Citation: | LIU X H,WANG X Y,XIAO C H,et al.,2024. Discussion on the ore-controlling factors in the Longlin–Xilin Sb–Au mining district of western Guangxi, South China[J]. Journal of Geomechanics,30(3):427−442 doi: 10.12090/j.issn.1006-6616.2023120 |
[1] |
ASHLEY P M, CREAGH C J, RYAN C G, 2000. Invisible gold in ore and mineral concentrates from the Hillgrove gold-antimony deposits, NSW, Australia[J]. Mineralium Deposita, 35(4): 285-301. doi: 10.1007/s001260050242
|
[2] |
BORTNIKOV N S, GAMYNIN G N, VIKENT’EVA O V, et al, 2010. The Sarylakh and Sentachan gold-antimony deposits, Sakha-Yakutia: a case of combined mesothermal gold-quartz and epithermal stibnite ores[J]. Geology of Ore Deposits, 52(5): 339-372. doi: 10.1134/S1075701510050028
|
[3] |
BOYLE G O, HILL R L, 1988. The Hillgrove antimony-gold field[J]. New England Orogen Tectonics and Metallogenesis, 235-239.
|
[4] |
BUCHHOLZ P, OBERTHÜR T, LÜDERS V, et al, 2007. Multistage Au-As-Sb mineralization and crustal-scale fluid evolution in the Kwekwe district, Midlands greenstone belt, Zimbabwe: a combined geochemical, mineralogical, stable isotope, and fluid inclusion study[J]. Economic Geology, 102(3): 347-378. doi: 10.2113/gsecongeo.102.3.347
|
[5] |
CHEN J, HUANG Z L, YANG R D, et al , 2021. Symbiosis and differentiation mechanism of gold and antimony in Nanpanjiang-Youjiang Basin[C]//Proceedings of the first national mineral exploration conference. Hefei: Chinese Geophysical Society: 1067-1071. (in Chinese)
|
[6] |
CHEN M H, 2016. Pitch of ore bodies and occurrence pattern of the tabular ore body in vein-like W-Tb-Au deposits in western Hunan province[J]. Contributions to Geology and Mineral Resources Research, 31(3): 340-345. (in Chinese with English abstract
|
[7] |
DING J H, ZHANG Y, MA Y B, et al, 2021. Metallogenic characteristics and resource potential of antimony in China[J]. Journal of Geochemical Exploration, 230: 106834. doi: 10.1016/j.gexplo.2021.106834
|
[8] |
DU Y S, XU Y J, 2012. A preliminary study on Caledonian event in South China[J]. Geological Science and Technology Information, 31(5): 43-49. (in Chinese with English abstract
|
[9] |
FU S L, ZAJACZ Z, TSAY A, et al, 2020. Can magma degassing at depth donate the metal budget of large hydrothermal Sb deposits?[J]. Geochimica et Cosmochimica Acta, 290: 1-15. doi: 10.1016/j.gca.2020.08.029
|
[10] |
FU S L, HU R Z, PENG J T, et al, 2023. A comprehensive genetic model for the world’s largest Sb deposit (Xikuangshan, China)[J]. GSA Bulletin, 135(3-4): 1074-1088. doi: 10.1130/B36424.1
|
[11] |
GAN C S, WANG Y J, BARRY T L, et al, 2020. Late Jurassic high-Mg andesites in the Youjiang Basin and their significance for the southward continuation of the Jiangnan Orogen, South China[J]. Gondwana Research, 77: 260-273. doi: 10.1016/j.gr.2019.06.018
|
[12] |
GAN C S, WANG Y J, ZHANG Y Z, et al, 2021. The assembly of the South China and Indochina blocks: constraints from the Triassic felsic volcanics in the Youjiang Basin[J]. GSA Bulletin, 133(9-10): 2097-2112. doi: 10.1130/B35816.1
|
[13] |
