Volume 27 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
FANG Weixuan, GUO Yuqian, JIA Runxing, et al., 2021. On relationship between the superimposed mineralization systems and the zoning patterns of vertical tectonic lithofacies in the Gejiu concentration area of Sn-Cu-W and three rare metals in Yunnan. Journal of Geomechanics, 27 (4): 557-584. DOI: 10.12090/j.issn.1006-6616.2021.27.04.048
Citation: FANG Weixuan, GUO Yuqian, JIA Runxing, et al., 2021. On relationship between the superimposed mineralization systems and the zoning patterns of vertical tectonic lithofacies in the Gejiu concentration area of Sn-Cu-W and three rare metals in Yunnan. Journal of Geomechanics, 27 (4): 557-584. DOI: 10.12090/j.issn.1006-6616.2021.27.04.048

On relationship between the superimposed mineralization systems and the zoning patterns of vertical tectonic lithofacies in the Gejiu concentration area of Sn-Cu-W and three rare metals in Yunnan

doi: 10.12090/j.issn.1006-6616.2021.27.04.048
Funds:

the Special Fund Project of the System-transforming Scientific Research Institute, the State Ministry of Science and technology 2008EG115074

the Scientific and Technological Cooperation Project of Yunnan provincial-colleges-universities 2000YK-05

the National Project for Exploration of Succeed Resources in Crisis Mines 〔2005〕027

the Scientific Research Project of Public Welfare Industry 201511016-1

the Scientific Research Project of Yunnan Tin Industry Co. Ltd. LC-ZGB-2021007

More Information
  • Received: 2021-04-13
  • Revised: 2021-06-20
  • Published: 2021-08-01
  • Based on the zoning pattern and the deformation sieving of tectonic lithofacies, as well as the macroscopic and microscopic studies of tectonic lithofacies, the superimposed mineralization systems and the Gejiu ore-concentrated area in Yunnan has been studied. The relationship among the enrichment mechanism of strategic key minerals, the superimposed mineralization, and the pattern of tectonic lithofacies has been uncovered. It was believed that the Triassic arc-back rift basin at the pre-magmatic intrusive stage, the tectonic system of magmatic intrusion at the syn-magmatic intrusive stage, and the karstic tectonic system at the post-magmatic intrusive stage, all of them are of syn-space superimposing lithofacies and mineralizations within different time domains and syn-time lithofacies differentiation. All of them had different controls on the Gejiu superimposed mineral system and Sn-Cu-W-Co-Cs-Rb mineralization. There are 9 vertical tectonic lithofacies zones (VTZs) in different patterns of VTZs around the Gejiu superimposed mineralization system. Firstly, the light-colored granite (VTZ8) and crystal-nucleus lithofacies of magmatic pneumatolytic hydrotherm (VTZ9), being the tectonic lithofacies of syn-magmatic intrusive stage for the biotite granite (γK2a-b-c), was formed at the top and on the edges of the granite intrusion. Secondly, skarn alteration lithofacies to skarn lithofacies (VTZ7) in the magma-contact metasomatic tectonic lithofacies zone is the tectonic lithofacies zone for coupling reaction by the strata and the magmatic system at the syn-magmatic intrusion.Thirdly, on the one hand, cryptoexplosive brecciation of magmatic pneumatolytic hydrotherm enriching in residual magma was forced into the Middle Triassic Gejiu Group, resulted in the magmatic hydrothermal plume and lithofacies zones of tourmaline-hydrothermal cryptoexplosive breccias (VTZ6). On the other hand, the upper part of the fault-fold-type carbonate layer (VTZ4), the marble lithofacies with cataclastic facies and the cataclastic tourmaline-marble lithofacies (VTZ5), and stratiform-like Sn-bearing dolomite with cataclastic facies (VTZ3) in the farthermost-end part, were formed by tectonic hydrothermal coupling derived in the syn-magmatic intrusive stage from the underlying magmatic hydrothermal plume. Fourthly, the alkaline picritic rocks and alkaline volcanicrocks, and their volcanic erupting structure in the Triassic arc-back rift basin were the tectonic lithofacies at the pre-magmatic intrusive stage. Fifthly, the erosion-level in the Yungui plateau (VTZ1) and the supergene karstic tectonic system (VTZ2) were formed in the post-magmatic intrusive stage; however, they (VTZ1, VTZ2) were superimposed on the tectonic system of the syn-magmatic intrusion (VTZ3, VTZ4, VTZ5, VTZ6, VTZ7, VTZ8, VTZ9). The above achievements are foundations of innovated theory for the deep-probe and the modeling prediction for the buried tectonic lithofacies in the area.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • CHANG X Y, ZHU B Q, ZOU R, et al., 1998. Geochemical studies on sodium enriched volcanic rocks in the area of Longbohe copper deposit, Yunnan province, SW China: Ⅱ. Chronology and characteristics of Nd-Sr-Pb isotope[J]. Geochiminca, 27(4): 361-366. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX199804006.htm
    CHI J C. 1988. The Cenozoic basalt and the upper mantle in eastern China[M]. Wuhan: China University of Geosciences Press (Wuhan).
