Citation: | YANG Y Z,REN J J,LI D C,2023. Quantitative staging of alluvial fan geomorphic surfaces in arid areas based on SAR imagery: A case study of the Shule River alluvial fan in the western desert region of the Hexi Corridor[J]. Journal of Geomechanics,29(6):842−855 doi: 10.12090/j.issn.1006-6616.2023080 |
[1] |
AUBERT M, BAGHDADI N, ZRIBI M, et al. , 2011. Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness, composition and soil crust[J]. Remote Sensing of Environment, 115(8): 1801-1810. doi: 10.1016/j.rse.2011.02.021
|
[2] |
AYARI E, KASSOUK Z, LILI-CHABAANE Z, et al. , 2021. Cereal crops soil parameters retrieval using L-band ALOS-2 and C-band sentinel-1 sensors[J]. Remote Sensing, 13(7): 1393. doi: 10.3390/rs13071393
|
[3] |
BEAUDOIN A, LE TOAN T, GWYN Q H J, 1990. SAR observations and modeling of the C-band backscatter variability due to multiscale geometry and soil moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 28(5): 886-895. doi: 10.1109/36.58978
|
[4] |
BLAIR T C, MCPHERSON J G, 1994. Alluvial fan processes and forms[M]//ABRAHAMS A D, PARSONS A J. Geomorphology of desert environments. Dordrecht: Springer: 354-402.
|
[5] |
BULL W B, 1977. The alluvial-fan environment[J]. Progress in Physical Geography: Earth and Environment, 1(2): 222-270. doi: 10.1177/030913337700100202
|
[6] |
BULL W B, 1991. Geomorphic responses to climatic change[M]. New York: Oxford University Press.
|
[7] |
COPPO P, LUZI G, SCHIAVON G, 1995. Understanding microwave surface backscattering of bare soil by comparing models and experimental data collected during two different airborne campaigns[C]//1995 International geoscience and remote sensing symposium, IGARSS'95. Quantitative remote sensing for science and applications. Firenze: IEEE: 1346-1348.
|
[8] |
D'ARCY M, MASON P J, RODA-BOLUDA D C, et al. , 2018. Alluvial fan surface ages recorded by Landsat-8 imagery in Owens Valley, California[J]. Remote Sensing of Environment, 216: 401-414. doi: 10.1016/j.rse.2018.07.013
|
[9] |
DE JEU R, OWE M, 2012. TMI/TRMM surface soil moisture (LPRM) L3 1 day 25 km x 25 km nighttime V001, Edited by Goddard Earth Sciences Data and Information Services Center (GES DISC) (Bill Teng), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC),doi: 10.5067/GWHRZEL8SA21.
|
[10] |
ESCORIHUELA M J, KERR Y H, DE ROSNAY P, et al. , 2007. A simple model of the bare soil microwave emission at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 45(7): 1978-1987. doi: 10.1109/TGRS.2007.894935
|
[11] |
EVANS D L, FARR T G, VAN ZYL J J, 1992. Estimates of surface roughness derived from synthetic aperture radar (SAR) data[J]. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 382-389. doi: 10.1109/36.134087
|
[12] |
FAN L, ATKINSON P M, 2018. A new multi-resolution based method for estimating local surface roughness from point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 144: 369-378. doi: 10.1016/j.isprsjprs.2018.08.003
|
[13] |
FRANKEL K L, DOLAN J F, 2007. Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data[J]. Journal of Geophysical Research: Earth Surface, 112(F2): F02025.