GAN C S, WANG Y J, ZHANG Y Z, et al, 2022. Petrogenesis of Late Cretaceous granites and implications for W-Sn mineralization in the Youjiang Basin, South China[J]. Ore Geology Reviews, 144: 104846. doi: 10.1016/j.oregeorev.2022.104846
|
[14] |
GENG J Z, HUANG Y Q, JIANG G P, et al, 2019. Zircon U-Pb age and Lu-Hf isotopes of the dacite from Zaozigou Au-Sb deposit, west Qinling, China[J]. Geological Survey and Research, 42(3): 166-173. (in Chinese with English abstract
|
[15] |
Guangxi Jinguozi Mining Co., Ltd, 2011. Geological Profile of No.6 Exploration Line in Mahao Antimony Deposit [R]. Guangxi: Guangxi Jinguozi Mining Co., Ltd. (in Chinese)
|
[16] |
Guangxi Institute of Geological Survey, 2019. Report on actually measured and 1: 50000 regional geological survey of Longlin [R]. Guangxi: Guangxi Institute of Geological Survey. (in Chinese)
|
[17] |
Guangxi Xilin County Hengyuan Mining Development Co., Ltd, 2015. Implementation scheme of gold and antimony exploration in Wendong mining area, Xilin county, Guangxi [R]. Guangxi: Guangxi Xilin County Hengyuan Mining Development Co., Ltd. (in Chinese)
|
[18] |
Guangxi Xilin County Hengyuan Mining Development Co., Ltd, 2017. Implementation scheme of gold and antimony exploration in Taipingwangzishan mining area, Guzhang Town, Xilin County, Guangxi [R]. Guangxi Xilin County Hengyuan Mining Development Co., Ltd. (in Chinese)
|
[19] |
GUILLEMETTE N, WILLIAMS-JONES A E, 1993. Genesis of the Sb-W-Au deposits at Ixtahuacan, Guatemala: evidence from fluid inclusions and stable isotopes[J]. Mineralium Deposita, 28(3): 167-180.
|
[20] |
GUMIEL P, VINDEL E, 1983. Estudio de las mineralizaciones filonianas plomo-antimoníferas de la cobertera en la Sierra de la Demanda. Mina Santa Rufina, Urrez (Burgos)[R]. Madrid: Instituto Geológico y Minero de España.
|
[21] |
HAGEMANN S G, LÜDERS V, 2003. P-T-X conditions of hydrothermal fluids and precipitation mechanism of stibnite-gold mineralization at the Wiluna lode-gold deposits, western Australia: conventional and infrared microthermometric constraints[J]. Mineralium Deposita, 38(8): 936-952. doi: 10.1007/s00126-003-0351-6
|
[22] |
HAN J, 2020. Discussion on the origin of Muliantin deposit in Guangnan County, Yunnan Province[J]. Gansu Metallurgy, 42(1): 69-71. (in Chinese with English abstract
|
[23] |
HNYLKO O, TSUKORNYK I, HENERALOVA L, et al, 2019. A Late Carboniferous olistostrome at the front of the southern Tian Shan nappes (Kadamzhai and Khaidarkan deposits, Kyrgyzstan)[J]. Geological Quarterly, 63(2): 407-423.
|
[24] |
HOU F H, HUANG J X, 1984. Research into the Permian and Triassic volcaniclastic turbidite of Nanpan River Sag: a unique turbidite mode without submarine fan[J]. Acta Sedimentologica Sinica, 2(4): 19-32. (in Chinese with English abstract
|
[25] |
HU A X, PENG J T, 2018. Fluid inclusions and ore precipitation mechanism in the giant Xikuangshan mesothermal antimony deposit, South China: conventional and infrared microthermometric constraints[J]. Ore Geology Reviews, 95: 49-64. doi: 10.1016/j.oregeorev.2018.02.005
|
[26] |
HU L J, WU X K, LE X W, et al, 2023. Dating the Deli Pb–Zn deposit, Xidamingshan mining district, South China: implications for regional exploration[J]. Journal of Geomechanics, 29(1): 76-86. (in Chinese with English abstract