    CHENG Y B, MAO J W, XIE G Q, et al., 2008. Petrogenesis of the Laochang-Kafang granite in the Gejiu Area, Yunnan province: constraints from geochemistry and Zircon U-Pb dating[J]. Acta Geologica Sinica, 81(11): 1478-1493. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geologica-sinica_thesis/0201252708900.html
    CHENG Y B, MAO J W, 2010. Age and geochemistry of granites in Gejiu area, Yunnan province, SW China: constraints on their petrogenesis and tectonic setting[J]. Lithos, 120(3-4): 258-276. doi: 10.1016/j.lithos.2010.08.013
    DENG G A, 1998. The geological and geochemical features of granite rupture zone type tin deposit in Laochang, Gejiu: A new type of tin deposit[J]. Mineral Resources and Geology, 12(4): 230-236. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCYD804.002.htm
    FANG W X, HU R Z, XIE G Q, et al., 2002. Tectonolithostratigraphic units of the Ailaoshan area in Yunnan, China and their implications of tectonic evolution[J]. Geotectonica et Metallogenia, 26(1): 28-36. (in Chinese with English abstract) http://www.researchgate.net/publication/281509019_Tectonolithostratigraphic_units_of_the_Ailaoshan_area_in_Yunnan_China_and_their_implications_of_tectonic_evolution
    FANG W X, JIA R X, 2011. Characteristics of the alkaline picritic volcanic rocks in the Gejiu superlarge tin-copper deposit and their continental dynamic implications[J]. Geotectonica et Metallogenia, 35(1): 137-148. (in Chinese with English abstract) http://www.researchgate.net/publication/284926336_Characteristics_of_the_alkaline_picritic_volcanic_rocks_in_the_Gejiu_supergiant_tin-Cu_deposit_and_their_continental_dynamic_implications
    FANG W X, ZHANG H, JIA R X, 2011. Dynamics of triassic back-arc rift basin and its metallogenic sequence in Gejiu of Yunnan province to napo of Guangxi Zhuang autonomous region, China[J]. Geotectonica et Metallogenia, 35(4): 552-566. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201104011.htm
    FANG W X, YANG X Y, GUO M H, et al., 2013. Relationships between alkaline Ti-Fe-rich gabbros and iron-oxide copper-gold deposits in the Baixila ore district, Yunnan[J]. Geotectonica et Metallogenia, 37(2): 242-261. (in Chinese with English abstract) http://www.researchgate.net/publication/286296793_Relationships_between_alkaline_Ti-Fe-rich_gabbros_and_iron-oxide_copper-gold_deposits_in_the_Baixila_ore_district_Yunnan
    FANG W X, DU Y L, LI J X, et al., 2018. Techonolgy of tectonic lithofacies mapping at large-scale and ore predication[M]. Beijing: Geology Press: 1-377. (in Chinese)
    FENG J R, MAO J W, PEI R F, et al., 2010. SHRIMP zircon U-Pb dating and geochemical characteristics of Laojunshan granite intrusion from the Wazha tungsten deposit, Yunnan Province and their implications for petrogenesis[J]. Acta Petrologica Sinica, 26(3): 845-857. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201003017.htm
    FENG J R, MAO J W, PEI R F, 2013. Ages and geochemistry of Laojunshan granites in southeastern Yunnan, China: Implications for W-Sn polymetallic ore deposits[J]. Mineralogy and Petrology, 107(4): 573-589. doi: 10.1007/s00710-012-0253-3
    FRANKLIN J M, GIBSON H L, JONASSON I R, et al., 2005. Volcanogenic massive sulfide deposits[M]//HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al., One hundredth anniversary volume. Littelton, Colorado, USA: Society of Economic Geologists: 523-560.
