, CHEN R X, 2017. Regional metamorphism at extreme conditions: implications for orogeny at convergent plate margins[J]. Journal of Asian Earth Sciences, 145: 46-73. doi: 10.1016/j.jseaes.2017.03.009
|
| [64] |
ZI J W, CAWOOD P A, FAN W M, et al. , 2012a. Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China[J]. Lithos, 144-145: 145-160.
|
| [65] |
ZI J W, CAWOOD P A, FAN W M, et al., 2012b. Contrasting rift and subduction-related plagiogranites in the Jinshajiang ophiolitic mélange, southwest China, and implications for the Paleo-Tethys[J]. Tectonics, 31(2): TC2012.
|
| [66] |
ZONG K Q, KLEMD R, YUAN Y, et al., 2017. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research, 290: 32-48. doi: 10.1016/j.precamres.2016.12.010
|
| [67] |
范蔚茗, 彭头平, 王岳军, 2009. 滇西古特提斯俯冲-碰撞过程的岩浆作用记录[J]. 地学前缘, 16(6): 291-302. doi: 10.3321/j.issn:1005-2321.2009.06.031
|
| [68] |
冯庆来, 叶玫, 章正军, 1997. 滇西早石炭世放射虫化石[J]. 微体古生物学报, 14(1): 79-92.
|
| [69] |
巩小栋, 唐渊, 秦雅东, 等, 2020. 晚三叠世金沙江结合带碰撞作用: 贡觉石英二长岩年代学、地球化学及Hf同位素证据[J]. 地球科学, 45(8): 175-189.
|
| [70] |
李继磊, 2020. 蓝片岩: 俯冲带高压低温变质作用和地球动力学过程的记录[J]. 中国科学: 地球科学, 50(12): 1692-1708.
|
| [71] |
林伟, 王印, 刘飞, 等, 2025. 印支造山带及其地球动力学[J]. 中国科学: 地球科学, 55(6): 1737-1765.
|
| [72] |
刘晓春, 胡娟, 陈龙耀, 等, 2021. 海南洋壳型高温榴辉岩: 基本特征及待解问题[J]. 岩石学报, 37(1): 143-161. doi: 10.18654/1000-0569/2021.01.10
|
| [73] |
孙晓猛, 简平, 2004. 滇川西部金沙江古特提斯洋的威尔逊旋回[J]. 地质论评, 50(4): 343-350. doi: 10.3321/j.issn:0371-5736.2004.04.002
|
| [74] |
唐渊, 秦雅东, 巩小栋, 等, 2022. 藏东贡觉—白玉地区金沙江构造混杂岩带物质组成的厘定[J]. 沉积与特提斯地质, 42(2): 260-278.
|
| [75] |
王保弟, 王立全, 王冬兵, 等, 2018. 三江昌宁-孟连带原-古特提斯构造演化[J]. 地球科学, 43(8): 2527-2550.
|
| [76] |
王保弟, 王立全, 王冬兵, 等, 2021. 西南三江金沙江弧盆系时空结构及构造演化[J]. 沉积与特提斯地质, 41(2): 246-264.
|
| [77] |
王冬兵, 唐渊, 罗亮, 等, 2024. 藏东金沙江古特提洋闭合时间: 来自昌都地块东缘早-中三叠世不整合及碰撞型岩浆岩的约束[J]. 岩石学报, 40(12): 3801-3816.
|
| [78] |
王立全, 潘桂棠, 李定谋, 等, 1999. 金沙江弧-盆系时空结构及地史演化[J]. 地质学报, 73(3): 206-218. doi: 10.3321/j.issn:0001-5717.1999.03.002
|
| [79] |
吴福元, 万博, 赵亮, 等, 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627-1674.
|
| [80] |
吴喆, 冀建平, 王保弟, 等, 2021. 藏东贡觉地区早—中三叠世马拉松多组火山岩锆石U-Pb年龄、地球化学特征及其对金沙江古特提斯碰撞时间的约束[J]. 地质通报, 40(11): 1877-1891.
|
| [81] |
杨礼创, 唐渊, 祝向平, 等, 2025. 早中三叠世金沙江缝合带碰撞造山过程岩浆作用响应[J]. 沉积与特提斯地质, 45(1): 168-186.
|
| [82] |
张立飞, 王杨, 2020. 俯冲带高压-超高压变质地体的抬升折返机制: 问题和探讨[J]. 中国科学: 地球科学, 50(12): 1727-1747.
|