| Citation: | FENG H J,QIU E K,JIN C,et al.,2025. Apatite fission-track study of the volcanic rock area in southeast Zhejiang Province and its geological significance[J]. Journal of Geomechanics,31(4):589−603 doi: 10.12090/j.issn.1006-6616.2025016 |
| [1] |
AKCIZ S, BURCHFIEL B C, CROWLEY J L, et al., 2008. Geometry, kinematics, and regional significance of the Chong Shan shear zone, eastern Himalayan Syntaxis, Yunnan, China[J]. Geosphere, 4(1): 292-314. doi: 10.1130/GES00111.1
|
| [2] |
AN W, HU X M, GARZANTI E, et al., 2021. New precise dating of the India-Asia collision in the Tibetan Himalaya at 61 Ma[J]. Geophysical Research Letters, 48(3): e2020GL090641. doi: 10.1029/2020GL090641
|
| [3] |
CAO S Y, LIU J L, LEISS B, et al., 2011. Oligo-Miocene shearing along the Ailao Shan-Red River shear zone: constraints from structural analysis and zircon U/Pb geochronology of magmatic rocks in the Diancang Shan massif, SE Tibet, China[J]. Gondwana Research, 19(4): 975-993. doi: 10.1016/j.gr.2010.10.006
|
| [4] |
CHEN J Y, YANG J H, ZHANG J H, et al. , 2021. Construction of a highly silicic upper crust in southeastern China: insights from the cretaceous intermediate-to-felsic rocks in eastern Zhejiang[J]. Lithos, 402-403: 106012.
|
| [5] |
CURRIE, C. A. , & HYNDMAN, R. D. , 2006. The thermal structure of subduction zone back arcs. Journal of Geophysical Research: Solid Earth, 111(B8).
|
| [6] |
DANIELS K A, BASTOW I D, KEIR D, et al., 2014. Thermal models of dyke intrusion during development of continent-ocean transition[J]. Earth and Planetary Science Letters, 385: 145-153. doi: 10.1016/j.jpgl.2013.09.018
|
| [7] |
DING R X, MIN K, ZOU H P, 2019. Inversion of topographic evolution using low-T thermal history: a case study from coastal mountain system in southeastern China[J]. Gondwana Research, 67: 21-32. doi: 10.1016/j.gr.2018.09.009
|
| [8] |
DONG S W, LI J H, GAO R, et al., 2023. Intraplate lithospheric extension revealed by seismic reflection profiling of South China[J]. Earth and Planetary Science Letters, 609: 118100. doi: 10.1016/j.jpgl.2023.118100
|
| [9] |
DUAN W T, HUANG S P, TANG X Y, et al., 2017. Numerical simulation of the thermal diffusion of volcanic magmatism with ANSYS WORKBENCH[J]. Acta Petrologica Sinica, 33(1): 267-278. (in Chinese with English abstract)
|
| [10] |
DUAN Z, ZHAO X L, XING G F, et al., 2015. Comparison study of petrogeneses and crust-mantle interactions between cretaceous lower and upper volcanic series in the adjacent area of Zhejiang-Fujian provinces[J]. Acta Geologica Sinica, 89(2): 319-338. (in Chinese with English abstract)
|
| [11] |
FANG Y, ZOU H, BAGAS L, et al., 2020. Fluorite deposits in the Zhejiang Province, Southeast China: the possible role of extension during the late stages in the subduction of the Paleo-Pacific oceanic plate, as indicated by the Gudongkeng fluorite deposit[J]. Ore Geology Reviews, 117: 103276. doi: 10.1016/j.oregeorev.2019.103276
|
| [12] |
FOURNIER M, JOLIVET L, DAVY P, et al., 2004. Backarc extension and collision: an experimental approach to the tectonics of Asia[J]. Geophysical Journal International, 157(2): 871-889. doi: 10.1111/j.1365-246X.2004.02223.x
|
| [13] |
GALBRAITH R F, 1981. On statistical models for fission track counts[J]. Journal of the International Association for Mathematical Geology, 13(6): 471-478. doi: 10.1007/BF01034498
|
| [14] |
GALLAGHER K, 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology[J]. Journal of Geophysical Research: Solid Earth, 117(B2): B02408.
