| Citation: | WANG H Y,ZHONG F J,PAN J Y,et al.,2025. Genesis of the gneissic biotite granite in Lanhe, northern Guangdong: Constraints from zircon U–Pb geochronology, Hf isotopes, and geochemistry[J]. Journal of Geomechanics,31(3):539−556 doi: 10.12090/j.issn.1006-6616.2024137 |
| [1] |
ALTHERR R, HOLL A, HEGNER E, et al., 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 50(1-3): 51-73. doi: 10.1016/S0024-4937(99)00052-3
|
| [2] |
BATCHELOR R A, BOWDEN P, 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 48(1-4): 43-55.
|
| [3] |
BOUVIER A, VERVOORT J D, PATCHETT P J, 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets[J]. Earth and Planetary Science Letters, 273(1-2): 48-57. doi: 10.1016/j.jpgl.2008.06.010
|
| [4] |
CAI D W, TANG Y, ZHANG H, et al., 2017. Petrogenesis and tectonic setting of the Devonian Xiqin A-type granite in the northeastern Cathaysia Block, SE China[J]. Journal of Asian Earth Sciences, 141: 43-58.
|
| [5] |
CAWOOD P A, ZHAO G C, YAO J L, et al., 2018. Reconstructing South China in Phanerozoic and Precambrian supercontinents[J]. Earth-Science Reviews, 186: 173-194. doi: 10.1016/j.earscirev.2017.06.001
|
| [6] |
CHAPPELL B W, WHITE A J R, 1974. Two contrasting granite types[J]. Pacific Geology, 8: 173-174.
|
| [7] |
CHAPPELL B W, WHITE A J R, 2001. Two contrasting granite types: 25 years later[J]. Australian Journal of Earth Sciences, 48(4): 489-499.
|
| [8] |
CHARVET J, SHU L S, FAURE M, et al., 2010. Structural development of the Lower Paleozoic belt of South China: genesis of an intracontinental orogen[J]. Journal of Asian Earth Sciences, 39(4): 309-330.
|
| [9] |
CHEN B L, GAO Y, WANG Y, et al., 2024. Denudation and preservation of the Changjiang uranium ore field in North Guangdong, China: revealed by apatite fission track thermochronology[J]. Geotectonica et Metallogenia, 48(5): 911-927. (in Chinese with English abstract
|
| [10] |
CHEN B L, PEI Y R, 2025. Analysis of ore-controlling structure of Lujing uranium ore field in Hunan-Jiangxi border[J]. Acta Geologica Sinica, 1-25. (in Chinese with English abstract
|
| [11] |
COLEMAN R G, PETERMAN Z E, 1975. Oceanic plagiogranite[J]. Journal of Geophysical Research, 80(8): 1099-1108.
|
| [12] |
DENG F L, 1987. Isotopic geochronology of the southern Zhuguangshan granite batholith[J]. Geochimica, 16(2): 141-152. (in Chinese with English abstract
|
| [13] |
DENG P, REN J S, LING H F, et al., 2011. Yanshanian granite batholiths of southern Zhuguang mountian: SHRIMP zircon U-Pb dating and tectonic implications[J]. Geological Review, 57(6): 881-888. (in Chinese with English abstract
|
| [14] |
DENG P, REN J S, LING H F, et al., 2012. SHRIMP zircon U-Pb ages and tectonic implications for Indosinian granitoids of southern Zhuguangshan granitic composite, South China[J]. Chinese Science Bulletin, 57(13): 1542-1552. doi: 10.1007/s11434-011-4951-8
|
| [15] |
DOUCE A E P, HARRIS N, 1998. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 39(4): 689-710. doi: 10.1093/petroj/39.4.689
|
| [16] |
FENG S J, ZHAO K D, LING H F, et al., 2014. Geochronology, elemental and Nd–Hf isotopic geochemistry of Devonian A-type granites in central Jiangxi, South China: Constraints on petrogenesis and post-collisional extension of the Wuyi–Yunkai orogeny[J]. Lithos, 206-207: 1-18.
