| Citation: | LI L,GU Z K,FAN H,et al.,2025. Geomorphic signatures of reservoir–slope hazards triggered by the Baihetan Reservoir impoundment, lower Jinsha River, China[J]. Journal of Geomechanics,31(4):720−739 doi: 10.12090/j.issn.1006-6616.2025003 |
| [1] |
ALVIOLI M, MARCHESINI I, REICHENBACH P, et al., 2016. Automatic delineation of geomorphological slope units with r. slopeunits v1.0 and their optimization for landslide susceptibility modeling[J]. Geoscientific Model Development, 9(11): 3975-3991. doi: 10.5194/gmd-9-3975-2016
|
| [2] |
AN X L, MI C L, SUN D L, et al., 2024. Comparison of landslide susceptibility in three gorges reservoir area based on different evaluation units: take Yunyang county in Chongqing as an example[J]. Journal of Jilin University (Earth Science Edition), 54(5): 1629-1644. (in Chinese with English abstract)
|
| [3] |
ANDREANI L, GLOAGUEN R, 2016. Geomorphic analysis of transient landscapes in the Sierra Madre de Chiapas and Maya mountains (northern central America): implications for the north American-Caribbean-Cocos plate boundary[J]. Earth Surface Dynamics, 4(1): 71-102. doi: 10.5194/esurf-4-71-2016
|
| [4] |
AYALEW L, YAMAGISHI H, UGAWA N, 2004. Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan[J]. Landslides, 1(1): 73-81. doi: 10.1007/s10346-003-0006-9
|
| [5] |
BERARDINO P, FORNARO G, LANARI R, et al., 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2375-2383. doi: 10.1109/TGRS.2002.803792
|
| [6] |
BORGA M, DALLA FONTANA G, CAZORZI F, 2002. Analysis of topographic and climatic control on Rainfall-triggered shallow landsliding using a quasi-dynamic wetness Index[J]. Journal of Hydrology, 268(1-4): 56-71. doi: 10.1016/S0022-1694(02)00118-X
|
| [7] |
BÜRGI P M, LOHMAN R B, 2021. Impact of forest disturbance on InSAR surface displacement time series[J]. IEEE Transactions on Geoscience and Remote Sensing, 59(1): 128-138. doi: 10.1109/TGRS.2020.2992938
|
| [8] |
CHEN Z M, HU B, CHEN J Z, et al. , 2017. Monitoring the surface deformation caused by oil exploration based on InSAR[J]. Bulletin of Surveying and Mapping(11): 42-46. (in Chinese with English abstract)
|
| [9] |
DAI F C, LEE C F, 2002. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong[J]. Geomorphology, 42(3-4): 213-228. doi: 10.1016/S0169-555X(01)00087-3
|
| [10] |
DAI K R, CHEN C, SHI X L, et al., 2023. Dynamic landslides susceptibility evaluation in Baihetan Dam area during extensive impoundment by integrating geological model and InSAR Observations[J]. International Journal of Applied Earth Observation and Geoinformation, 116: 103157. doi: 10.1016/j.jag.2022.103157
|
| [11] |
DUN J W, FENG W K, YI X Y, et al., 2023. Early InSAR identification of active landslide before impoundment in Baihetan reservoir area: a case study of Hulukou town Xiangbiling section[J]. Journal of Engineering Geology, 31(2): 479-492. (in Chinese with English abstract)
|
| [12] |
FENG W K, YI X Y, BAI H L, et al., 2021. Prediction and analysis of influence of the first impoundment of Baihetan reservoir on the bank slope stability of Shuanghe river section[J]. Science Technology and Engineering, 21(1): 346-352. (in Chinese with English abstract)
|
| [13] |
FERRETTI A, PRATI C, ROCCA F, 2001. Permanent scatterers in SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8-20. doi: 10.1109/36.898661