    GALLY A G, HANNINGTON M D, JONASSON I R, 2007. Volcanogenic massive sulphide deposits[M]//GOODFELLOW W D. Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication: 141-161.
    GAO J, CUI Y L, 2004. Ore-forming condition, ore prospecting indicator research at copper mine of east belt Longbohe copper mine in Yunnan[J]. Geology and Prospecting, 40(5): 33-38. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200405007.htm
    GROVES D I, BIERLEIN F P, 2007. Geodynamic settings of mineral deposit systems[J]. Journal of the Geological Society, 164(1): 19-30. doi: 10.1144/0016-76492006-065
    GUO J, ZHANG R Q, LI C Y, et al., 2018. Genesis of the Gaosong Sn-Cu deposit, Gejiu district, SW China: constraints from in situ LA-ICP-MS cassiterite U-Pb dating and trace element fingerprinting[J]. Ore Geology Reviews, 92: 627-642. doi: 10.1016/j.oregeorev.2017.11.033
    GUO J, 2020. Study to determine objective geological body and its ore-prospecting practice[R]. Institute of Mineral Resources Research, China Metallurgical Geology Bureau. (in Chinese)
    HEI H X, LUO Z H, VIKENTYEV I V, et al., 2015. Transmagmatic fluid theory and orefield structure[J]. Journal of Geomechanics, 21(1): 1-12. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201501001.htm
    HOU Z Q, YANG Z M, 2009. Porphyry deposits in continental settings of China: Geological characteristics, magmatic-hydrothermal system, and metallogenic model[J]. Acta Geologica Sinica, 83(12): 1779-1817. (in Chinese with English abstract) http://www.cqvip.com/QK/71135X/201107/33015600.html
    HU R Z, MAO J W, FAN W M, et al., 2010. Some scientific questions on the intra-continental metallogeny in the South China continent[J]. Earth Science Frontiers, 17(2): 13-26. (in Chinese with English abstract) http://www.researchgate.net/publication/285312468_Some_scientific_questions_on_the_intra-continental_metallogeny_in_the_South_China_continent
    HUDGINS T R, MUKASA S B, SIMON A C, et al., 2015. Melt inclusion evidence for CO2-rich melts beneath the western branch of the East African Rift: Implications for long-term storage of volatiles in the deep lithospheric mantle[J]. Contributions to Mineralogy and Petrology, 169(5): 46. doi: 10.1007/s00410-015-1140-9
    JIANG Z W, OLIVER N H S, BARR T D, et al., 1997. Numerical modeling of fault-controlled fluid flow in the genesis of tin deposits of the Malage ore field, Gejiu mining district, China[J]. Economic Geology, 92(2): 228-247. doi: 10.2113/gsecongeo.92.2.228
    LARGE R R, 1992. Australian volcanic-hosted massive sulfide deposits: Features, styles, and genetic models[J]. Economic Geology, 87(3): 471-510. doi: 10.2113/gsecongeo.87.3.471
    LEPVRIER C, MALUSKI H, VAN TICH V, et al., 2004. The early Triassic Indosinian orogeny in Vietnam (Truong Son belt and Kontum massif); Implications for the geodynamic evolution of Indochina[J]. Tectonophysics, 393(1-4): 87-118. doi: 10.1016/j.tecto.2004.07.030
    LA MAITRE R W, BATEMAN P, DUDEK A, et al., 1989. A classification of Igneous Rocks and Glossary of Terms, Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks[M]. Oxford: Blackwell Scientific.