|
| [15] |
GAN H N, WANG X, WANG B, et al., 2023. Cenozoic thermal rheological evolution of the coastal cathaysia block of East Asia: geodynamic implications[J]. International Geology Review, 65(16): 2580-2593 doi: 10.1080/00206814.2022.2150899
|
| [16] |
GERDES M L, BAUMGARTNER L P, PERSON M, 1998. Convective fluid flow through heterogeneous country rocks during contact metamorphism[J]. Journal of Geophysical Research: Solid Earth, 103(B10): 23983-24003. doi: 10.1029/98JB02049
|
| [17] |
GUO Z T, SUN B, ZHANG Z S, et al., 2008. A major reorganization of Asian climate by the early Miocene[J]. Climate of the Past, 4(3): 153-174. doi: 10.5194/cp-4-153-2008
|
| [18] |
HE Z Y, XU X S, YU Y, et al., 2009. Origin of the Late Cretaceous syenite from Yandangshan, SE China, constrained by zircon U-Pb and Hf isotopes and geochemical data[J]. International Geology Review, 51(6): 556-582. doi: 10.1080/00206810902837222
|
| [19] |
HU X M, GARZANTI E, MOORE T, et al., 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma)[J]. Geology, 43(10): 859-862. doi: 10.1130/G36872.1
|
| [20] |
HURFORD A J, GLEADOW A J W, 1977. Calibration of fission track dating parameters[J]. Nuclear Track Detection, 1(1): 41-48. doi: 10.1016/0145-224X(77)90022-9
|
| [21] |
KARAKAS O, WOTZLAW J F, GUILLONG M, et al., 2019. The pace of crustal-scale magma accretion and differentiation beneath silicic caldera volcanoes[J]. Geology, 47(8): 719-723. doi: 10.1130/G46020.1
|
| [22] |
KETCHAM R A, 2005. Forward and inverse modeling of low-temperature thermochronometry data[J]. Reviews in mineralogy and geochemistry, 58(1): 275-314. doi: 10.2138/rmg.2005.58.11
|
| [23] |
KETCHAM R A, CARTER A, DONELICK R A, et al., 2007. Improved modeling of fission-track annealing in apatite[J]. American Mineralogist, 92(5-6): 799-810. doi: 10.2138/am.2007.2281
|
| [24] |
KLEIN F, LE ROUX V, 2020. Quantifying the volume increase and chemical exchange during serpentinization[J]. Geology, 48(6): 552-556. doi: 10.1130/G47289.1
|
| [25] |
LAPIERRE H, JAHN B M, CHARVET J, et al., 1997. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with the tectonic activity in southeastern China[J]. Tectonophysics, 274(4): 321-338. doi: 10.1016/S0040-1951(97)00009-7
|
| [26] |
LAPIERRE H, JAHN B M, CHARVET J, et al., 1997. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang province and their relationship with the tectonic activity in southeastern China[J]. Tectonophysics, 274(4): 321-338. doi: 10.1016/S0040-1951(97)00009-7
|
| [27] |
LELOUP P H, ARNAUD N, LACASSIN R, et al., 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia[J]. Journal of Geophysical Research: Solid Earth, 106(B4): 6683-6732. doi: 10.1029/2000JB900322
|
| [28] |