|
| [14] |
FERRETTI A, FUMAGALLI A, NOVALI F, et al., 2011. A new algorithm for processing interferometric data-stacks: SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 49(9): 3460-3470. doi: 10.1109/TGRS.2011.2124465
|
| [15] |
FU G Y, SHE Y W, ZHANG G Q, et al., 2021. Lithospheric equilibrium, environmental changes, and potential induced-earthquake risk around the newly impounded Baihetan reservoir, China[J]. Remote Sensing, 13(19): 3895. doi: 10.3390/rs13193895
|
| [16] |
GAO B H, HE Y, ZHANG L F, et al., 2023. Dynamic evaluation of landslide susceptibility by CNN considering InSAR deformation: a case study of Liujiaxia reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 42(2): 450-465. (in Chinese with English abstract)
|
| [17] |
GU W Y, MENG X R, ZHU X C, et al., 2020. Geomorphological classification research based on BEMD decomposition[J]. Journal of Geo-information Science, 22(3): 464-473. (in Chinese with English abstract)
|
| [18] |
GU Z K, YAO X, YAO C C, et al., 2021. Mapping of geomorphic dynamic parameters for analysis of landslide hazards: a case of Yangbi river basin on the upper Lancang-Mekong of China[J]. Journal of Mountain Science, 18(9): 2402-2411. doi: 10.1007/s11629-021-6795-2
|
| [19] |
HE K Q, GUO L, 2017. Research on the prediction parameter and evaluation method of displacement coupled with water dynamics of the reservoir landslides[J]. Journal of Hydraulic Engineering, 48(5): 516-525. (in Chinese with English abstract)
|
| [20] |
JIN D L, WANG G F, 1988. Tangyanguang landslide in the Zhexi reservoir area[M]//Ground Rock Engineering Professional Committee of the Chinese Society for Rock Mechanics and Engineering, Engineering Geology Professional Committee of the Geological Society of China. Beijing: Science Press: 301-307. (in Chinese)
|
| [21] |
JU N P, HOU W L, ZHAO J J, et al., 2010. Geohazards of Jushui River in the Wenchuan earthquak area[J]. Mountain Research, 28(6): 732-740. (in Chinese with English abstract)
|
| [22] |
LI B L, 2024. Slope deformation monitoring of railroad bridge in mountainous area adjacent to a landslide[J]. Railway Investigation and Surveying, 50(3): 28-33. (in Chinese with English abstract)
|
| [23] |
LI L, XU C, YAO X L, et al., 2022. Large-scale landslides around the reservoir area of Baihetan hydropower station in Southwest China: analysis of the spatial distribution[J]. Natural Hazards Research, 2(3): 218-229. doi: 10.1016/j.nhres.2022.07.002
|
| [24] |
LI Y J, YUE D X, CHEN G, et al., 2024. A preliminary analysis of the process and cause of the Jintian-Caotan landslide-mudflow hazard chain induced by the Jishishan earthquake[J]. Journal of Lanzhou University (Natural Sciences), 60(1): 1-5. (in Chinese with English abstract)
|
| [25] |
LIAO Q L, LI X, LI S D, et al., 2005. Occurrence, geology and geomorphy characteristics and origin of Qianjiangping landslide in Three Gorges reservoir area and study on ancient landslide criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3146-3153. (in Chinese with English abstract)
|
| [26] |
LIN M L, WANG J F, CHEN Y C, et al. , 2021. Potential analysis of deep-seated landslides caused by Typhoon Morakot using slope unit[M]//GUZZETTI F, ARBANAS S M, REICHENBACH P, et al. Understanding and Reducing Landslide Disaster Risk. Cham: Springer: 173-183.