|
[14] |
FREEMAN A, 1992. SAR calibration: an overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 30(6): 1107-1121. doi: 10.1109/36.193786
|
[15] |
FUNG A K, LI Z, CHEN K S, 1992. Backscattering from a randomly rough dielectric surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 356-369. doi: 10.1109/36.134085
|
[16] |
GREELEY R, LANCASTER N, SULLIVAN R J, et al. , 1988. A relationship between radar backscatter and aerodynamic roughness: preliminary results[J]. Geophysical Research Letters, 15(6): 565-568. doi: 10.1029/GL015i006p00565
|
[17] |
GUO N, 2003. Vegetation index and its advances[J]. Arid Meteorology, 21(4): 71-75. (in Chinese with English abstract)
|
[18] |
GUO Q N, ZHOU Z F, WANG S, 2017. The source, flow rates, and hydrochemical evolution of groundwater in an alluvial fan of Qilian Mountain, northwest China[J]. Water, 9(12): 912. doi: 10.3390/w9120912
|
[19] |
GURALNIK B, MATMON A, AVNI Y, et al. , 2010. 10Be exposure ages of ancient desert pavements reveal Quaternary evolution of the Dead Sea drainage basin and rift margin tilting[J]. Earth and Planetary Science Letters, 290(1-2): 132-141. doi: 10.1016/j.jpgl.2009.12.012
|
[20] |
HAN L F, LIU J, YUAN Z D, et al. , 2019. Extracting features of alluvial fan and discussing landforms evolution based on high-resolution topography data: taking alluvial fan of Laohushan along Haiyuan fault zone as an instance[J]. Seismology and Geology, 41(2): 251-265. (in Chinese with English abstract)
|
[21] |
HETZ G, MUSHKIN A, BLUMBERG D G, et al. , 2016. Estimating the age of desert alluvial surfaces with spaceborne radar data[J]. Remote Sensing of Environment, 184: 288-301. doi: 10.1016/j.rse.2016.07.006
|
[22] |
HOLECZ F, DWYER E, MONACO S, et al. , 2000. An operational rice field mapping tool using spaceborne SAR data[C]//ERS-ENVISAT symposium. mat.
|
[23] |
HUANG F P, ZHANG H P, XIONG J G, et al. , 2021. Estimation of displacements along strike-slip fault on a million-year timescale: a case study of the AltynTagh fault system[J]. Journal of Geomechanics, 27(2): 208-217,doi: 10.12090/j.issn.1006-6616.2021.27.02.020. (in Chinese with English abstract)
|
[24] |
HUFFMAN G J, STOCKER E F, BOLVIN D T, et al. , 2019. GPM IMERG final precipitation L3 1 day 0.1 degree x 0.1 degree V06, Edited by Andrey Savtchenko, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), doi: 10.5067/GPM/IMERGDF/DAY/06.
|
[25] |
HUGGETT R J, 2016. Fundamentals of Geomorphology [M]. Routledge, London, New York.
|
[26] |
LI S, 2007. Soil moisture inversion model research of multi-band and multi-polarization SAR based on IEM[D]. Beijing: Chinese Academy of Agricultural Sciences. (in Chinese with English abstract)
|
[27] |
LIN G Q, GUO H D, ZHANG L, 2013. Study on roughness inversion of alluvial fan in arid areas based on SAR data[J]. Remote Sensing Technology and Application, 28(4): 659-665. (in Chinese with English abstract)
|
[28] |
LUBETKIN L K C, CLARK M M, 1988. Late Quaternary activity along the Lone Pine fault, eastern California[J]. GSA Bulletin, 100(5): 755-766. doi: 10.1130/0016-7606(1988)100<0755:LQAATL>2.3.CO;2
|
[29] |
MAO H L, ZHAO H, LU Y C, et al. , 2007. Pollen assemblages and environment evolution in Shule River alluvial fan oasis of Gansu[J]. Acta Geoscientia Sinica, 28(6): 528-534. (in Chinese with English abstract)
|
[30] |
MATHER P AND TSO B, 2016. Classification methods for remotely sensed data[M]. CRC press.
|
[31] |
MATMON A, SCHWARTZ D P, FINKEL R, et al. , 2005. Dating offset fans along the Mojave section of the San Andreas fault using cosmogenic 26Al and 10Be[J]. GSA Bulletin, 117(5-6): 795-807.