    LI Y S, QIN D X, DANG Y T, et al., 2006. Mineralizations in basalts of the Gejiu tin deposit in Yunnan Province[J]. Journal of Jilin University (Earth Science Edition), 36(3): 326-335. (in Chinese with English abstract) http://www.researchgate.net/publication/284930827_Mineralizations_in_basalts_of_the_Gejiu_tin_deposit_in_Yunnan
    LI Z L, LIU X J, XIAO W J, et al., 2019. Geochronology, geochemistry and Hf isotopes of volcanic rocks in Pingxiang area, southwest Guangxi: Implications for the latest stage of Paleo-Tethyan Ocean northward subduction[J]. Journal of Geomechanics, 25(5): 932-946. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905021.htm
    LIU D M, GUO H J, ZHANG G Y, et al., 2019. Petrogenesis and tectonic setting of high-Mg volcanic rock xenoliths in Jianshui area, southeast Yunnan, China[J]. Earth Science, 44(5): 1749-1760. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905025.htm
    LIU H C, LIU X P, ZHANG Y W, et al., 2020. Beginning of the Indosinian orogeny: Insights from late Permian gabbro and diorite in the Diancangshan area of the Yunnan province[J]. Geotectonica et Metallogenia, 44(3): 527-542. (in Chinese with English abstract)
    LIU J, ZHOU Y, GUO H J, et al., 2016. Geological characteristics and the tectonic significance of ultrabasic rock of Nali river in Jianshui, Yunnan Province[J]. Guizhou Geology, 33(3): 178-186. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDZ201603004.htm
    LUO Z H, LU X X, LIU C, et al., 2011. On failing of the magmatic hydrothermal metallogenic theory: the causes and the new departure[J]. Journal of Jilin University (Earth Science Edition), 41(1): 1-11. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201101002.htm
    LUO Z H, SU S G, LIU C, 2014. Scale effects of the magma-related metallogenic systems[J]. Journal of Earth Sciences and Environment, 36(1): 1-9. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX201401002.htm
    MÜLLER D, GROVES D I, 2019. Potassic igneous rocks and associated gold-copper mineralization[M]. 5th ed. Berlin: Springer: 1-125.
    MAO J W, CHENG Y B, GUO C L, et al., 2008. Gejiu tin polymetallic ore-field: deposit model and discussion for several points concerned[J]. Acta Geologica Sinica, 82(11): 1455-1467. (in Chinese with English abstract) http://www.researchgate.net/publication/285875153_Gejiu_tin_polymetallic_Ore-Field_Deposit_model_and_discussion_for_several_points_concerned?ev=auth_pub
    MAO J W, ZHOU Z H, FENG C Y, et al., 2012. A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting[J]. Geology in China, 39(6): 1437-1471. (in Chinese with English abstract) http://www.researchgate.net/publication/280690446_A_preliminary_study_of_the_Triassic_large-scale_mineralization_in_China_and_its_geodynamic_setting
    PI Q H, HU R Z, PENG K Q, et al., 2016. Geochronology of the Zhesang gold deposit and mafic rock in Funing County of Yunnan province, with special reference to the dynamic background of Carlin-type gold deposits in the Dian-Qian-Gui region[J]. Acta Petrologica Sinica, 32(11): 3331-3342. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201611008.htm
    QIAN Z K, LUO T Y, HUANG Z L, et al., 2011. Geology, geochemistry and genesis of Xinshan stratiform diopside rocks in Gejiu, Yunnan[J]. Acta Mineralogica Sinica, 31(3): 338-352. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201103006.htm
    QIN D X, LI Y S, TAN S C, et al., 2006. Metallogenic ages of Gejiu tin ore deposit in Yunnan province[J]. Chinese Journal of Geology, 41(1): 122-132. (in Chinese with English abstract) http://www.researchgate.net/publication/285864964_Metallogenic_ages_of_Gejiu_tin_ore_deposit_in_Yunnan_province
    SHANG Z, CHEN Y Q, TONG X, et al., 2021. Geochronology, geochemistry and lithosphere extension of Kafang diabase in Gejiu area, Yunnan province[J/OL]. Geology in China, (2020-12-09). https://kns.cnki.net/kcms/detail/11.1167.P.20201207.1620.004.html.
