Volume 29 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
HU L J,WU X K,LE X W,et al.,2023. Dating the Deli Pb–Zn deposit, Xidamingshan mining district, South China: Implications for regional exploration[J]. Journal of Geomechanics,29(1):76−86 doi: 10.12090/j.issn.1006-6616.2022034
Citation: HU L J,WU X K,LE X W,et al.,2023. Dating the Deli Pb–Zn deposit, Xidamingshan mining district, South China: Implications for regional exploration[J]. Journal of Geomechanics,29(1):76−86 doi: 10.12090/j.issn.1006-6616.2022034

Dating the Deli Pb–Zn deposit, Xidamingshan mining district, South China: Implications for regional exploration

doi: 10.12090/j.issn.1006-6616.2022034
Funds:  This research is financially supported by the Project of the Deep Critical Mineral Exploration for Guangxi Talents(Grant No.2019-85), Research Fund of Chinese Academy of Geological Sciences (Grant DZLXJK202203), and the Geological Survey Program of the China Geological Survey (Grant DD20221600-3).
More Information
  • Received: 2022-03-18
  • Revised: 2022-06-15
  • Accepted: 2022-07-05
  • Available Online: 2022-08-11
  • The Youjiang basin is a diamond-shaped Indosinian foreland basin formed during the subduction and merging of the South China plate into the Indo-Chinese plate. A large number of Indo-Chinese tectonic traces have been preserved in the basin. However, little has been reported about the syn-tectonic magma and its related mineralization in the basin. Sphalerites from the newly discovered Deli Pb–Zn deposit in the Xidamingshan mining district at the southeastern margin of the Youjiang basin were sampled for the Rb–Sr isochron dating. We obtained the isochron age of 207.1 ± 0.6 Ma (MSWD = 1.5) with initial Sr isotopic composition of 0.728379 to 0.739226. The Sr isotopic compositions are distinct from those of the Late Cretaceous felsic intrusions and the Late Jurassic high-Mg andesite in or around the Xidamingshan district but similar to those of the Late Triassic granites in the Guangxi province. The results indicate that the ore-forming age of the Deli Pb–Zn deposit may be closely related to the concealed Triassic granite. The Si–Ca fracture zone between the Devonian and Cambrian is a favorable location to search for Pb–Zn deposits in the Xidamingshan mining district. This work proves the Triassic Pb–Zn mineralization has occurred in the Xidamingshan mining district and Late Cretaceous magmatic-hydrothermal Bi–W–Zn–Pb–Ag mineralization in the west of it. It provides new ideas and directions for future exploration in the Xidamingshan mining district.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • Bureau of Geology and Mineral Resources of Guangxi Zhuang Autonomous Region, 1985. Regional geological survey of Guangxi[M]. Beijing: Geological Publishing House: 1-853. (in Chinese)
    CHEN H, DENG Q H, 1997. Genesis of Guangxi Fenghuangshan silver deposit[J]. Guangxi Geology, 10(2): 37-44. (in Chinese with English abstract)
    CHEN M H, BAGAS L, LIAO X, et al. , 2019. Hydrothermal apatite SIMS Th-Pb dating: constraints on the timing of low-temperature hydrothermal Au deposits in Nibao, SWChina[J]. Lithos, 324-325: 418-428. doi: 10.1016/j.lithos.2018.11.018