|
[32] |
MATTIA F, LE TOAN T, SOUYRIS J C, et al. , 1997. The effect of surface roughness on multifrequency polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 35(4): 954-966. doi: 10.1109/36.602537
|
[33] |
REGMI NR, MCDONALD E V, BACON S N, 2014. Mapping Quaternary alluvial fans in the southwestern United States based on multiparameter surface roughness of lidar topographic data [J]. Journal of Geophysical Research: Earth Surface, 119(1): 12—27. doi: 10.1002/2012JF002711
|
[34] |
ROBINSON GU N P, ALLRED B W, JONES M O, et al. , 2017. A dynamic Landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States[J]. Remote sensing, 9(8): 863. doi: 10.3390/rs9080863
|
[35] |
SADEH Y, COHEN H, MAMAN S, et al. , 2018. Evaluation of Manning’s n roughness coefficient in arid environments by using SAR backscatter[J]. Remote Sensing, 10(10): 1505. doi: 10.3390/rs10101505
|
[36] |
SHAO Y, LV Y, DONG Q, et al. , 2002. Study on soil microwave dielectric characteristic as salinity and water content[J]. Journal of Remote Sensing, 6(6): 416-423. (in Chinese with English abstract)
|
[37] |
SU Q, REN J J, LIANG O B, et al. , 2020. Quantitative mapping of the Moleqie River alluvial fan morphologic units in China based on ALOS PALSAR data[J]. Seismology and Geology, 42(1): 79-94. (in Chinese with English abstract)
|
[38] |
SU Q, REN J J, WANG X Y, et al. , 2023. A power-law relation of surface roughness and ages of alluvial fans in a hyperarid environment: a case study in the Dead Sea area[J]. Progress in Physical Geography: Earth and Environment, 47(3): 348-368. doi: 10.1177/03091333221118641
|
[39] |
SUN P, 2017. Modeling the water infiltration and evaporation in unsaturated zone of the extremely arid area[D]. Lanzhou: Lanzhou University. (in Chinese with English abstract)
|
[40] |
ULABY F T, BRADLEY G A, DOBSON M C, 1979. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture(PartⅡ): Vegetation-covered soil [J]. IEEE Transactions on Geoscience Electronics, 17(2): 33—40. doi: 10.1109/TGE.1979.294626
|
[41] |
WANG P, 2003. Development of the Shulehe alluvial-fan and its response to tectonic activity in Gansu Province, China: characteristics of neotectonic activity of the East end of the Altyn Tagh fault[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)
|
[42] |
WANG P, LU Y C, DING G Y, et al. , 2004. Response of the development of the shule river alluvial fan to tectonic activity[J]. Quaternary Sciences, 24(1): 74-81. (in Chinese with English abstract)
|
[43] |
WU J, YANG Q K, LI Y R, 2018. Partitioning of terrain features based on roughness[J]. Remote Sensing, 10(12): 1985. doi: 10.3390/rs10121985
|
[44] |
XU X W, TAPPONNIER P, VAN DER WOERD J, et al. , 2003. Late Quaternary sinistral slip rate along the Altyn Tagh fault and its structural transformation model [J]. Science in China Series D 33(10): 967-974. (in Chinese with English abstract)
|
[45] |
YANG X, 2008. An elementary introduction to supervised and unsupervised classification of remote sensing image[J]. Acta Geologica Sichuan, 28(3): 251-254. (in Chinese with English abstract)
|
[46] |
YUN L, ZHANG J, WANG J, et al. , 2021. Discovery of active faults in the southern Beishan area, NW China: implications for regional tectonics[J]. Journal of Geomechanics, 27(2): 195-207,doi: 10.12090/j.issn.1006-6616.2021.27.02.019. (in Chinese with English abstract)
|
[47] |
ZELENIN E, BACHMANOV D, GARIPOVA S, et al. , 2022. The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset[J]. Earth System Science Data, 14(10): 4489-4503. doi: 10.5194/essd-14-4489-2022
|
[48] |
ZHANG L, GUO H D, 2013. The temporal-spatial distribution of Shule river alluvial fan units in China based on SAR data and OSL dating[J]. Remote Sensing, 5(12): 6997-7016. doi: 10.3390/rs5126997
|
[49] |
ZHENG R Z, 2005. Tectonic uplift and deformation mechanism of the Altun structural system since the middle-late period of late Pleistocene time[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)
|
[50] |
ZRIBI M, BAGHDADI N, HOLAH N, et al. , 2005. Evaluation of a rough soil surface description with ASAR-ENVISAT radar data[J]. Remote Sensing of Environment, 95(1): 67-76. doi: 10.1016/j.rse.2004.11.014
|
[51] |
ZHOU Z H, 2021. Machine learning[M]. Springer Nature.