    SHEN S L, LI J P, YANG B F, 2016. Geological and geochemical features and its exploration of altered granite type Sn-Cu polymetallic deposits in eastern part of Gejiu, Yunnan, China[J]. Acta Mineralogica Sinica, 36(4): 471-478. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201604004.htm
    TAN H Q, LIU Y P, 2017. Genesis of amphibolite in Mengdong Group-Complex in southeastern Yunnan and its tectonic significance[J]. Journal of Jilin University (Earth Science Edition), 47(6): 1763-1783. (in Chinese with English abstract) http://www.cqvip.com/QK/70021X/201804/7001693441.html
    WANG C Y, ZHOU M F, QI L, 2007. Permian flood basalts and mafic intrusions in the Jinping (SW China)-Song Da (northern Vietnam) district: Mantle sources, crustal contamination and sulfide segregation[J]. Chemical Geology, 243(3-4): 317-343. doi: 10.1016/j.chemgeo.2007.05.017
    WANG Y L, LI L, 1999. A study on the inclusion geochemistry of Laochang fine vein Sn deposit in Gejiu[J]. Yunnan Geology, 18(1): 37-47. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YNZD901.002.htm
    WEI C W, PI Q H, HU R Z, et al., 2018. Geochemical characteristics of two stages of basic dykes and gold mineralization at Funing, Yunnan Province, China[J]. Acta Mineralogica Sinica, 38(5): 499-513. http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB201805005.htm
    XIAO L, XU Y G, MEI H J, et al., 2004. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: Implications for plum-lithosphere interaction[J]. Earth and Planetary Science Letters, 228(3-4): 525-546. doi: 10.1016/j.epsl.2004.10.002
    XU J, XIA X P, LAI C K, et al., 2019. First identification of late Permian Nb-enriched basalts in Ailaoshan region (SW Yunnan, China): Contribution from Emeishan plume to subduction of eastern paleotethys[J]. Geophysical Research Letters, 46(5): 2511-2523. doi: 10.1029/2018GL081687
    XU W T, LIU F L, JI L, et al., 2020. Geochemistry, geochronology and geological implication of amphibolites in Ailao Shan-Day Nui Con Voi metamorphic complex belt, southeastern Tibetan Plateau[J]. Acta Petrologica Sinica, 36(12): 3607-3630. doi: 10.18654/1000-0569/2020.12.04
    XU Y G, CHUNG S L, JAHN B M, et al., 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in Southwestern China[J]. Lithos, 58(3-4): 145-168. doi: 10.1016/S0024-4937(01)00055-X
    XU Y R, LI Y X, 1997. A tin shoot-granitic type tin orebody discovered in the Gejiu mining area[J]. Mineral Resources and Geology, 11(2): 99-102. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCYD702.004.htm
    XU Z Q, WANG Q, LI Z H, 2016. Indo-Asian collision: tectonic transition from compression to strike slip[J]. Acta Geologica Sinica, 90(1): 1-23. (in Chinese with English abstract) doi: 10.1111/1755-6724.12639
    YANG Z X, MAO J W, CHEN M H, et al., 2009. 40Ar-39Ar dating of muscovite from Laochang veinlet-like Sn deposit in Gejiu tin polymetallic ore district and its geological significance[J]. Mineral Deposits, 28(3): 336-344. (in Chinese with English abstract)
    ZHAI Y S, 2007. Earth system, metallogenic system to exploration system[J]. Earth Science Frontiers, 14(1): 172-181. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200701017.htm
    ZHAI Y S, WANG J P, PENG R M, et al., 2009. Research on superimposed metallogenic systems and polygenetic mineral deposits[J]. Earth Science Frontiers, 16(6): 282-290. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/dxqy200906030
    ZHANG B L, LV G X, SU J, et al., 2015. A study of the tectono-lithofacies mineralization regularities of the Gejiu tin-polymetallic orefield, Yunnan, and prospecting in its western part[J]. Earth Science Frontiers, 22(4): 78-87. (in Chinese with English abstract) http://www.researchgate.net/publication/283125280_A_study_of_the_tectono-lithofacies_mineralization_regularities_of_the_Gejiu_tin-polymetallic_orefield_Yunnan_and_prospecting_in_its_western_part