|
| [17] |
GAO S, LUO T C, ZHANG B R, et al., 1999. Structure and composition of the continental crust in East China[J]. Science in China Series D: Earth Sciences, 42(2): 129-140. doi: 10.1007/BF02878511
|
| [18] |
GRIFFIN W L, WANG X, JACKSON S E, et al., 2002. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61(3-4): 237-269.
|
| [19] |
GUAN Y L, YUAN C, SUN M, et al., 2014. I-type granitoids in the eastern Yangtze Block: implications for the Early Paleozoic intracontinental orogeny in South China[J]. Lithos, 206-207: 34-51.
|
| [20] |
GUO C L, LIU Z K, 2021. Caledonian granites in South China: the geological and geochemical characteristics on their petrogenesis and mineralization[J]. Journal of Earth Sciences and Environment, 43(6): 927-961. (in Chinese with English abstract
|
| [21] |
HARRIS N B W, PEARCE J A, TINDLE A G, 1986. Geochemical characteristics of collision zone magmatism[J]. Geological Society, London, Special Publications, 19(1): 67-81.
|
| [22] |
HU R Z, BI X W, SU W C, et al., 2004. The relationship between uranium metallogenesis and crustal extension during the Cretaceous-Tertiary in South China[J]. Earth Science Frontiers, 11(1): 153-160 (in Chinese with English abstract).
|
| [23] |
HU R Z, BI X W, ZHOU M F, et al., 2008. Uranium metallogenesis in South China and its relationship to crustal extension during the cretaceous to tertiary[J]. Economic Geology, 103(3): 583-598.
|
| [24] |
HU R Z, LUO J C, CHEN Y W, et al., 2019. Several progresses in the study of uranium deposits in South China[J]. Acta Petrologica Sinica, 35(9): 2625-2636. (in Chinese with English abstract).
|
| [25] |
HUA R M, ZHANG W L, CHEN P R, et al., 2013. Relationship between Caledonian granitoids and large-scale mineralization in South China[J]. Geological Journal of China Universities, 19(1): 1-11. (in Chinese with English abstract
|
| [26] |
HUANG G L, CAO H J, LING H F, et al., 2012. Zircon SHRIMP U-Pb age, geochemistry and genesis of the Youdong granite in northern Guangdong[J]. Acta Geologica Sinica, 86(4): 577-586. (in Chinese with English abstract
|
| [27] |
HUANG G L, LIU X Y, SUN L Q, et al., 2014. Zircon U-Pb dating, geochemical characteristic and genesis of the Changjiang granite in northern Guangdong[J]. Acta Geologica Sinica, 88(5): 836-849. (in Chinese with English abstract
|
| [28] |
HUANG X L, YU Y, LI J, et al., 2013. Geochronology and petrogenesis of the early Paleozoic I-type granite in the Taishan area, South China: middle-lower crustal melting during orogenic collapse[J]. Lithos, 177: 268-284. doi: 10.1016/j.lithos.2013.07.002
|
| [29] |
Institute of Geochemistry, Chinese Academy of Sciences, Isotope Geochronology Laboratory, 1972. Study on isotopic ages of granites in the Nanling Mountains and adjacent regions[J]. Geochemistry, 1(2): 119-134.