LI J H, ZHANG Y Q, DONG S W, et al., 2014. Cretaceous tectonic evolution of South China: a preliminary synthesis[J]. Earth-Science Reviews, 134: 98-136. doi: 10.1016/j.earscirev.2014.03.008
|
| [29] |
LI J H, SHI W, ZHANG Y Q, et al., 2016. Thermal evolution of the Hengshan extensional dome in central South China and its tectonic implications: new insights into low-angle detachment formation[J]. Gondwana Research, 35: 425-441. doi: 10.1016/j.gr.2015.06.008
|
| [30] |
LI J H, DONG S W, GAO R, et al., 2022a. The thinnest crust in South China associated with the Cretaceous lithospheric extension: evidence from SINOPROBE seismic reflection profiling[J]. Tectonics, 41(8): e2022TC007240. doi: 10.1029/2022TC007240
|
| [31] |
LI S Z, SUO Y H, LIU B, 2018. Submarine tectonic system (volume one)[M]. Beijing: Science Press. (in Chinese)
|
| [32] |
LI S Z, CAO X Z, WANG G Z, et al., 2019. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific Plate[J]. Journal of Geomechanics, 25(5): 642-677. (in Chinese with English abstract)
|
| [33] |
LI S Z, SUO Y H, LI X Y, et al., 2019. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the paleo-pacific plate[J]. Earth-Science Reviews, 192: 91-137. doi: 10.1016/j.earscirev.2019.03.003
|
| [34] |
LI X M, WANG Y J, TAN K X, et al., 2005. Meso-Cenozoic uplifting and exhumation on Yunkaidashan: evidence from fission track thermochronology[J]. Chinese Science Bulletin, 50(9): 903-909. doi: 10.1007/BF02897385
|
| [35] |
LI X M, ZOU H P, 2017. Late Cretaceous-Cenozoic exhumation of the southeastern margin of Coastal Mountains, SE China, revealed by fission-track thermochronology: implications for the topographic evolution[J]. Solid Earth Sciences, 2(3): 79-88. doi: 10.1016/j.sesci.2017.02.001
|
| [36] |
LI X Y, LI S Z, SUO Y H, et al., 2022b. High-silica rhyolites in the terminal stage of massive Cretaceous volcanism, SE China: modified crustal sources and low-pressure magma chamber[J]. Gondwana Research, 102: 133-150. doi: 10.1016/j.gr.2020.10.007
|
| [37] |
LI Z X, Li X H, 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model[J]. Geology, 35(2): 179-182. doi: 10.1130/G23193A.1
|
| [38] |
LICHT A, VAN CAPPELLE M, ABELS H A, et al., 2014. Asian monsoons in a late Eocene greenhouse world[J]. Nature, 513(7519): 501-506. doi: 10.1038/nature13704
|
| [39] |
LIN X, WU Z H, DONG Y Y, et al., 2024. The evolutionary process of Cenozoic Asian monsoon[J]. Journal of Geomechanics, 30(4): 673-690. (in Chinese with English abstract)
|
| [40] |
LISKER F, VENTURA B, GLASMACHER U A, 2009. Apatite thermochronology in modern geology[M]//LISKER F, VENTURA B, GLASMACHER U A. Thermochronological methods: from palaeotemperature constraints to landscape evolution models. London: Geological Society, London, Special Publications, 324(1): 1-23.