|
| [27] |
LIU H F, LUO Y H, FENG W K, et al., 2023. Site response of ancient landslides to initial impoundment of Baihetan Reservoir (China) based on ambient noise Investigation[J]. Soil Dynamics and Earthquake Engineering, 164: 107590. doi: 10.1016/j.soildyn.2022.107590
|
| [28] |
LIU X J, ZHAO C Y, ZHANG Q, et al., 2021. Integration of Sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha River corridor, China[J]. Engineering Geology, 284: 106033. doi: 10.1016/j.enggeo.2021.106033
|
| [29] |
LIU Y, YAO X, GU Z K, et al., 2024. Research on automatic recognition of active landslides using InSAR deformation under digital morphology: a case study of the Baihetan reservoir, China[J]. Remote Sensing of Environment, 304: 114029. doi: 10.1016/j.rse.2024.114029
|
| [30] |
LONG R, LIU X D, 2023. Study on stability evaluation and treatment scheme of highway landslide based on disaster mechanism analysis[J]. Railway Investigation and Surveying, 49(2): 33-37. (in Chinese with English abstract)
|
| [31] |
LU H Y, LI W L, XU Q, et al., 2019. Early detection of landslides in the upstream and downstream areas of the Baige landslide, the Jinsha river based on optical remote sensing and InSAR technologies[J]. Geomatics and Information Science of Wuhan University, 44(9): 1342-1354. (in Chinese with English abstract)
|
| [32] |
LÜ B R, PENG L, LI Q M, 2022. Landslide susceptibility evaluation considering sample sensitivity[J]. Bulletin of Surveying and Mapping(11): 20-25. (in Chinese with English abstract)
|
| [33] |
MCKEAN J, ROERING J, 2004. Objective landslide detection and surface morphology mapping using High-resolution airborne laser Altimetry[J]. Geomorphology, 57(3-4): 331-351. doi: 10.1016/S0169-555X(03)00164-8
|
| [34] |
MICHEL R, AVOUAC J P, TABOURY J, 1999. Measuring ground displacements from SAR amplitude images: application to the Landers earthquake[J]. Geophysical Research Letters, 26(7): 875-878. doi: 10.1029/1999GL900138
|
| [35] |
MOORE I D, WILSON J P, 1992. Length-slope factors for the revised universal soil loss equation: simplified method of estimation[J]. Journal of Soil and Water Conservation, 47(5): 423-428. doi: 10.1080/00224561.1992.12456740
|
| [36] |
MÜLLER-SALZBURG L, 1987. The Vajont catastrophe: a personal review[J]. Engineering Geology, 24(1-4): 423-444. doi: 10.1016/0013-7952(87)90078-0
|
| [37] |
OUYANG X, 2011. Study on regional terrain factors of soil erosion[D]. Xi’an: Northwest University. (in Chinese with English abstract)
|
| [38] |
QIN Y, XIANG N, JIANG W X, 2015. Statistical analysis for landsliding characteristic parameters in Xiangjiaba reservoir area[J]. Technology of Highway and Transport(3): 5-8. (in Chinese with English abstract)
|
| [39] |
SHE Y W, FU G Y, ZHAO Q, et al., 2021. Simulating changes of gravity and coulomb stress caused by the impoundment of the Baihetan hydropower station[J]. Chinese Journal of Geophysics, 64(6): 1925-1936. (in Chinese with English abstract)
|
| [40] |
SHI X L, JU A H, DAI K R, et al., 2023. Deformation evolution and reactivation mechanism of landslide revealed based on multi-source remote sensing during impoundment period for Wulipo landslide in Baihetan reservoir area[J]. Transactions of Beijing institute of Technology, 43(11): 1164-1175. (in Chinese with English abstract)
|
| [41] |
SONG Y Z, WANG J F, GE Y, et al., 2020. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: cases with different types of spatial data[J]. GIScience & Remote Sensing, 57(5): 593-610.
|
| [42] |
STEGER S, MAIR V, KOFLER C, et al., 2021. Correlation does not imply geomorphic causation in data-driven landslide susceptibility modelling−benefits of exploring landslide data collection effects[J]. Science of the Total Environment, 776: 145935. doi: 10.1016/j.scitotenv.2021.145935
|
| [43] |
SU X J, ZHANG Y, MENG X M, et al., 2024. Potential landslides identification and development characteristics analysis in Hunza valley, along China-Pakistan Economic Corridor based on SBAS-InSAR[J]. National Remote Sensing Bulletin, 28(4): 885-899. (in Chinese with English abstract)
|
| [44] |
TANG F J, QI S W, GUO S F, et al., 2022. Spatio-temporal distribution pattern and susceptibility of reservoir-induced landslides in Xiluodu Hydropower Station[J]. Journal of Engineering Geology, 30(3): 609-620. (in Chinese)
|
| [45] |
TANG F J, QI S W, GUO S F, et al., 2025. The influence of reservoirs on landslide erosion[J]. Remote Sensing, 17(4): 569. doi: 10.3390/rs17040569