|
| [30] |
JENSEN B B, 1973. Patterns of trace element partitioning[J]. Geochimica et Cosmochimica Acta, 37(10): 2227-2242. doi: 10.1016/0016-7037(73)90101-4
|
| [31] |
KONG H, LI H, WU Q H, et al., 2018. Co-development of Jurassic I-type and A-type granites in southern Hunan, South China: Dual control by plate subduction and intraplate mantle upwelling[J]. Geochemistry, 78(4): 500-520. doi: 10.1016/j.chemer.2018.08.002
|
| [32] |
LI F R, PAN J Y, ZHONG F J, et al. , 2025. Petrogenesis and uranium mineralization potential of granites of the Xiaoshan deposit in the Lujing uranium ore field, Jiangxi province[J]. Geoscience, 1-29. (in Chinese with English abstract
|
| [33] |
LI L M, LIN S F, XING G F, et al., 2022. Identification of ca. 520 Ma mid-ocean-ridge-type Ophiolite suite in the inner Cathaysia block, South China: evidence from shearing-type oceanic Plagiogranite[J]. GSA Bulletin, 134(7-8): 1701-1720. doi: 10.1130/B36088.1
|
| [34] |
LI X H, 1993. On the genesis of caledonian granitoid rocks at Wanyangshan and Zhuguangshan, Southeast China: evidence from trace elements and rare-earth elements geochemistry[J]. Geochimica, 22(1): 35-44. (in Chinese with English abstract
|
| [35] |
LI X H, HU R Z, RAO B, 1997. Geochronology and geochemistry of cretaceous mafic dikes from northern Guangdong, se China[J]. Geochimica, 26(2): 14-31. (in Chinese with English abstract
|
| [36] |
LI X H, LI W X, LI Z X, et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174(1-2): 117-128. doi: 10.1016/j.precamres.2009.07.004
|
| [37] |
LI X H, LI Z X, LI W X, 2014. Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia block, South China: a synthesis[J]. Gondwana Research, 25(3): 1202-1215. doi: 10.1016/j.gr.2014.01.003
|
| [38] |
LI Z X, LI X H, WARTHO J A, et al., 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: new age constraints and pressure–temperature conditions[J]. GSA Bulletin, 122(5-6): 772-793. doi: 10.1130/B30021.1
|
| [39] |
LIN S F, XING G F, DAVIS D W, et al., 2018. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China[J]. Geology, 46(4): 319-322. doi: 10.1130/G39806.1
|
| [40] |
LIU M H, SHI Y, TANG Y L, et al., 2021. Petrogenesis and tectonic significance of Caledonian I-type Granitoids in southeast Guangxi, South China[J]. Earth Science, 46(11): 3965-3992. (in Chinese with English abstract
|
| [41] |
LIU S F, PENG S B, KUSKY T, et al., 2018. Origin and tectonic implications of an early Paleozoic (460-440Ma) subduction-accretion shear zone in the northwestern Yunkai Domain, South China[J]. Lithos, 322: 104-128. doi: 10.1016/j.lithos.2018.10.006
|
| [42] |
LIU Y D, SU X L, CHENG H Y, et al., 2022. Geochronological and geochemical characteristics of the Caledonian Longquan pluton in southern Zhejiang, and their geological significance[J]. Journal of Geomechanics, 28(2): 237-256. (in Chinese with English abstract
|
| [43] |
LOISELLE M C, WONES D R, 1979. Characteristics of anorogenic granites[J]. Geological society of America, Abstracts with Programs, 11: 468.
|
| [44] |
LUDWIG K R, 2003. ISOPLOT 3.00: a geochronological toolkit for Microsoft excel[M]. Berkeley: Berkeley Geochronology Center: 1-70.
|
| [45] |
MANIAR P D, PICCOLI P M, 1989. Tectonic discrimination of granitoids[J]. GSA Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
|
| [46] |
MIDDLEMOST E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9
|
| [47] |
NARDI L V S, FORMOSO M L L, MÜLLER I F, et al., 2013. Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: Uses for provenance and mineral exploration purposes[J]. Chemical Geology, 335: 1-7. doi: 10.1016/j.chemgeo.2012.10.043
|
| [48] |
PEARCE J A, HARRIS N B W, TINDLE A G, 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
|
| [49] |
PECCERILLO A, TAYLOR S R, 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81. doi: 10.1007/BF00384745
|
| [50] |
PENG S B, JIN Z M, LIU Y H, et al., 2006. Petrochemistry, chronology and tectonic setting of strong peraluminous anatectic granitoids in Yunkai orogenic belt, western Guangdong province, China[J]. Earth Science—Journal of China University of Geosciences, 31(1): 110-120. (in Chinese with English abstract