|
| [41] |
LIU L, XU X S, XIA Y, 2014. Cretaceous pacific plate movement beneath SE China: evidence from episodic volcanism and related intrusions[J]. Tectonophysics, 614: 170-184. doi: 10.1016/j.tecto.2013.12.007
|
| [42] |
MÜLLER R D, SETON M, ZAHIROVIC S, et al., 2016. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup[J]. Annual Review of Earth and Planetary Sciences, 44: 107-138. doi: 10.1146/annurev-earth-060115-012211
|
| [43] |
REINERS P W, BRANDON M T, 2006. Using thermochronology to understand orogenic erosion[J]. Annual Review of Earth and Planetary Sciences, 34: 419-466. doi: 10.1146/annurev.earth.34.031405.125202
|
| [44] |
REN J Y, TAMAKI K, LI S T, et al., 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas[J]. Tectonophysics, 344(3-4): 175-205. doi: 10.1016/S0040-1951(01)00271-2
|
| [45] |
RUAN H H, TAO K Y, XU Z L, 1988. Volcanic structure in Kuocangshan district of Zhejiang[J]. Bull. Nanjing Inst. Geol. M. R. , Chinese Acad. Geol. Sci., 9(2): 81-94. (in Chinese with English abstract)
|
| [46] |
RUAN H H, XIE J Y, TAO K Y, 1993. Circular mega Volcanic structure in Kuocangshan & it’s geological significance[J]. Volcanology & Mineral Resources, 14(4): 1-11. (in Chinese with English abstract)
|
| [47] |
SCHELLART W P, CHEN Z, STRAK V, et al., 2019. Pacific subduction control on Asian continental deformation including Tibetan extension and eastward extrusion tectonics[J]. Nature Communications, 10(1): 4480. doi: 10.1038/s41467-019-12337-9
|
| [48] |
SETON M, FLAMENT N, WHITTAKER J, et al., 2015. Ridge subduction sparked reorganization of the Pacific plate-mantle system 60-50 million years ago[J]. Geophysical Research Letters, 42(6): 1732-1740. doi: 10.1002/2015GL063057
|
| [49] |
SHUI T, XU B T, LIANG R H, et al., 1986. Shaoxing-Jiangshan paleocontinent junction zone[J]. Chinese Science Bulletin, 31(6): 444-448. (in Chinese) doi: 10.1360/csb1986-31-6-444
|
| [50] |
SHUI T, 1988. Tectonic framework of the continental basement of Southeast China[J]. Science China (Series B), 31(7): 885-896.
|
| [51] |
SOBEL E R, OSKIN M, BURBANK D, et al., 2006. Exhumation of basement-cored uplifts: example of the Kyrgyz Range quantified with apatite fission track thermochronology[J]. Tectonics, 25(2): TC2008.
|
| [52] |
SU J B, DONG S W, ZHANG Y Q, et al., 2017. Apatite fission track geochronology of the southern Hunan province across the Shi-Hang Belt: insights into the Cenozoic dynamic topography of South China[J]. International Geology Review, 59(8): 981-995. doi: 10.1080/00206814.2016.1240049
|
| [53] |
SUO Y H, LI S Z, JIN C, et al., 2019. Eastward tectonic migration and transition of the Jurassic-Cretaceous Andean-type continental margin along Southeast China[J]. Earth-Science Reviews, 196: 102884. doi: 10.1016/j.earscirev.2019.102884
|
| [54] |
SUO Y H, LI S Z, CAO X Z, et al., 2020. Mesozoic-Cenozoic basin inversion and geodynamics in East China: a review[J]. Earth-Science Reviews, 210: 103357. doi: 10.1016/j.earscirev.2020.103357
|
| [55] |
TANG D L K, SEWARD D, WILSON C J N, et al., 2014. Thermotectonic history of SE China since the Late Mesozoic: insights from detailed thermochronological studies of Hong Kong[J]. Journal of the Geological Society, 171(4): 591-604. doi: 10.1144/jgs2014-009
|
| [56] |
TANG Z C, DONG X F, MENG X S, et al., 2018. Geochronology and geochemistry of Cretaceous rhyolites in the Shenxianju area, Zhejiang province[J]. Journal of Stratigraphy, 42(2): 167-178. (in Chinese with English abstract)
|
| [57] |
TAO K Y, YU M G, XING G F, et al., 2004. The value and global comparison of the Cretaceous Mt. Yandangshan caldera geologic heritage[J]. Resources Survey & Environment, 25(4): 297-303. (in Chinese with English abstract)
|
| [58] |
TAO N, LI Z X, DANIŠÍK M, et al., 2017. Thermochronological record of Middle-Late Jurassic magmatic reheating to Eocene rift-related rapid cooling in the SE South China Block[J]. Gondwana Research, 46: 191-203. doi: 10.1016/j.gr.2017.03.003
|
| [59] |
TAO N, LI Z X, DANIŠÍK M, et al., 2019. Post-250 Ma thermal evolution of the central Cathaysia Block (SE China) in response to flat-slab subduction at the proto-western Pacific margin[J]. Gondwana Research, 75: 1-15. doi: 10.1016/j.gr.2019.03.019
|
| [60] |
TAPPONNIER P, PELTZER G, LE DAIN A Y, et al., 1982. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
|
| [61] |
TIAN Z H, SUO Y H, DING X S, et al., 2025. Cenozoic surface Earth system evolution and dynamic palaeogeomorphic reconstruction from the Tibet Plateau to the western Pacific linked by the Yangtze River[J]. Journal of the Geological Society, 183(2): jgs2023-183.