|
| [46] |
TANG X G, WANG L J, WANG H Y, et al., 2024. Predicted climate change will increase landslide risk in Hanjiang River basin, China[J]. Journal of Earth Science, 35(4): 1334-1354. doi: 10.1007/s12583-021-1511-2
|
| [47] |
WANG J B, LIU W, ZHAO M H, et al., 2023. Characteristics and interaction of spatial expansion and natural disasters in the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Science Technology and Engineering, 23(25): 11027-11040. (in Chinese with English abstract)
|
| [48] |
WANG J F, XU C D, 2017. Geodetector: principle and prospective[J]. Acta Geographica Sinica, 72(1): 116-134. (in Chinese with English abstract)
|
| [49] |
WANG K, ZHANG S J, WEI F Q, 2020. Slope unit extraction methods: advances and prospects[J]. Journal of Yangtze River Scientific Research Institute, 37(6): 85-93. (in Chinese with English abstract)
|
| [50] |
WANG S, HUANG W L, XIANG W, et al., 2022. Landslide roughness chronology method: Taking Xieliupo and Suo'ertou landslides in Zhouqu area of Gansu, China as examples[J]. Journal of Earth Sciences and Environment, 44(6): 1037-1047. (in Chinese with English abstract)
|
| [51] |
WU C Y, QIAO J P, 2005. The contributing rate research of slope aspect to landslide growth from Yunyang to Wushan in Three Gorges reservoir region[J]. Journal of Sichuan University (Engineering Science Edition), 37(4): 25-29. (in Chinese with English abstract)
|
| [52] |
WU H, PEI X J, CUI S H, et al., 2021. Study of topographic and geological controls on landslide development and distribution within mountainous regions influenced by strong earthquakes[J]. Chinese Journal of Rock Mechanics and Engineering, 40(5): 972-986. (in Chinese with English abstract)
|
| [53] |
WU X T, DENG H, ZHANG W J, et al., 2022. Evaluation of landslide susceptibility based on automatic slope unit division[J]. Mountain Research, 40(4): 542-556. (in Chinese with English abstract)
|
| [54] |
YAO C C, YAO X, GU Z K, et al., 2022. Analysis on the development law of active geological hazards in the Loess Plateau based on InSAR identification[J]. Journal of Geomechanics, 28(2): 257-267. (in Chinese with English abstract)
|
| [55] |
YAO J M, LAN H X, LI L P, et al., 2022. Characteristics of a rapid landsliding area along Jinsha River revealed by multi-temporal remote sensing and its risks to Sichuan-Tibet Railway[J]. Landslides, 19(3): 703-718. doi: 10.1007/s10346-021-01790-7
|
| [56] |
YAO X, DENG J H, LIU X H, et al., 2020. Primary recognition of active landslides and development rule analysis for pan Three-river-parallel territory of Tibet Plateau[J]. Advanced Engineering Sciences, 52(5): 16-37. (in Chinese with English abstract)
|
| [57] |
YU W X, LI X Z, ZHENG L J, et al., 2024. Application of the SBAS technique in potential landslide area identification along the KKH of China-Pakistan economic corridor[J]. Journal of Engineering Geology, 32(5): 1597-1606. (in Chinese with English abstract)
|
| [58] |
YUAN Z Y, TANG X C, 2003. The influence of sluice and water level fluctuation on landslides and rockfalls of the Three Gorges project and principles of prevention[J]. Tropical Geography, 23(1): 30-34. (in Chinese with English abstract)
|
| [59] |
ZENG S, MA Z G, ZHAO C, et al., 2023. Multi-source remote sensing recognition of reactivation characteristics of an ancient landslide group at Taipingqiao in the Dadu River Catchment, Eastern Tibetan Plateau[J]. Geoscience, 37(4): 994-1003. (in Chinese with English abstract)
|
| [60] |
ZHANG J T, ZHANG L M, XU T, 2015. Heterogeneity measure based segmentation performance evaluation for remote sensing image[J]. Journal of Geomatics Science and Technology, 32(5): 479-482, 488. (in Chinese with English abstract)
|
| [61] |
ZHAO P, WEN G, HE Z C, et al, 2024. Shallow landslide susceptibility assessment in Jinsha River Basin based on machine learning models[J]. Water Resources and Hydropower Engineering, 55(10): 53-70. (in Chinese with English abstract)
|
| [62] |
ZHOU H F, FANG T, XIA C H, et al., 2023. Reactivation characteristics and mechanism of engineering disturbed Dumi landslide in western Sichuan Province, China[J]. Geoscience, 37(4): 1044-1053. (in Chinese with English abstract)
|
| [63] |
ZHOU L Q, ZHAO C P, ZHANG M, et al., 2022. Machine-learning-based earthquake locations reveal the seismogenesis of the 2020 Mw 5.0 Qiaojia, Yunnan earthquake[J]. Geophysical Journal International, 228(3): 1637-1647.