|
| [51] |
PENG S B, LIU S F, LIN M S, et al., 2016a. Early Paleozoic subduction in Cathaysia (I): new evidence from Nuodong ophiolite[J]. Earth Science, 41(5): 765-778. (in Chinese with English abstract
|
| [52] |
PENG S B, LIU S F, LIN M S, et al., 2016b. Early Paleozoic subduction in Cathaysia (Ⅱ): new evidence from the Dashuang high Magnesian-Magnesian andesite[J]. Earth Science, 41(6): 931-947. (in Chinese with English abstract
|
| [53] |
PLANK T, LANGMUIR C H, 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 145(3-4): 325-394. doi: 10.1016/S0009-2541(97)00150-2
|
| [54] |
QIU X F, ZHAO X M, YANG H M, et al., 2018. Petrogenesis of the Early Palaeozoic granitoids from the Yunkai massif, South China block: implications for a tectonic transition from compression to extension during the Caledonian orogenic event[J]. Geological Magazine, 155(8): 1776-1792. doi: 10.1017/S0016756817000796
|
| [55] |
SHU L S, 2006. Predevonian tectonic evolution of South China: from Cathaysian block to Caledonian period folded orogenic belt[J]. Geological Journal of China Universities, 12(4): 418-431. (in Chinese with English abstract
|
| [56] |
SHU L S, FAURE M, JIANG S Y, et al., 2006. SHRIMP zircon U-Pb age, litho- and biostratigraphic analyses of the Huaiyu domain in South China-Evidence for a Neoproterozoic orogen, not late Paleozoic-early Mesozoic collision[J]. Episodes, 29(4): 244-252. doi: 10.18814/epiiugs/2006/v29i4/002
|
| [57] |
SHU L S, FAURE M, YU J H, et al., 2011. Geochronological and geochemical features of the Cathaysia block (South China): new evidence for the Neoproterozoic breakup of Rodinia[J]. Precambrian Research, 187(3-4): 263-276. doi: 10.1016/j.precamres.2011.03.003
|
| [58] |
SHU L S, 2012. An analysis of principal features of tectonic evolution in South China block[J]. Geological Bulletin of China, 31(7): 1035-1053. (in Chinese with English abstract
|
| [59] |
SHU L S, JAHN B M, CHARVET J, et al., 2014. Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia Block (South China): Evidence from stratigraphic, structural, geochemical and geochronological investigations[J]. American Journal of Science, 314(1): 154-186. doi: 10.2475/01.2014.05
|
| [60] |
SHU L S, WANG B, CAWOOD P A, et al., 2015. Early Paleozoic and early Mesozoic intraplate tectonic and magmatic events in the Cathaysia block, South China[J]. Tectonics, 34(8): 1600-1621. doi: 10.1002/2015TC003835
|
| [61] |
SHU L S, SONG M J, YAO J L, 2018. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China: COMMENT[J]. Geology, 46(6): e445. doi: 10.1130/G40213C.1
|
| [62] |
SHU L S, CHEN X Y, LOU F S, 2020. Pre-Jurassic tectonics of the South China[J]. Acta Geologica Sinica, 94(2): 333-360. (in Chinese with English abstract
|
| [63] |
SLÁMA J, KOŠLER J, CONDON D J, et al., 2008. Plešovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005
|
| [64] |
SÖDERLUND J, 2004. Building theories of project management: past research, questions for the future[J]. International Journal of Project Management, 22(3): 183-191. doi: 10.1016/S0263-7863(03)00070-X
|
| [65] |
SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
|
| [66] |
SUN T, 2006. A new map showing the distribution of granites in South China and its explanatory notes[J]. Geological Bulletin of China, 25(3): 332-335. (in Chinese with English abstract
|
| [67] |
SYLVESTER P J, 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3
|
| [68] |
TAYLOR S R, MCLENNAN S M, 1985. The continental crust: its composition and evolution[M]. Oxford: Blackwell Scientific Publications: 312.
|
| [69] |
WANG L J, ZHANG K X, LIN S F, et al., 2022. Origin and age of the Shenshan tectonic mélange in the Jiangshan-Shaoxing-Pingxiang fault and late early Paleozoic juxtaposition of the Yangtze block and the West Cathaysia Terrane, South China[J]. GSA Bulletin, 134(1-2): 113-129. doi: 10.1130/B35963.1
|
| [70] |
WANG L J, LIN S F, XIAO W J, 2023. Yangtze and Cathaysia blocks of South China: their separate positions in Gondwana until early Paleozoic juxtaposition[J]. Geology, 51(8): 723-727.