    ZHANG G S, FANG W X, PENG R, et al., 2019. Zircon U-Pb chronology, origin and tectonic significance of the Triassic high potassic volcanic rock from Gejiu, Yunnan, Southwestern China[J]. Geotectonica et Metallogenia, 43(6): 1219-1235. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DGYK201906012.htm
    ZHANG G W, GUO A L, WANG Y J, et al., 2013. Tectonics of South China continent and its implications[J]. Science China Earth Sciences, 56(11): 1804-1828. doi: 10.1007/s11430-013-4679-1
    ZHANG H, TONG X, WU J D, et al., 2007. Gejiu tin-polymetallic ore deposit: an example of landing of Red Sea-type submarine hydrothermal deposition[J]. Acta Mineralogica Sinica, 27(3-4): 335-341. (in Chinese with English abstract) http://www.researchgate.net/publication/285096208_Gejiu_tin-polymetallic_ore_deposit_An_example_of_landing_of_Red_Sea-type_submarine_hydrothermal_deposition
    ZHANG J, MAO J W, CHENG YB, et al., 2012. 40Ar-39Ar phlogopite dating of stratified ore body and muscovite dating of greisens from Xinshan granite intrusion of Kafang tin-copper deposit in Gejiu area, Yunnan province[J]. Mineral Deposits, 31(6): 1149-1162. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201206003.htm
    ZHANG J W, DAI C G, HUANG Z L, et al., 2015. Age and petrogenesis of Anisian magnesian alkali basalts and their genetic association with the Kafang stratiform Cu deposit in the Gejiu supergiant tin-polymetallic district, SW China[J]. Ore Geology Reviews, 69: 403-416. doi: 10.1016/j.oregeorev.2015.03.011
    ZHANG L C, DONG Z G, CHEN B, et al., 2021. Ore-forming system and regularity of important metallogenetic belts in east Tianshan, China[J]. Journal of Earth Sciences and Environment, 43(1): 12-35. (in Chinese with English abstract)
    ZHANG Q, 2012. Comment on the popular magmatic hydrothermal mineralization theory[J]. Gansu Geology, 21(4): 1-14. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-GSDZ201204002.htm
    ZHANG Q, JIN W J, Li C D et al., 2014. Magma-thermal field: Its basic characteristics, and differences with geothermal field[J]. Acta Petrologica Sinica, 30(2): 341-349. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201402003.htm
    ZHANG Y H, ZHOU J X, TAN S C, et al., 2020. Genesis of the oxidized Sn ores in the Gejiu district, Yunnan province, SW China[J]. Ore Geology Reviews, 121: 103474, doi: 10.1016/j.oregeorev.2020.103474.
    ZHOU M F, MALPAS J, SONG X Y, et al., 2002. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction[J]. Earth and Planetary Science Letters, 196(3-4): 113-122. doi: 10.1016/S0012-821X(01)00608-2
    ZHUANG Y Q, WANG R Z, YANG S P, et al., 1996. Geology of the Gejiu tin-copper polymetallic deposit[M]. Beijing: Seismological Press. (in Chinese with English abstract)
    常向阳, 朱炳泉, 邹日, 等, 1998. 金平龙脖河铜矿区变钠质火山岩系地球化学研究: Ⅱ. Nd、Sr、Pb同位素特征与年代学[J]. 地球化学, 27(4): 361-366. doi: 10.3321/j.issn:0379-1726.1998.04.010
    池际尚. 1988. 中国东部新生代玄武岩及上地幔研究[M]. 武汉: 中国地质大学出版社.
    程彦博, 毛景文, 谢桂青, 等, 2008. 云南个旧老厂-卡房花岗岩体成因初探: 锆石U-Pb年代学和岩石地球化学约束[J]. 地质学报, 81(11): 1478-1493. doi: 10.3321/j.issn:0001-5717.2008.11.003
    邓贵安, 1998. 老厂花岗岩破碎带型锡矿床地质地球化学特征[J]. 矿产与地质, 12(4): 230-236. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD804.002.htm
    方维萱, 胡瑞忠, 谢桂青, 等, 2002. 云南哀牢山地区构造岩石地层单元及其构造演化[J]. 大地构造与成矿学, 26(1): 28-36. doi: 10.3969/j.issn.1001-1552.2002.01.006
    方维萱, 贾润幸, 2011. 云南个旧超大型锡铜矿区变碱性苦橄岩类特征与大陆动力学[J]. 大地构造与成矿学, 35(1): 137-148. doi: 10.3969/j.issn.1001-1552.2011.01.014
    方维萱, 张海, 贾润幸, 2011. 滇桂个旧-那坡三叠纪弧后裂谷盆地动力学与成矿序列[J]. 大地构造与成矿学, 35(4): 552-566. doi: 10.3969/j.issn.1001-1552.2011.04.009
    方维萱, 杨新雨, 郭茂华, 等, 2013. 云南白锡腊碱性钛铁质辉长岩类与铁氧化物铜金型矿床关系研究[J]. 大地构造与成矿学, 37(2): 242-261. doi: 10.3969/j.issn.1001-1552.2013.02.008
    方维萱, 杜玉龙, 李建旭, 等, 2018. 大比例尺构造岩相学填图技术与找矿预测[M]. 北京: 地质出版社: 1-377.