|
| [62] |
VERMEESCH P, 2018. IsoplotR: a free and open toolbox for geochronology[J]. Geoscience Frontiers, 9(5): 1479-1493. doi: 10.1016/j.gsf.2018.04.001
|
| [63] |
WANG F, CHEN H L, BATT G E, et al., 2015. Tectonothermal history of the NE Jiangshan-Shaoxing suture zone: evidence from 40Ar/39Ar and fission-track thermochronology in the Chencai region[J]. Precambrian Research, 264: 192-203. doi: 10.1016/j.precamres.2015.04.009
|
| [64] |
WANG X Y, SUO Y H, LI S Z, et al., 2020. Cenozoic uplift history and its dynamic mechanism along the eastern continental margin of South China[J]. Acta Petrologica Sinica, 36(6): 1803-1820. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.06.10
|
| [65] |
WANG X Y, XU X S, ZHAO K., 2023. Petrogenesis of episodic Cretaceous volcanic-intrusive rocks in the Kuocangshan-Yandangshan Calderas in the eastern Zhejiang[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 42(5): 1062-1077. (in Chinese with English abstract)
|
| [66] |
WANG Y, WANG Y J, LI S B, et al., 2020. Exhumation and landscape evolution in eastern South China since the Cretaceous: new insights from fission-track thermochronology[J]. Journal of Asian Earth Sciences, 191: 104239. doi: 10.1016/j.jseaes.2020.104239
|
| [67] |
WANG Y, ZUO R G, CAO K, et al., 2022. Late Mesozoic to Cenozoic exhumation of the SE South China Block: constraints from zircon and apatite fission-track thermochronology[J]. Tectonophysics, 838: 229518. doi: 10.1016/j.tecto.2022.229518
|
| [68] |
XIE Y L, WU F L, FANG X M, 2019. Middle Eocene East Asian monsoon prevalence over southern China: evidence from palynological records[J]. Global and Planetary Change, 175: 13-26. doi: 10.1016/j.gloplacha.2019.01.019
|
| [69] |
XU C H, DENG Y L, BARNES C G, et al., 2023. Offshore-onshore tectonomagmatic correlations: towards a Late Mesozoic non-Andean-type Cathaysian continental margin[J]. Earth-Science Reviews, 240: 104382. doi: 10.1016/j.earscirev.2023.104382
|
| [70] |
XU X S, ZHAO K, HE Z Y, et al. , 2021. Cretaceous volcanic-plutonic magmatism in SE China and a genetic model[J]. Lithos, 402-403: 105728.
|
| [71] |
YAN L L, HE Z Y, JAHN B M, et al. , 2016. Formation of the Yandangshan volcanic-plutonic complex (SE China) by melt extraction and crystal accumulation[J]. Lithos, 266-267: 287-308.