|
[52] |
郭铌, 2003. 植被指数及其研究进展[J]. 干旱气象, 21(4): 71-75.
|
[53] |
韩龙飞, 刘静, 袁兆德, 等, 2019. 基于高分辨率地形数据的冲洪积扇特征提取与演化模式讨论: 以海原断裂带老虎山地区冲洪积扇为例[J]. 地震地质, 41(2): 251-265. doi: 10.3969/j.issn.0253-4967.2019.02.001
|
[54] |
黄飞鹏, 张会平, 熊建国, 等, 2021. 走滑断裂百万年时间尺度位移量估计及其在阿尔金断裂系中的应用[J]. 地质力学学报, 27(2): 208-217,doi: 10.12090/j.issn.1006-6616.2021.27.02.020.
|
[55] |
李森, 2007. 基于IEM的多波段、多极化SAR土壤水分反演算法研究[D]. 北京: 中国农业科学院.
|
[56] |
林国青, 郭华东, 张露, 2013. 基于SAR数据的干旱区冲积扇地表粗糙度反演[J]. 遥感技术与应用, 28(4): 659-665. doi: 10.11873/j.issn.1004-0323.2013.4.659
|
[57] |
毛洪亮, 赵华, 卢演俦, 等, 2007. 甘肃疏勒河冲积扇绿洲全新世孢粉组合和环境演化[J]. 地球学报, 28(6): 528-534. doi: 10.3321/j.issn:1006-3021.2007.06.003
|
[58] |
邵芸, 吕远, 董庆, 等, 2002. 含水含盐土壤的微波介电特性分析研究[J]. 遥感学报, 6(6): 416-423. doi: 10.11834/jrs.20020604
|
[59] |
苏强, 任俊杰, 梁欧博, 等, 2020. 基于ALOS PALSAR影像的莫勒切河洪积扇地貌面定量分期[J]. 地震地质, 42(1): 79-94. doi: 10.3969/j.issn.0253-4967.2020.01.006
|
[60] |
孙朋, 2017. 极端干旱区沙漠包气带降水入渗与蒸发规律模拟研究[D]. 兰州: 兰州大学.
|
[61] |
王萍, 2003. 甘肃疏勒河冲积扇发育对构造活动的响应: 兼论阿尔金断裂东端新构造活动特征[D]. 北京: 中国地震局地质研究所.
|
[62] |
王萍, 卢演俦, 丁国瑜, 等, 2004. 甘肃疏勒河冲积扇发育特征及其对构造活动的响应[J]. 第四纪研究, 24(1): 74-81. doi: 10.3321/j.issn:1001-7410.2004.01.009
|
[63] |
徐锡伟, TAPPONNIER P, VAN DER WOERD J, 等, 2003. 阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论[J]. 中国科学(D辑), 33(10): 967-974. doi: 10.3321/j.issn:1006-9267.2003.10.007
|
[64] |
杨鑫, 2008. 浅谈遥感图像监督分类与非监督分类[J]. 四川地质学报, 28(3): 251-254. doi: 10.3969/j.issn.1006-0995.2008.03.020
|
[65] |
云龙, 张进, 王驹, 等, 2021. 甘肃北山南部活动断裂的发现及其区域构造意义[J]. 地质力学学报, 27(2): 195-207,doi: 10.12090/j.issn.1006-6616.2021.27.02.019.
|
[66] |
郑荣章, 2005. 阿尔金构造系晚更新世中晚期以来的构造隆升及其变形机制[D]. 北京: 中国地震局地质研究所.
|