|
| [71] |
WANG L J, LIN S F, XIAO W J, et al., 2024. Identifying and characterizing missing source Orogens for Syn-Orogenic basins based on detrital accessory mineral U-Pb geochronology and trace element geochemistry[J]. Geology, 52(8): 577-582. doi: 10.1130/G52212.1
|
| [72] |
WANG L K, ZHANG Y Q, LIU S X, 1975. Multiple emplacements and some geochemical characteristics of the Zhuguangshan granitic batholith, Southern China[J]. Geochimica, 4(3): 189-201. (in Chinese with English abstract
|
| [73] |
WANG L L, 2015. Geochemistry and petrogenesis of early Paleozoic-Mesozoic granites in Ganzhou, Jiangxi Province, South China block[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract
|
| [74] |
WANG X L, ZHOU J C, GRIFIIN W L, et al., 2014. Geochemical zonation across a Neoproterozoic orogenic belt: isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China[J]. Precambrian Research, 242: 154-171. doi: 10.1016/j.precamres.2013.12.023
|
| [75] |
WANG Y J, ZHANG A M, FAN W M, et al., 2011. Kwangsian crustal anatexis within the eastern South China Block: geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai domains[J]. Lithos, 127(1-2): 239-260. doi: 10.1016/j.lithos.2011.07.027
|
| [76] |
WANG Y J, FAN W M, ZHANG G W, et al., 2013. Phanerozoic tectonics of the South China block: key observations and controversies[J]. Gondwana Research, 23(4): 1273-1305. doi: 10.1016/j.gr.2012.02.019
|
| [77] |
WATSON E B, HARRISON T M, 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 64(2): 295-304. doi: 10.1016/0012-821X(83)90211-X
|
| [78] |
WHALEN J B, CURRIE K L, CHAPPELL B W, 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202
|
| [79] |
WIEDENBECK MAPC, ALLÉ P, CORFU F, et al., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x
|
| [80] |
WU F Y, LI X H, YANG J H, et al., 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6): 1217-1238. (in Chinese with English abstract
|
| [81] |
WU Y B, ZHENG Y F, 2004. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(15): 1554-1569. doi: 10.1007/BF03184122
|
| [82] |
XIA Y, XU X S, NIU Y L, et al., 2018. Neoproterozoic amalgamation between Yangtze and Cathaysia blocks: the magmatism in various tectonic settings and continent-arc-continent collision[J]. Precambrian Research, 309: 56-87. doi: 10.1016/j.precamres.2017.02.020
|
| [83] |
XIN Y J, LI J H, RATSCHBACHER L, et al., 2020. Early Devonian (415-400 Ma) a-type granitoids and diabases in the Wuyishan, eastern Cathaysia: a signal of crustal extension coeval with the separation of South China from Gondwana[J]. GSA Bulletin, 132(11-12): 2295-2317. doi: 10.1130/B35412.1
|
| [84] |
XU W J, XU X S, 2015. Early Paleozoic intracontinental felsic magmatism in the South China Block: petrogenesis and geodynamics[J]. Lithos, 234-235: 79-92. doi: 10.1016/j.lithos.2015.08.006
|
| [85] |
XU W J, 2017. The petrogenesis of early Paleozoic intracontinental magmatism in the Zhuguang-Wanyang Mts district, Cathaysia block[D]. Nanjing: Nanjing University. (in Chinese with English abstract
|
| [86] |
XU Y J, CAWOOD P A, DU Y S, 2016. Intraplate orogenesis in response to Gondwana Assembly: Kwangsian Orogeny, South China[J]. American Journal of Science, 316(4): 329-362. doi: 10.2475/04.2016.02
|
| [87] |
YU J H, O’REILLY S Y, WANG L J, et al., 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments[J]. Precambrian Research, 181(1-4): 97-114. doi: 10.1016/j.precamres.2010.05.016
|
| [88] |