|
[27] |
HUANG H, DU Y S, HUANG Z Q, et al, 2013. Depositional chemistry of chert during late Paleozoic from western Guangxi and its implication for the tectonic evolution of the Youjiang Basin[J]. Science China Earth Sciences, 56(3): 479-493. doi: 10.1007/s11430-012-4496-y
|
[28] |
JIANG W, YAN Q R, DENG L, et al, 2019. Early Jurassic mafic intrusions in the southern Youjiang Basin, SW China: petrogenesis, tectonic and metallogenic implications[J]. Minerals, 9(12): 771. doi: 10.3390/min9120771
|
[29] |
KALININ Y A, NAUMOV E A, BORISENKO A S, et al, 2015. Spatial-temporal and genetic relationships between gold and antimony mineralization at gold-sulfide deposits of the Ob-Zaisan folded zone[J]. Geology of Ore Deposits, 57(3): 157-171. doi: 10.1134/S1075701515030022
|
[30] |
KETRIS M P, YUDOVICH Y E, 2009. Estimations of Clarkes for Carbonaceous biolithes: world averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 78(2): 135-148. doi: 10.1016/j.coal.2009.01.002
|
[31] |
KRUPP R E, 1988. Solubility of stibnite in hydrogen sulfide solutions, speciation, and equilibrium constants, from 25 to 350°C[J]. Geochimica et Cosmochimica Acta, 52(12): 3005-3015. doi: 10.1016/0016-7037(88)90164-0
|
[32] |
LAKE J W L, WILTON D H C, 2006. Structural and stratigraphic controls on mineralization at the Beaver Brook antimony deposit, central Newfoundland[R]. Current Research. Government of Newfoundland and Labrador, Department of Natural Resources, Geological Survey, Report, 6(1): 135-146.
|
[33] |
LI B L, WANG L Q, ZHANG X G, et al, 2022. Sulfur and lead isotope compositions and their geological significances in the Quzhen Sb mineralization section of the Hamuqu Sb-Au Deposit, Tibet[J]. Acta Geoscientica Sinica, 43(2): 202-210. (in Chinese with English abstract
|
[34] |
LI J H, ZHAO G C, JOHNSTON S T, et al, 2017. Permo-Triassic structural evolution of the Shiwandashan and Youjiang structural belts, South China[J]. Journal of Structural Geology, 100: 24-44. doi: 10.1016/j.jsg.2017.05.004
|
[35] |
LI J W, HU R Z, XIAO J F, et al, 2020. Genesis of gold and antimony deposits in the Youjiang metallogenic province, SW China: evidence from in situ oxygen isotopic and trace element compositions of quartz[J]. Ore Geology Reviews, 116: 103257. doi: 10.1016/j.oregeorev.2019.103257
|
[36] |
LI S Z, SUO Y H, ZHOU J, et al, 2022. Tectonic evolution of the South China Ocean-Continent Connection Zone: transition and mechanism of the Tethyan to the Pacific tectonic domains[J]. Journal of Geomechanics, 28(5): 683-704. (in Chinese with English abstract
|
[37] |
LIANG W, HOU Z Q, ZHENG Y C, et al, 2018. The Zhaxikang vein-type Pb-Zn-Ag-Sb deposit in Himalayan Orogen, Tibet: product by overprinting and remobilization processes during post-collisional period[J]. Acta Geologica Sinica-English Edition, 92(2): 682-705. doi: 10.1111/1755-6724.13549
|
[38] |
LONG Z Y, QIU K F, SANTOSH M, et al, 2023. Fingerprinting the metal source and cycling of the world’s largest antimony deposit in Xikuangshan, China[J]. GSA Bulletin, 135(1-2): 286-294. doi: 10.1130/B36377.1