    CHEN M H, MAO J W, LI C, et al. , 2015. Re–Osisochron ages for arsenopyritefrom Carlin-like gold deposits in the Yunnan–Guizhou–Guangxi “golden triangle”, southwestern China[J]. Ore Geology Reviews, 64: 316-327. doi: 10.1016/j.oregeorev.2014.07.019
    CUI B, ZHAI Y S, MENG Y F, et al. , 2000. Au-Ag ore-forming system in Dayaoshan-Xidamingshan, Guangxi, China[J]. Earth Science—Journal of China University of Geosciences, 25(4): 352-355, 396. (in Chinese with English abstract)
    FAURE M, LEPVRIER C, NGUYEN VV, et al. , 2014. The SouthChina block-Indochina collision: where, when, and how?[J]. Journal of Asian Earth Sciences, 79: 260-274. doi: 10.1016/j.jseaes.2013.09.022
    FAURE M, LIN W, CHU Y, et al. , 2016. Triassic tectonics of the southernmargin of the South China Block[J]. ComptesRendus Geoscience, 348(1): 5-14. doi: 10.1016/j.crte.2015.06.012
    FAURE M, NGUYEN VV, HOAI LTT, et al. , 2018. Early Paleozoic or Early-MiddleTriassic collision between the South China and Indochina Blocks: the controversyresolved? Structural insights from the Kon Tum massif (Central Vietnam)[J]. Journal of Asian Earth Sciences, 166: 162-180. doi: 10.1016/j.jseaes.2018.07.015
    FENG Y Y, FU W, FENG Z H, et al. , 2021. Petrogenesis and metallogenesis of an extraordinary deeply hidden granite pluton overlain by W-Zn-Pb-Ag-mineralized roof: example from Xidamingshan district, South China[J]. Ore Geology Reviews, 130: 103932. doi: 10.1016/j.oregeorev.2020.103932
    GAN C S, WANG Y J, BARRY TL, et al. , 2020. Late Jurassic high-Mgandesites in the Youjiang Basin and their significance for the southward continuationof the JiangnanOrogen, South China[J]. Gondwana Research, 77: 260-273. doi: 10.1016/j.gr.2019.06.018
    GAN C S, WANG Y J, ZHANG Y Z, et al. , 2022. Petrogenesis of Late Cretaceous granites and implications for W-Sn mineralization in the Youjiang Basin, South China[J]. Ore Geology Reviews, 144: 104846. doi: 10.1016/j.oregeorev.2022.104846
    GU X X, ZHANG Y M, LI B H, et al. , 2010. The coupling relationship between metallization and hydrocarbon accumulation in sedimentary basins[J]. Earth Science Frontiers, 17(2): 83-105. (in Chinese with English abstract)
    HOEFS J, 2015. Stable isotope geochemistry[M]. 7th ed. Cham: Springer International Publishing: 1-285.
    HSIEH PS, CHEN CH, YANG HJ, et al. , 2008. Petrogenesis of the NanlingMountains granites from South China: constraints from systematic apatitegeochemistry and whole-rock geochemical and Sr-Nd isotope compositions[J]. Journal of Asian Earth Sciences, 33(5-6): 428-451. doi: 10.1016/j.jseaes.2008.02.002
    LEACH D L, SANGSTER D F, KELLEY K D, et al. , 2005. Sediment-hosted lead-zinc deposits: a global perspective[M]//Economic geology: one hundredth anniversary volume. USA: Society of Economic Geologists: 561-608.
    LEACH D L, SONG Y C, HOU ZQ, 2017. The world-class Jinding Zn–Pb deposit: ore formation in an evaporite dome, Lanping Basin, Yunnan, China[J]. MineraliumDeposita, 52(3): 281-296.
    LEACH D L, TAYLOR R D, FEY D L, et al. , 2010. A deposit model for Mississippi valley-type lead–zinc ores[R]. Reston: U. S. Geological Survey: 1-52.