|
| [64] |
ZHU Y R, QIU H J, LIU Z J, et al., 2024. Rainfall and water level fluctuations dominated the landslide deformation at Baihetan Reservoir, China[J]. Journal of Hydrology, 642: 131871. doi: 10.1016/j.jhydrol.2024.131871
|
| [65] |
安雪莲, 密长林, 孙德亮, 等, 2024. 基于不同评价单元的三峡库区滑坡易发性对比: 以重庆市云阳县为例[J]. 吉林大学学报(地球科学版), 54(5): 1629-1644.
|
| [66] |
陈志谋, 胡波, 陈金座, 等, 2017. 利用InSAR技术监测石油开采引起的地表形变[J]. 测绘通报(11): 42-46.
|
| [67] |
顿佳伟, 冯文凯, 易小宇, 等, 2023. 白鹤滩库区蓄水前活动性滑坡InSAR早期识别研究: 以葫芦口镇至象鼻岭段为例[J]. 工程地质学报, 31(2): 479-492.
|
| [68] |
冯文凯, 易小宇, 白慧林, 等, 2021. 白鹤滩水库初次蓄水对双河段岸坡稳定性的影响预测分析[J]. 科学技术与工程, 21(1): 346-352.
|
| [69] |
高秉海, 何毅, 张立峰, 等, 2023. 顾及InSAR形变的CNN滑坡易发性动态评估: 以刘家峡水库区域为例[J]. 岩石力学与工程学报, 42(2): 450-465.
|
| [70] |
顾文亚, 孟祥瑞, 朱晓晨, 等, 2020. 基于BEMD分解的地貌分类研究[J]. 地球信息科学学报, 22(3): 464-473. doi: 10.12082/dqxxkx.2020.190262
|
| [71] |
贺可强, 郭璐, 2017. 水库滑坡位移与水动力耦合预测参数及其评价方法研究[J]. 水利学报, 48(5): 516-525.
|
| [72] |
金德镰, 王耕夫, 1988. 柘溪水库塘岩光滑坡[M]//中国岩石力学与工程学会地面岩石工程专业委员会, 中国地质学会工程地质专业委员会. 中国典型滑坡. 北京: 科学出版社.
|
| [73] |
巨能攀, 侯伟龙, 赵建军, 等, 2010. 安县雎水河流域地质灾害发育、分布及影响因素[J]. 山地学报, 28(6): 732-740. doi: 10.3969/j.issn.1008-2786.2010.06.013
|
| [74] |
李白露, 2024. 某邻近滑坡山区铁路大桥边坡变形监测[J]. 铁道勘察, 50(3): 28-33.
|
| [75] |
李亚军, 岳东霞, 陈冠, 等, 2024. 积石山地震诱发金田-草滩村滑坡-泥流灾害链过程与成因[J]. 兰州大学学报(自然科学版), 60(1): 1-5.
|
| [76] |
廖秋林, 李晓, 李守定, 等, 2005. 三峡库区千将坪滑坡的发生、地质地貌特征、成因及滑坡判据研究[J]. 岩石力学与工程学报, 24(17): 3146-3153. doi: 10.3321/j.issn:1000-6915.2005.17.023
|
| [77] |
隆然, 刘兴东, 2023. 基于致灾机理分析的公路滑坡稳定性评价及治理方案研究[J]. 铁道勘察, 49(2): 33-37.
|
| [78] |
陆会燕, 李为乐, 许强, 等, 2019. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报(信息科学版), 44(9): 1342-1354.
|
| [79] |
吕蓓茹, 彭玲, 李樵民, 2022. 顾及样本敏感性的滑坡易发性评价[J]. 测绘通报(11): 20-25.
|
| [80] |
欧阳晓, 2011. 区域土壤侵蚀地形指标研究[D]. 西安: 西北大学.
|
| [81] |
覃怡, 向楠, 江为学, 2015. 向家坝库区滑坡特征参数统计分析[J]. 公路交通技术(3): 5-8.