|
[39] |
MO R W, SUN X M, ZHAI W, et al, 2013. Ore-forming fluid geochemistry and metallogenic mechanism from Mazhala gold-antimony deposit in southern Tibet, China[J]. Acta Petrologica Sinica, 29(4): 1427-1438. (in Chinese with English abstract
|
[40] |
NEIVA A M R, ANDRÁŠ P, RAMOS J M F, 2008. Antimony quartz and antimony–gold quartz veins from northern Portugal[J]. Ore Geology Reviews, 34(4): 533-546. doi: 10.1016/j.oregeorev.2008.03.004
|
[41] |
NĚMEC M, ZACHARIÁŠ J, 2018. The Krásná Hora, Milešov, and Příčovy Sb-Au ore deposits, Bohemian Massif: mineralogy, fluid inclusions, and stable isotope constraints on the deposit formation[J]. Mineralium Deposita, 53(2): 225-244. doi: 10.1007/s00126-017-0734-8
|
[42] |
NESBITT B E, MUEHLENBACHS K, MUROWCHICK J B, 1989. Genetic implications of stable isotope characteristics of mesothermal Au deposits and related Sb and Hg deposits in the Canadian Cordillera[J]. Economic Geology, 84(6): 1489-1506. doi: 10.2113/gsecongeo.84.6.1489
|
[43] |
No.274 Geological Team of Guangxi Bureau of Geology, 1990. Geological survey report of Longtan antimony mine area in Longlin county [R]. Guangxi: 274 Team of Guangxi Bureau of Geology. (in Chinese)
|
[44] |
PENG J T, HU R Z, 2001. Metallogenic Epoch and metallogenic tectonic environment of antimony deposits, South China[J]. Geology-Geochemistry, 29(3): 104-108. (in Chinese with English abstract
|
[45] |
QIAO L, 2016. Tectonic evolution and bauxite metallogenesis in the Youjiang Basin and Adjacent Area[D]. Beijing: China University of Geosciences (Beijing): 1-165. (in Chinese with English abstract
|
[46] |
QIU L, YAN D P, YANG W X, et al, 2017. Early to Middle Triassic sedimentary records in the Youjiang Basin, South China: implications for Indosinian orogenesis[J]. Journal of Asian Earth Sciences, 141: 125-139. doi: 10.1016/j.jseaes.2016.09.020
|
[47] |
QIU L, YANG W X, YAN D P, et al, 2019. Geochronology of early Mesozoic diabase units in southwestern China: metallogenic and tectonic implications[J]. Geological Magazine, 156(7): 1141-1156. doi: 10.1017/S0016756818000493
|
[48] |
SCRATCH R B, WATSON G P, KERRICH R, et al , 1984. Fracture-controlled antimony-quartz mineralization, Lake George Deposit, New Brunswick; mineralogy, geochemistry, alteration, and hydrothermal regimes[J]. Economic Geology, 79(5), 1159-1186.
|
[49] |
SHERLOCK R L, TOSDAL R M, LEHRMAN N J, et al, 1995. Origin of the McLaughlin Mine sheeted vein complex: metal zoning, fluid inclusion, and isotopic evidence[J]. Economic Geology, 90(8): 2156-2181. doi: 10.2113/gsecongeo.90.8.2156
|
[50] |
SIMOES M C, 1997. Mineralogical and geochemical features of metasedimentary rocks associated to Au-Sb vein mineralization in northern Portugal[J]. Comunicaç õ es do Instituto Geológico e Mineiro, 83: 29-46.
|
[51] |
SOŚNICKA M, DE GRAAF S, MORTEANI, G, et al , 2022. The Schlaining quartz-stibnite deposit, Eastern Alps, Austria: constraints from conventional and infrared microthermometry and isotope and crush-leach analyses of fluid inclusions[J]. Mineralium Deposita, 1-17.