|
| [72] |
YI Y, CARTER A, XIA B, et al., 2009. A fission-track and (U–Th)/He thermochronometric study of the northern margin of the South China Sea: an example of a complex passive margin[J]. Tectonophysics, 474(3-4): 584-594. doi: 10.1016/j.tecto.2009.04.030
|
| [73] |
YU M G, XING G F, SHEN J L, et al., 2006. Chronologic study on volcanic rocks in the Mt. Yandangshan world geopark[J]. Acta Geologica Sinica, 80(11): 1683-1690. (in Chinese with English abstract)
|
| [74] |
YU Y W, XU B T, 1999. Stratigraphical sequence and geochronology of the upper Mesozoic volcano-sedimentary rock series in Zhejiang[J]. Journal of Stratigraphy, 23(2): 136-145. (in Chinese with English abstract)
|
| [75] |
YUAN W M, MO X X, ZHANG A K, et al., 2013. Fission track thermochronology evidence for multiple periods of mineralization in the Wulonggou gold deposits, eastern Kunlun Mountains, Qinghai Province[J]. Journal of Earth Science, 24(4): 471-478. doi: 10.1007/s12583-013-0362-x
|
| [76] |
ZHANG F X, ZHANG D R, 1990. The circular features on the Xianju Landsat image and its volcanic structural significances[J]. Journal of Zhejiang University (Natural Science), 24(3): 465-473. (in Chinese with English abstract)
|
| [77] |
ZHANG J H, YANG J H, CHEN J Y, et al. , 2018. Genesis of late early cretaceous high-silica rhyolites in eastern Zhejiang province, Southeast China: a crystal mush origin with mantle input[J]. Lithos, 296-299: 482-495.
|
| [78] |
ZHANG R Y, YANG F L, HU P P, et al., 2021. Cenozoic tectonic inversion in the northern depression, South Yellow Sea basin, East Asia: structural styles and driving mechanism[J]. Tectonophysics, 798: 228687. doi: 10.1016/j.tecto.2020.228687
|
| [79] |
ZHANG Y Q, DONG S W, LI J H, 2019. Late Paleogene sinistral strike-slip system along east Qinling and in southern North China: implications for interaction between collision-related block trans-rotation and subduction-related back-arc extension in East China[J]. Tectonophysics, 769: 228181. doi: 10.1016/j.tecto.2019.228181
|
| [80] |
Zhejiang Provincial Geological Survey Institute, 2024. Regional geology of China, Zhejiang[M]. Beijing: Geological Press. (in Chinese)
|
| [81] |
ZHENG Y F, XIAO W J, ZHAO G C, 2013. Introduction to tectonics of China[J]. Gondwana Research, 23(4): 1189-1206. doi: 10.1016/j.gr.2012.10.001
|
| [82] |
ZHOU J, JIN C, SUO Y H, et al., 2021. Yanshanian mineralization and geodynamic evolution in the western Pacific Margin: a review of metal deposits of Zhejiang Province, China[J]. Ore Geology Reviews, 135: 104216. doi: 10.1016/j.oregeorev.2021.104216
|
| [83] |
ZHOU J, JIN C, SUO Y H, et al., 2022. The Yanshanian (Mesozoic) metallogenesis in China linked to crust-mantle interaction in the western Pacific margin: an overview from the Zhejiang Province[J]. Gondwana Research, 102: 95-132. doi: 10.1016/j.gr.2020.11.003
|
| [84] |
ZHOU L Y, HUANG L Y, HUANG J J, et al. , 2013. Zhejiang geological tectonic environment and endogenetic metallic deposits[J]. Bulletin of Science and Technology, 29(1): 25-33, 41. (in Chinese with English abstract)
|
| [85] |
ZHOU X M, LI W X, 2000. Origin of Late Mesozoic igneous rocks in southeastern China: implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326(3-4): 269-287. doi: 10.1016/S0040-1951(00)00120-7
|
| [86] |
ZHOU X M, SUN T, SHEN W Z, et al., 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution[J]. Episodes, 29(1): 26-33. doi: 10.18814/epiiugs/2006/v29i1/004
|
| [87] |
ZHU W L, ZHONG K, FU X W, et al., 2019. The formation and evolution of the East China Sea Shelf Basin: a new view[J]. Earth-Science Reviews, 190: 89-111. doi: 10.1016/j.earscirev.2018.12.009
|
| [88] |
段文涛, 黄少鹏, 唐晓音, 等, 2017. 利用ANSYS WORKBENCH模拟火山岩浆活动热扩散过程[J]. 岩石学报, 33(1): 267-278.