|
| [82] |
佘雅文, 付广裕, 赵倩, 等, 2021. 白鹤滩水电站蓄水引起重力与库仑应力变化的模拟研究[J]. 地球物理学报, 64(6): 1925-1936. doi: 10.6038/cjg2021O0163
|
| [83] |
史先琳, 居安华, 戴可人, 等, 2023. 多源遥感揭示白鹤滩库区五里坡滑坡蓄水期形变演化与复活机制[J]. 北京理工大学学报, 43(11): 1164-1175.
|
| [84] |
苏晓军, 张毅, 孟兴民, 等, 2024. 中巴经济走廊洪扎段潜在滑坡SBAS-InSAR早期识别及发育特征分析[J]. 遥感学报, 28(4): 885-899.
|
| [85] |
唐凤娇, 祁生文, 郭松峰, 等, 2022. 金沙江溪洛渡库区水库诱发滑坡时空分布规律及易发性研究[J]. 工程地质学报, 30(3): 609-620.
|
| [86] |
王江波, 刘威, 赵梦涵, 等, 2023. 粤港澳大湾区城乡建设空间扩张与自然灾害相互影响[J]. 科学技术与工程, 23(25): 11027-11040.
|
| [87] |
王劲峰, 徐成东, 2017. 地理探测器: 原理与展望[J]. 地理学报, 72(1): 116-134. doi: 10.11821/dlxb201701010
|
| [88] |
王凯, 张少杰, 韦方强, 2020. 斜坡单元提取方法研究进展和展望[J]. 长江科学院院报, 37(6): 85-93. doi: 10.11988/ckyyb.20190210
|
| [89] |
王淞, 黄伟亮, 项闻, 等, 2022. 滑坡粗糙度年代学方法: 以甘肃舟曲地区泄流坡和锁儿头滑坡为例[J]. 地球科学与环境学报, 44(6): 1037-1047.
|
| [90] |
吴彩燕, 乔建平, 2005. 三峡库区云阳-巫山段坡向因素对滑坡发育的贡献率研究[J]. 四川大学学报(工程科学版), 37(4): 25-29.
|
| [91] |
吴昊, 裴向军, 崔圣华, 等, 2021. 强震山区滑坡发育分布的地形地质控制作用研究[J]. 岩石力学与工程学报, 40(5): 972-986.
|
| [92] |
吴先谭, 邓辉, 张文江, 等, 2022. 基于斜坡单元自动划分的滑坡易发性评价[J]. 山地学报, 40(4): 542-556.
|
| [93] |
姚闯闯, 姚鑫, 顾畛逵, 等, 2022. 基于InSAR识别的黄土高原活动性地质灾害发育规律分析[J]. 地质力学学报, 28(2): 257-267.
|
| [94] |
姚鑫, 邓建辉, 刘星洪, 等, 2020. 青藏高原泛三江并流区活动性滑坡InSAR初步识别与发育规律分析[J]. 工程科学与技术, 52(5): 16-37.
|
| [95] |
余文秀, 李秀珍, 郑玲静, 等, 2024. 基于SBAS-InSAR技术的中巴公路KKH沿线潜在滑坡区识别研究[J]. 工程地质学报, 32(5): 1597-1606.
|
| [96] |
袁中友, 唐晓春, 2003. 蓄水和水位变动对三峡库区崩塌滑坡的影响及对策[J]. 热带地理, 23(1): 30-34. doi: 10.3969/j.issn.1001-5221.2003.01.007
|
| [97] |
曾帅, 马志刚, 赵聪, 等, 2023. 青藏高原东部大渡河流域太平桥乡古滑坡群复活特征多源遥感识别[J]. 现代地质, 37(4): 994-1003.
|
| [98] |
张建廷, 张立民, 徐涛, 2015. 遥感图像的异质性测度分割效果评价[J]. 测绘科学技术学报, 32(5): 479-482, 488. doi: 10.3969/j.issn.1673-6338.2015.05.009
|
| [99] |
赵鹏, 文刚, 何展昌, 等, 2024. 基于机器学习的金沙江流域浅层滑坡易发性评价[J]. 水利水电技术(中英文), 55(10): 53-70.
|
| [100] |
周洪福, 方甜, 夏晨皓, 等, 2023. 工程扰动诱发川西杜米滑坡复活变形特征及机理分析[J]. 现代地质, 37(4): 1044-1053.
|