|
[52] |
WAGNER T, BOYCE A J, 2003. Sulphur isotope geochemistry of black shale-hosted antimony mineralization, Arnsberg, northern Rhenish Massif, Germany: implications for late-stage fluid flow during the Variscan orogeny[J]. Journal of the Geological Society, 160(2): 299-308. doi: 10.1144/0016-764902-010
|
[53] |
WANG G Z, HU R Z, SU W C, et al, 2003. Fluid flow and mineralization of Youjiang Basin in the Yunnan-Guizhou-Guangxi area, China[J]. Science in China Series D: Earth Sciences, 46(S1): 99-109. doi: 10.1360/03dz9031
|
[54] |
WEI W Z, 1993. Geological characteristics of Maxiong antimony deposit[J]. Southwest Mineral Geology, 7(2): 8-16. (in Chinese)
|
[55] |
WEN Q, LIU T, 2019. Analysis of geological characteristics and genesis of Longshan gold-antimony deposit[J]. World Nonferrous Metals(14): 90-91. (in Chinese with English abstract
|
[56] |
WILSON C J L, MOORE D H, LUZIN V, et al, 2017. Costerfield antimony-gold deposit, southeast Australia: coupling between brittle deformation and dissolution-precipitation reactions in the Melbourne Zone[J]. Ore Geology Reviews, 91: 741-764. doi: 10.1016/j.oregeorev.2017.08.024
|
[57] |
WU Y, ZHANG S, HUANG Z, et al, 2019. Meso-Cenozoic tectonic evolution of the Nandan-Libo Area, Northwestern Guangxi, China: evidence from Palaeo-tectonic stress fields analyses[J]. Geotectonica et Metallogenia, 43(5): 872-893. (in Chinese with English abstract
|
[58] |
XIAO C H, LI G J, LIU H, et al, 2016. Characteristics of rare earth and trace elements of stibnite from the Bijiashan antimony deposit, Southwest Yunnan: implications for ore genesis[J]. Journal of Geomechanics, 22(2): 310-324. (in Chinese with English abstract
|
[59] |
XIAO C H, CHEN Z L, LIU X C, et al, 2022. Structural analysis, mineralogy, and cassiterite U–Pb ages of the Wuxu Sb-Zn-polymetallic district, Danchi Fold-and-Thrust belt, South China[J]. Ore Geology Reviews, 150: 105150. doi: 10.1016/j.oregeorev.2022.105150
|
[60] |
XIAO X G, 2014. Geochronology, ore geochemistry and genesis of the Banpo antimony deposit, Guizhou Province, China[D]. Kunming: Kunming University of Science and Technology: 1-138. (in Chinese with English abstract
|
[61] |
XING L, LI W C, ZHAO X B, et al, 2024. Separation of Au and Sb mineralization in the Qukulekedong intrusion-related deposit, East Kunlun Orogen (NW China): evidence from fluid inclusions, H-O isotopes, and quartz geochemistry[J]. Ore Geology Reviews, 164: 105828. doi: 10.1016/j.oregeorev.2023.105828
|
[62] |
YAN J, FU S L, LIU S, et al, 2022. Giant Sb metallogenic belt in South China: a product of Late Mesozoic flat-slab subduction of paleo-Pacific plate[J]. Ore Geology Reviews, 142: 104697. doi: 10.1016/j.oregeorev.2022.104697
|
[63] |
YANG H S, 2007. Geological characteristics and ore indicators of antimony deposit in northwestern Guangxi[J]. Mineral Resources and Geology, 21(1): 52-55. (in Chinese with English abstract
|
[64] |
YANG J H, CAWOOD P A, DU Y S, et al, 2012. Detrital record of Indosinian mountain building in SW China: provenance of the Middle Triassic turbidites in the Youjiang Basin[J]. Tectonophysics, 574-575: 105-117. doi: 10.1016/j.tecto.2012.08.027
|
[65] |
ZHANG T Y, LI C Y, SUN S J, et al, 2020. Geochemical characteristics of antimony and genesis of antimony deposits in South China[J]. Acta Petrologica Sinica, 36(1): 44-54. (in Chinese with English abstract doi: 10.18654/1000-0569/2020.01.06
|
[66] |
ZHOU Z J, CHEN Z L, HAN F B, et al, 2018. Fluid inclusion and isotope geochemistry of the Atebayue Sb deposit, South Tianshan Orogen, Kyrgyzstan[J]. Geological Journal, 53(3): 1050-1060. doi: 10.1002/gj.2943
|
[67] |
陈军,黄智龙,杨瑞东,等,2021. 南盘江-右江盆地金、锑共生分异机制[C]//首届全国矿产勘查大会论文集. 合肥:中国地球物理学会:1067-1071.
|
[68] |
陈明辉. 2016. 湘西地区脉状钨锑金矿床的矿体侧伏与板柱状赋存规律[J]. 地质找矿论丛,31(3):340-345. doi: 10.6053/j.issn.1001-1412.2016.03.004
|
[69] |
杜远生,徐亚军. 2012. 华南加里东运动初探[J]. 地质科技情报,31(5):43-49.
|
[70] |
耿建珍,黄雅琪,姜桂鹏,等. 2019. 西秦岭早子沟金锑矿床含矿英安斑岩年代学及其成因[J]. 地质调查与研究,42(3):166-173. doi: 10.3969/j.issn.1672-4135.2019.03.002
|
[71] |
广西金果子矿业有限公司,2011. 马蒿锑矿床6号勘探线地质剖面图[R]. 广西:广西金果子矿业有限公司.