    LI J H, ZHAO G C, JOHNSTON S T, et al. , 2017. Permo-Triassic structural evolution of the Shiwandashan and Youjiang structural belts, South China[J]. Journal of structural Geology, 100: 24-44. doi: 10.1016/j.jsg.2017.05.004
    LI S Z, LI X Y, ZHAO S J, et al. , 2016. Global Early Paleozoic Orogens (III): Intracontinentalorogen in South China[J]. Journal of Jilin University(Earth Science Edition), 46(4): 1005-1025. (in Chinese with English abstract)
    LI S Z, CAO X Z, WANG GZ, et al. , 2019. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific plate[J]. Journal of Geomechanics, 25(5): 642-677. (in Chinese with English abstract)
    LI Y J, WEI J H, SANTOSH M, et al. , 2016. Geochronology and petrogenesis of Middle Permian S-type granitoid in southeastern Guangxi Province, South China: implications for closure of the eastern Paleo-Tethys[J]. Tectonophysics, 682: 1-16. doi: 10.1016/j.tecto.2016.05.048
    LI Z Q, DONG B L, LEI Y P, et al. , 1998. Lead isotope geochemistry of turbidite-type silver deposit at Fenghuangshan, Guangxi, China[J]. ActaMineralogicaSinica, 18(4): 473-482. (in Chinesewith English abstract)
    LIU W G, LI Z D, WEI S, et al. , 2019. Rapid separation and precise determination of strontium isotopic from geological samples with high rubidium/strontium ratios[J]. Chinese Journal of Analytical Chemistry, 47(7): 1054-1060. doi: 10.1016/S1872-2040(19)61172-2
    LIU W H, SPINKS S C, GLENN M, et al. , 2021. How carbonate dissolution facilitates sediment-hosted Zn-Pbmineralization[J]. Geology, 49(11): 1363-1368. doi: 10.1130/G49056.1
    NIE G J, YU H M, HE S, et al, 2020. Physical simulation analysis of the Cenozoic fault activities and structural deformation mechanism of the Youjiang area[J]. Journal of Geomechanics, 26(3): 316-328. (in Chinese with English abstract)
    PENG J T, HU R Z, JIANG G H, 2003. Samarium–Neodymium isotope system of fluorites from the Qinglong antimony deposit, Guizhou Province: constraints on the mineralizing age and ore-forming materials’ sources[J]. ActaPetrologicaSinica, 19(4): 785-791. (in Chinese with English abstract)
    PETKE T, DIAMOND L W, 1996. Rb-Sr dating of sphalerite based on fluid inclusion-host mineral isochrones: a clarification of why it works[J]. Economic Geology, 91(5): 951-956. doi: 10.2113/gsecongeo.91.5.951
    PI Q H, HU R Z, XIONG B, et al. , 2017. In situ SIMS U-Pb dating of hydrothermalrutile: reliable age for the Zhesang Carlin-type gold deposit in the golden triangleregion, SW China[J]. MineraliumDeposita, 52(8): 1179-1190.
    QI C S, DENG X G, LI W X, et al. , 2007. Origin of theDarongshan-Shiwandashan S-type granitoid belt from southeastern Guangxi: geochemicaland Sr-Nd-Hf isotopic constraints[J]. ActaPetrologicaSinica, 23(2): 403-412. (in Chinesewith English abstract)
    QIU L, YANG W X, YAN D P, et al. , 2019. Geochronology of early Mesozoic diabase units in southwestern China: Metallogenic and tectonic implications[J]. Geological Magazine, 156(7): 1141-1156. doi: 10.1017/S0016756818000493
    SU W C, HU R Z, XIA B, et al. , 2009. Calcite Sm–Ndisochron age of theShuiyindong Carlin-type gold deposit, Guizhou, China[J]. Chemical Geology, 258(3-4): 269-274. doi: 10.1016/j.chemgeo.2008.10.030
    SUN P C, LI C, ZHOU L M, et al. , 2021. Dating metallogenic age of JindingPb-Zn deposit in Yunnan: Evidence from Re-Os Isotope ofbitumen[J]. Earth Science, 46(12): 4247-4259. (in Chinese with English abstract)
    TANG Y W, HAN J J, LAN T G, et al. , 2022. Two reliable Calibration methods for accurate insitu U-Pb dating of Scheelite[J]. Journal of Analytical Atomic Spectrometry, 37(2): 358-368. doi: 10.1039/D1JA00387A
    WANG Q F, DENG J, LIU X F, et al. , 2010. Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China[J]. Journal of Asian Earth Sciences, 39(6): 701-712. doi: 10.1016/j.jseaes.2010.05.005