ZHANG F F, WANG Y J, ZHANG A M, et al., 2012. Geochronological and geochemical constraints on the Petrogenesis of middle Paleozoic (Kwangsian) massive granites in the eastern South China block[J]. Lithos, 150: 188-208. doi: 10.1016/j.lithos.2012.03.011
|
| [89] |
ZHANG F R, SHU L S, WANG D Z, et al., 2009. Discussions on the tectonic setting of Caledonian granitoids in the eastern segment of South China[J]. Earth Science Frontiers, 16(1): 248-260. (in Chinese with English abstract
|
| [90] |
ZHANG F R, 2011. The geological and geochemical characteristics and its Petrogenesis for Caledonian granites in the central-southern JiangXi Province[D]. Nanjing: Nanjing University. (in Chinese with English abstract
|
| [91] |
ZHANG L, CHEN Z Y, LI S R, et al., 2017. Isotope geochronology, geochemistry, and mineral chemistry of the U-bearing and barren granites from the Zhuguangshan Complex, South China: implications for petrogenesis and Uranium Mineralization[J]. Ore Geology Reviews, 91: 1040-1065. doi: 10.1016/j.oregeorev.2017.07.017
|
| [92] |
ZHANG L, CHEN Z Y, LI X F, et al., 2018. Zircon U-Pb geochronology and geochemistry of granites in the Zhuguangshan Complex, South China: Implications for uranium mineralization[J]. Lithos, 308-309: 19-33. doi: 10.1016/j.lithos.2018.02.029
|
| [93] |
ZHANG L, CHEN Z Y, WANG F Y, et al.,2021. Apatite geochemistry as an indicator of petrogenesis and uranium fertility of granites: A case study from the Zhuguangshan batholith, South China[J]. Ore Geology Reviews,128:103886.
|
| [94] |
ZHANG Q, WANG Y L, JIN W J, et al., 2008. Criteria for the recognition of pre-, syn-and post-orogenic granitic rocks[J]. Geological Bulletin of China, 27(1): 1-18. (in Chinese with English abstract
|
| [95] |
ZHANG Q, JIANG Y H, WANG G C, et al., 2015. Origin of Silurian gabbros and I-type granites in Central Fujian, SE China: implications for the evolution of the Early Paleozoic orogen of South China[J]. Lithos, 216-217: 285-297. doi: 10.1016/j.lithos.2015.01.002
|
| [96] |
ZHANG S M, 2023. Characteristics, genesis and tectonic significance of the Zhuguangshan composite batholith, South China[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract
|
| [97] |
ZHAO L, GUO F, ZHANG X B, et al., 2021. Cretaceous crustal melting records of tectonic transition from subduction to slab rollback of the Paleo-Pacific Plate in SE China[J]. Lithos, 384-385: 105985. doi: 10.1016/j.lithos.2021.105985
|
| [98] |
ZHONG Y F, WANG L X, ZHAO J H, et al., 2016. Partial melting of an ancient sub-continental lithospheric mantle in the Early Paleozoic intracontinental regime and its contribution to petrogenesis of the coeval peraluminous granites in South China[J]. Lithos, 264: 224-238. doi: 10.1016/j.lithos.2016.08.026
|
| [99] |
ZHOU H B, PAN J Y, ZHONG F J, et al., 2018. Genesis of fine grained biotite granite in the Changjiang uranium ore field, northern Guangdong of China, and its relation with uranium mineralization[J]. Journal of Mineralogy and Petrology, 38(1): 10-19. (in Chinese with English abstract
|
| [100] |
ZHU B, 2010. The study of mantle liquid and uranium metallogenesis-take uranium ore field of south Zhuguang mountain as an example[D]. Chengdu: Chengdu University of Technology: 31-57. (in Chinese with English abstract
|
| [101] |
陈柏林,高允,王永,等,2024. 粤北长江铀矿田隆升剥露历史和矿床保存:来自磷灰石裂变径迹热年代学的启示[J]. 大地构造与成矿学,48(5):911-927.
|
| [102] |
陈柏林,裴英茹,2025. 湘赣边界鹿井铀矿田控矿构造解析[J/OL]. 地质学报,1-25.
|
| [103] |
邓访陵,1987. 诸广山花岗岩复式岩基南部的同位素地质年代学[J]. 地球化学,16(2):141-152. doi: 10.3321/j.issn:0379-1726.1987.02.005
|
| [104] |
邓平,任纪舜,凌洪飞,等,2011. 诸广山南体燕山期花岗岩的锆石SHRIMP U-Pb年龄及其构造意义[J]. 地质论评,57(6):881-888.