|
[72] |
广西西林县恒源矿业开发有限责任公司,2015. 广西西林县文洞矿区金锑矿勘探实施方案[R]. 广西:广西西林县恒源矿业开发有限责任公司.
|
[73] |
广西西林县恒源矿业开发有限责任公司,2017. 广西西林县古障镇太平王子山矿区金锑矿勘探实施方案[R]. 广西:广西西林县恒源矿业开发有限责任公司.
|
[74] |
广西壮族自治区地质调查院,2019. 实测及 1∶5 万区域地质调查隆林幅报告[R]. 广西:广西壮族自治区地质调查院.
|
[75] |
广西壮族自治区二七四地质队,1990. 隆林县龙滩锑矿区地质普查报告[R]. 广西:广西壮族自治区二七四地质队.
|
[76] |
韩江. 2020. 云南省广南县木利锑矿成因及控矿因素探讨[J]. 甘肃冶金,42(1):69-71. doi: 10.3969/j.issn.1672-4461.2020.01.021
|
[77] |
侯方浩,黄继祥. 1984. 南盘江断陷区二、三叠系的火山碎屑浊积岩:一种独特的无海底扇浊流沉积模式[J]. 沉积学报,2(4):19-32.
|
[78] |
胡利娟,吴祥珂,乐兴文,等. 2023. 广西西大明山矿集区德立铅锌矿床成矿时代及其找矿勘查启示[J]. 地质力学学报,29(1):76-86. doi: 10.12090/j.issn.1006-6616.2022034
|
[79] |
李保亮,王立强,张相国,等. 2022. 西藏哈姆曲锑(金)矿床曲珍矿段S、Pb同位素组成及意义[J]. 地球学报,43(2):202-210. doi: 10.3975/cagsb.2021.041501
|
[80] |
李三忠,索艳慧,周洁,等. 2022. 华南洋陆过渡带构造演化:特提斯构造域向太平洋构造域的转换过程与机制[J]. 地质力学学报,28(5):683-704. doi: 10.12090/j.issn.1006-6616.20222809
|
[81] |
莫儒伟,孙晓明,翟伟,等. 2013. 藏南马扎拉金锑矿床成矿流体地球化学和成矿机制[J]. 岩石学报,29(4):1427-1438.
|
[82] |
彭建堂,胡瑞忠. 2001. 华南锑矿带的成矿时代和成矿构造环境[J]. 地质地球化学,29(3):104-108.
|
[83] |
乔龙,2016. 右江盆地及其周缘地区构造演化及铝土矿成矿作用[D]. 北京:中国地质大学(北京):1-165.
|
[84] |
韦文灼. 1993. 马雄锑矿床地质特征[J]. 西南矿产地质,7(2):8-16.
|
[85] |
文琴,刘涛,2019. 龙山金锑矿地质特征及成因浅析[J]. 世界有色金属(14):90-91.
|
[86] |
吴玉,张松,黄铮,等. 2019. 桂西北南丹-荔波地区中、新生代构造演化:来自古构造应力场的证据[J]. 大地构造与成矿学,43(5):872-893.
|
[87] |
肖昌浩,李龚健,刘欢,等. 2016. 云南巍山笔架山锑矿床辉锑矿稀土微量元素特征及其矿床成因意义[J]. 地质力学学报,22(2):310-324. doi: 10.3969/j.issn.1006-6616.2016.02.011
|
[88] |
肖宪国,2014. 贵州半坡锑矿床年代学、地球化学及成因[D]. 昆明:昆明理工大学:1-138.
|
[89] |
杨怀顺. 2007. 桂西北地区锑矿地质特征及找矿标志探讨[J]. 矿产与地质,21(1):52-55. doi: 10.3969/j.issn.1001-5663.2007.01.012
|
[90] |
张天羽,李聪颖,孙赛军,等. 2020. 锑的地球化学性质与华南锑矿带成因初探[J]. 岩石学报,36(1):44-54. doi: 10.18654/1000-0569/2020.01.06
|