    WANG Q F, YANG L, XU X J, et al. , 2020a. Multi-stage tectonics and metallogeny associated with Phanerozoic evolution of the South China Block: a holistic perspective from the YoujiangBasin[J]. Earth-Science Reviews, 211: 103405. doi: 10.1016/j.earscirev.2020.103405
    WANG Y J, WANG Y, ZHANG Y Z, et al. , 2021. Triassic two-stage intra-continental orogensis of the South China Block, driven by Paleotethyan closure and interactions with adjoining blocks[J]. Journal of Asian Earth Sciences, 206: 104648. doi: 10.1016/j.jseaes.2020.104648
    WANG Y N, LI G J, WANG Q F, et al. , 2020b. Early Paleozoic granitoids from South China: implications for understanding the Wuyi-Yunkaiorogen[J]. International Geology Review, 62(2): 243-261. doi: 10.1080/00206814.2019.1600437
    WEI C S, LE X W, XIAO C H, et al. , 2015. Methods of structure and alteration survey and establishment of prediction model[R]. Beijing: Institute of Geomechanics, CAGS: 1-264. (in Chinese)
    WU S Y, HOU L, JOWITT S M, et al. , 2019. Geochronology, geochemistry and petrogenesis of Late Triassic dolerites associated with the Nibao gold deposit, Youjiang Basin, southwestern China: implications for post-collisional magmatism and its relationships with Carlin-like gold mineralization[J]. Ore Geology Reviews, 111: 102971. doi: 10.1016/j.oregeorev.2019.102971
    WU Y, ZHANG C Q, MAO J W, et al. , 2013. The relationship between oil-gas organic matter and MVT Mineralization: a case study of the Chipu Lead-zinc Deposit, Sichuan[J]. ActaGeoscientiaSinica, 34(4): 425-436. (in Chinese with English abstract)
    XIAO C H, 2018. Characteristics of ore-controlling structures and the dynamic setting of the Danchi Metallogenic Belt, South China[R]. Beijing: China University of Geosciences: 1-109. (in Chinese with English abstract)
    XIAO C H, LIU H, SHEN Y K, et al. , 2018a. Lead isotope geochemical characteristics of Xidamingshan ore concentration area on the southeastern margin of Youjiang fold belt, and their significance[J]. Mineral Deposits, 37(5): 1037-1051. (in Chinese with English abstract)
    XIAO C H, SHEN Y K, LIU H, et al. , 2018b. Oxygen isotopic compositions and geological significance of zircons from the Yanshanian felsic intrusions in the Xidamingshan cluster, southeastern margin of the Youjiang fold belt, South China: in situ SHRIMP analysis[J]. ActaPetrologicaSinica, 34(5): 1441-1452. (in Chinese with English abstract)
    XIAO C H, SHEN Y K, WEI C S, et al. , 2018c. LA-ICP-MS zircon U-Pb dating, Hf isotopic composition and Ce4+/Ce3+ characteristics of the Yanshanian acid magma in the Xidamingshan cluster, southeastern margin of the Youjiang fold belt, Guangxi[J]. Geoscience, 32(2): 289-304. (in Chinese with English abstract)
    YANG B, PENG S L, LI S R, et al. , 2007. Metallogenic series and metallogenic belt of nonferrous metals in Guangxi[J]. Mineral Resources and Geology, 21(1): 8-11. (in Chinese with English abstract)
    YANG W X, YAN D P, QIU L, et al. , 2021. Formation and forward propagation of the indosinian foreland fold-thrust belt and Nanpanjiang Foreland Basin in SW China[J]. Tectonics, 40(4): e2020TC006552.
    ZHANG D, LI F, HE X L, et al, 2021. Mesozoic tectonic deformation and its rock/ore-control mechanism in the important metallogenic belts in South China[J]. Journal of Geomechanics, 27(4): 497-528. (in Chinese with English abstract)
    ZHANG Y Q, DONG S W, 2019. East Asia multi-plate convergence in late Mesozoic and the development of continental tectonic systems[J]. Journal of Geomechanics, 25(5): 613-641. (in Chinese with English abstract)
    陈海, 邓琼慧, 1997. 广西凤凰山银矿床成因探讨[J]. 南方国土资源, 10(2): 37-44.
    崔彬, 翟裕生, 蒙义峰, 等, 2000. 广西大瑶山-西大明山金银成矿系统研究[J]. 地球科学-中国地质大学学报, 25(4): 352-355, 396.
    顾雪祥, 章永梅, 李葆华, 等, 2010. 沉积盆地中金属成矿与油气成藏的耦合关系[J]. 地学前缘, 17(2): 83-105.