|
| [89] |
段政, 赵希林, 邢光福, 等, 2015. 浙闽相邻区白垩纪上下火山岩系成因与壳幔作用对比研究[J]. 地质学报, 89(2): 319-338.
|
| [90] |
李三忠, 索艳慧, 刘博, 2018. 海底构造系统(上册)[M], 北京: 科学出版社.
|
| [91] |
李三忠, 曹现志, 王光增, 等, 2019. 太平洋板块中-新生代构造演化及板块重建[J]. 地质力学学报, 25(5): 642-677. doi: 10.12090/j.issn.1006-6616.2019.25.05.060
|
| [92] |
林旭, 吴中海, 董延钰, 等, 2024. 新生代亚洲季风的演化过程[J]. 地质力学学报, 30(4): 673-690. doi: 10.12090/j.issn.1006-6616.2023093
|
| [93] |
阮宏宏, 陶奎元, 徐忠连, 1988. 括苍山地区火山构造[J]. 中国地质科学院南京地质矿产研究所所刊, 9(2): 81-94.
|
| [94] |
阮宏宏, 谢家莹, 陶奎元, 1993. 浙江括苍山巨型环形火山构造及其地质意义[J]. 火山地质与矿产, 14(4): 1-11.
|
| [95] |
水涛, 徐步台, 梁如华, 等, 1986. 绍兴-江山古陆对接带[J]. 科学通报, 31(6): 444-448.
|
| [96] |
水涛, 1987. 中国东南大陆基底构造格局[J]. 中国科学, 17(4): 414-422.
|
| [97] |
唐增才, 董学发, 孟祥随, 等, 2018. 浙江神仙居流纹质火山岩年代学、地球化学及其地质意义[J]. 地层学杂志, 42(2): 167-178.
|
| [98] |
陶奎元, 余明刚, 邢光福, 等, 2004. 雁荡山白垩纪破火山地质遗迹价值与全球对比[J]. 资源调查与环境, 25(4): 297-303.
|
| [99] |
王新毓, 索艳慧, 李三忠, 等, 2020. 华南东部陆缘新生代隆升历史及其动力学机制[J]. 岩石学报, 36(6): 1803-1820.
|
| [100] |
王学颖, 徐夕生, 赵凯, 2023. 浙东括苍山-雁荡山破火山白垩纪多旋回火山-侵入杂岩成因研究[J]. 矿物岩石地球化学通报, 42(5): 1062-1077.
|
| [101] |
谢家莹, & 徐忠连, 1988. 括苍山地区中生代火山旋回划分. 中国地质科学院南京地质矿产研究所所刊, 9(02): 71-83.
|
| [102] |
余明刚, 邢光福, 沈加林, 等, 2006. 雁荡山世界地质公园火山岩年代学研究[J]. 地质学报, 80(11): 1683-1690. doi: 10.3321/j.issn:0001-5717.2006.11.006
|
| [103] |
俞云文, 徐步台, 1999. 浙江中生代晚期火山—沉积岩系层序和时代[J]. 地层学杂志, 23(2): 136-145. doi: 10.3969/j.issn.0253-4959.1999.02.008
|
| [104] |
张福祥, 张登荣, 1990. 仙居幅卫片上环形体的火山构造意义[J]. 浙江大学学报(自然科学版), 24(3): 465-473.
|
| [105] |
浙江省地质调查院, 2024. 中国区域地质志. 浙江志[M]. 北京: 地质出版社.
|
| [106] |
周乐尧, 黄立勇, 黄建军, 等, 2013. 浙江地质构造环境与内生金属矿床成矿初探[J]. 科技通报, 29(1): 25-33, 41. doi: 10.3969/j.issn.1001-7119.2013.01.007
|