    冯佳睿, 毛景文, 裴荣富, 等, 2010. 云南瓦渣钨矿区老君山花岗岩体的SHRIMP锆石U-Pb定年、地球化学特征及成因探讨[J]. 岩石学报, 26(3): 845-857. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003017.htm
    高俊, 崔银亮, 2004. 云南龙脖河铜矿区东矿带成矿条件、控矿规律研究[J]. 地质与勘探, 40(5): 33-38. doi: 10.3969/j.issn.0495-5331.2004.05.007
    郭健, 2020. 目标地质体的研究确定与找矿实践[R]. 中国冶金地质总局矿产地质研究院.
    黑慧欣, 罗照华, VIKENTYEV I V, 等, 2015. 透岩浆流体作用与矿田构造[J]. 地质力学学报, 21(1): 1-12. doi: 10.3969/j.issn.1006-6616.2015.01.001
    侯增谦, 杨志明, 2009. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概念模型[J]. 地质学报, 83(12): 1779-1817. doi: 10.3321/j.issn:0001-5717.2009.12.002
    胡瑞忠, 毛景文, 范蔚茗, 等, 2010. 华南陆块陆内成矿作用的一些科学问题[J]. 地学前缘, 17(2): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002006.htm
    黎应书, 秦德先, 党玉涛, 等, 2006. 云南个旧锡矿的玄武岩成矿[J]. 吉林大学学报(地球科学版), 36(3): 326-335.
    李政林, 刘希军, 肖文交, 等, 2019. 桂西南凭祥火山岩年代学、地球化学及Hf同位素研究: 对古特提斯洋最晚北向俯冲事件的启示[J]. 地质力学学报, 25(5): 932-946. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190520&journal_id=dzlxxb
    刘德民, 郭宏杰, 张根袁, 等, 2019. 滇东南建水地区高镁火山岩包体的成因和构造背景[J]. 地球科学, 44(5): 1749-1760. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905025.htm
    刘汇川, 刘小平, 张永旺, 等, 2020. 印支运动启动的时间: 来自云南点苍山晚二叠世辉长岩和闪长岩的证据[J]. 大地构造与成矿学, 44(3): 527-542. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202003016.htm
    刘娇, 周洋, 郭宏杰, 等, 2016. 云南建水腊里河超基性岩地质特征及其构造意义[J]. 贵州地质, 33(3): 178-186. doi: 10.3969/j.issn.1000-5943.2016.03.004
    罗照华, 卢欣祥, 刘翠, 等, 2011. 岩浆热液成矿理论的失败: 原因和出路[J]. 吉林大学学报(地球科学版), 41(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201101002.htm
    罗照华, 苏尚国, 刘翠, 2014. 岩浆成矿系统的尺度效应[J]. 地球科学与环境学报, 36(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201401002.htm
    毛景文, 程彦博, 郭春丽, 等, 2008. 云南个旧锡矿田: 矿床模型及若干问题讨论[J]. 地质学报, 82(11): 1455-1467. doi: 10.3321/j.issn:0001-5717.2008.11.001
    毛景文, 周振华, 丰成友, 等, 2012. 初论中国三叠纪大规模成矿作用及其动力学背景[J]. 中国地质, 39(6): 1437-1471. doi: 10.3969/j.issn.1000-3657.2012.06.001
    皮桥辉, 胡瑞忠, 彭科强, 等, 2016. 云南富宁者桑金矿床与基性岩年代测定: 兼论滇黔桂地区卡林型金矿成矿构造背景[J]. 岩石学报, 32(11): 3331-3342. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201611008.htm
    钱志宽, 罗泰义, 黄智龙, 等, 2011. 云南个旧新山层状透辉石岩地质地球化学特征与成因探讨[J]. 矿物学报, 31(3): 338-352. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201103006.htm
    秦德先, 黎应书, 谈树成, 等, 2006. 云南个旧锡矿的成矿时代[J]. 地质科学, 41(1): 122-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200601010.htm
    尚志, 陈永清, 童祥, 等, 2021. 云南个旧卡房辉绿岩墙锆石U-Pb年龄、地球化学特征及其岩石圈伸展作用[J/OL]. 中国地质, (2020-12-09). https://kns.cnki.net/kcms/detail/11.1167.P.20201207.1620.004.html.