    广西壮族自治区地质矿产局, 1985. 广西壮族自治区区域地质志[M]. 北京: 地质出版社: 1-853.
    李三忠, 曹现志, 王光增, 等, 2019. 太平洋板块中—新生代构造演化及板块重建[J]. 地质力学学报, 25(5): 642-677. doi: 10.12090/j.issn.1006-6616.2019.25.05.060
    李三忠, 李玺瑶, 赵淑娟, 等, 2016. 全球早古生代造山带(III): 华南陆内造山[J]. 吉林大学学报(地球科学版), 46(4): 1005-1025.
    李泽琴, 董宝林, 雷英凭, 等, 1998. 广西凤凰山浊积岩型银矿床铅同位素地球化学: 成矿物质来源[J]. 矿物学报, 18(4): 473-482. doi: 10.3321/j.issn:1000-4734.1998.04.014
    聂冠军, 于红梅, 何声, 等, 2020. 右江地区新生代断裂活动及构造变形机制的物理模拟分析[J]. 地质力学学报, 26(3): 316-328. doi: 10.12090/j.issn.1006-6616.2020.26.03.029
    彭建堂, 胡瑞忠, 蒋国豪, 2003. 贵州晴隆锑矿床中萤石的Sr同位素地球化学[J]. 高校地质学报, 9(2): 244-251. doi: 10.3969/j.issn.1006-7493.2003.02.010
    祁昌实, 邓希光, 李武显, 等, 2007. 桂东南大容山−十万大山S型花岗岩带的成因: 地球化学及Sr-Nd-Hf同位素制约[J]. 岩石学报, 23(2): 403-412. doi: 10.3969/j.issn.1000-0569.2007.02.019
    孙鹏程, 李超, 周利敏, 等, 2021. 云南金顶铅锌矿成矿时代厘定: 来自沥青Re-Os同位素证据[J]. 地球科学, 46(12): 4247-4259. doi: 10.3321/j.issn.1000-2383.2021.12.dqkx202112003
    韦昌山, 乐兴文, 肖昌浩, 等, 2015. 广西西大明山地区构造-蚀变调查方法总结及找矿预测地质模型构建项目报告[R]. 北京: 中国地质科学院地质力学研究所: 1-264.
    吴越, 张长青, 毛景文, 等, 2013. 油气有机质与MVT铅锌矿床的成矿: 以四川赤普铅锌矿为例[J]. 地球学报, 34(4): 425-436. doi: 10.3975/cagsb.2013.04.05
    肖昌浩, 2018. 华南丹池锡多金属多金属成矿带控矿构造特征和构造动力学背景[R]. 北京: 中国地质大学: 1-109.
    肖昌浩, 刘欢, 申玉科, 等, 2018a. 右江褶皱带东南缘西大明山矿集区铅同位素地球化学特征及其地质意义[J]. 矿床地质, 37(5): 1037-1051.
    肖昌浩, 申玉科, 刘欢, 等, 2018b. 右江褶皱带东南缘西大明山矿集区燕山期长英质岩浆锆石SHRIMP原位氧同位素组成与地质意义[J]. 岩石学报, 34(5): 1441-1452.
    肖昌浩, 申玉科, 韦昌山, 等, 2018c. 广西右江褶皱带东南缘西大明山矿集区燕山期酸性岩浆锆石U-Pb年龄、Hf同位素和Ce(IV)/Ce(III)特征[J]. 现代地质, 32(2): 289-304.
    杨斌, 彭省临, 李水如, 等, 2007. 广西有色金属成矿系列与成矿区带[J]. 矿产与地质, 21(1): 8-11. doi: 10.3969/j.issn.1001-5663.2007.01.002
    张达, 李芳, 贺晓龙, 等, 2021. 华南重要成矿区带中生代构造变形及其控岩控矿机理[J]. 地质力学学报, 27(4): 497-528 doi: 10.12090/j.issn.1006-6616.2021.27.04.045
    张岳桥, 董树文, 2019. 晚中生代东亚多板块汇聚与大陆构造体系的发展[J]. 地质力学学报, 25(5): 613-641. doi: 10.12090/j.issn.1006-6616.2019.25.05.059
  • 加载中

Catalog

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (424) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return