    沈思联, 李建平, 杨宝富, 2016. 个旧东区蚀变花岗岩型锡-铜多金属矿床地质地球化学特征与勘探[J]. 矿物学报, 36(4): 471-478. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201604004.htm
    谭洪旗, 刘玉平, 2017. 滇东南猛洞岩群斜长角闪岩成因及其构造意义[J]. 吉林大学学报(地球科学版), 47(6): 1763-1783. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201706014.htm
    王雅丽, 李磊, 1999. 个旧老厂细脉型锡矿床包裹体地球化学特征研究[J]. 云南地质, 18(1): 37-47. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD901.002.htm
    韦朝文, 皮桥辉, 胡瑞忠, 等, 2018. 云南富宁两期基性岩地球化学性质与金矿成矿[J]. 矿物学报, 38(5): 499-513. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201805005.htm
    徐文涛, 刘福来, 冀磊, 等, 2020. 哀牢山-大象山变质杂岩带中斜长角闪岩的地球化学、同位素年代学及其地质意义[J]. 岩石学报, 36(12): 3607-3630. doi: 10.18654/1000-0569/2020.12.04
    徐云端, 李玉新, 1997. 个旧地区发现一种富锡矿类型: 花岗岩锡矿体[J]. 矿产与地质, 11(2): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD702.004.htm
    许志琴, 王勤, 李忠海, 等, 2016. 印度-亚洲碰撞: 从挤压到走滑的构造转换[J]. 地质学报, 90(1): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201601001.htm
    杨宗喜, 毛景文, 陈懋弘, 等, 2009. 云南个旧老厂细脉带型锡矿白云母40Ar-39Ar年龄及其地质意义[J]. 矿床地质, 28(3): 336-344. doi: 10.3969/j.issn.0258-7106.2009.03.009
    翟裕生, 2007. 地球系统、成矿系统到勘查系统[J]. 地学前缘, 14(1): 172-181. doi: 10.3321/j.issn:1005-2321.2007.01.017
    翟裕生, 王建平, 彭润民, 等, 2009. 叠加成矿系统与多成因矿床研究[J]. 地学前缘, 16(6): 282-290. doi: 10.3321/j.issn:1005-2321.2009.06.030
    张宝林, 吕古贤, 苏捷, 等, 2015. 云南个旧锡多金属矿田构造岩相成矿规律与西区找矿研究[J]. 地学前缘, 22(4): 78-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201504010.htm
    张贵山, 方维萱, 彭仁, 等, 2019. 云南个旧三叠纪高钾质火山岩锆石U-Pb年代学、岩石成因及构造意义[J]. 大地构造与成矿学, 43(6): 1219-1235. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201906012.htm
    张国伟, 郭安林, 王岳军, 等, 2013. 中国华南大陆构造与问题[J]. 中国科学: 地球科学, 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm
    张欢, 童祥, 武俊德, 等, 2007. 个旧锡矿: 红海型热水沉积登陆的实例[J]. 矿物学报, 27(3-4): 335-341. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2007Z1014.htm
    张娟, 毛景文, 程彦博, 等, 2012. 个旧卡房层状铜矿床金云母和云英岩化白云母40Ar-39Ar同位素年龄及意义[J]. 矿床地质, 31(6): 1149-1162. doi: 10.3969/j.issn.0258-7106.2012.06.002
    张连昌, 董志国, 陈博, 等, 2021. 东天山重要成矿区带、成矿系统与成矿规律[J]. 地球科学与环境学报, 43(1): 12-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101005.htm
    张旗, 2012. 评流行的岩浆热液成矿理论[J]. 甘肃地质, 21(4): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201204002.htm
    张旗, 金惟俊, 李承东, 等, 2014. 岩浆热场: 它的基本特征及其与地热场的区别[J]. 岩石学报, 30(2): 341-349. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201402003.htm
    庄永秋, 王任重, 杨树培, 等, 1996. 云南个旧锡铜多金属矿床[M]. 北京: 地震出版社.
  • 加载中

Catalog

    Figures(6)

    Article Metrics

    Article views (971) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return