|
| [105] |
邓平,任纪舜,凌洪飞,等,2012. 诸广山南体印支期花岗岩的SHRIMP锆石U-Pb年龄及其构造意义[J]. 科学通报,57(14):1231-1241.
|
| [106] |
高山,骆庭川,张本仁,等,1999. 中国东部地壳的结构和组成[J]. 中国科学(D辑),29(3):204-213.
|
| [107] |
郭春丽,刘泽坤,2021. 华南地区加里东期花岗岩:成岩和成矿作用的地质与地球化学特征[J]. 地球科学与环境学报,43(6):927-961.
|
| [108] |
胡瑞忠,毕献武,苏文超,等,2004. 华南白垩—第三纪地壳拉张与铀成矿的关系[J]. 地学前缘,2004,11(1):153-160. doi: 10.3321/j.issn:1005-2321.2004.01.012
|
| [109] |
胡瑞忠,骆金诚,陈佑纬,等,2019. 华南铀矿床研究若干进展[J]. 岩石学报,35(9):2625-2636. doi: 10.18654/1000-0569/2019.09.01
|
| [110] |
华仁民,张文兰,陈培荣,等,2013. 初论华南加里东花岗岩与大规模成矿作用的关系[J]. 高校地质学,19(1):1-11.
|
| [111] |
黄国龙,曹豪杰,凌洪飞,等,2012. 粤北油洞岩体SHRIMP锆石U-Pb年龄、地球化学特征及其成因研究[J]. 地质学报,86(4):57-586.
|
| [112] |
黄国龙,刘鑫扬,孙立强,等,2014. 粤北长江岩体的锆石U-Pb定年、地球化学特征及其成因研究[J]. 地质学报,88(5):836-849.
|
| [113] |
李芙蓉,潘家永,钟福军,等,2025. 江西鹿井铀矿田小山矿床花岗岩成因及产铀潜力分析[J/OL]. 现代地质,1-29.
|
| [114] |
李献华,1993. 万洋山—诸广山加里东期花岗岩的形成机制:微量元素和稀土元素地球化学证据[J]. 地球化学,22(1):35-44. doi: 10.3321/j.issn:0379-1726.1993.01.005
|
| [115] |
李献华,胡瑞忠,饶冰,1997. 粤北白垩纪基性岩脉的年代学和地球化学[J]. 地球化学,26(2):14-31. doi: 10.3321/j.issn:0379-1726.1997.02.004
|
| [116] |
刘明辉,时毓,唐远兰,等,2021. 华南桂东南地区加里东期Ⅰ型花岗岩类的岩石成因及构造意义[J]. 地球科学,46(11):3965-3992.
|
| [117] |
刘远栋,苏小浪,程海艳,等,2022. 浙南加里东期龙泉岩体年代学、地球化学特征及其地质意义[J]. 地质力学学报,28(2):237-256.
|
| [118] |
彭松柏,金振民,刘云华,等,2006. 云开造山带强过铝深熔花岗岩地球化学、年代学及构造背景[J]. 地球科学——中国地质大学学报,31(1):110-120.
|
| [119] |
彭松柏,刘松峰,林木森,等,2016a. 华夏早古生代俯冲作用(Ⅰ):来自糯垌蛇绿岩的新证据[J]. 地球科学,41(5):765-778.
|
| [120] |
彭松柏,刘松峰,林木森,等,2016b. 华夏早古生代俯冲作用(Ⅱ):大爽高镁—镁质安山岩新证据[J]. 地球科学,41(6):931-947.
|
| [121] |
舒良树,2006. 华南前泥盆纪构造演化:从华夏地块到加里东期造山带[J]. 高校地质学报,12(4):418-431. doi: 10.3969/j.issn.1006-7493.2006.04.002
|
| [122] |
舒良树,2012. 华南构造演化的基本特征[J]. 地质通报,31(7):1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003
|
| [123] |
舒良树,陈祥云,楼法生,2020. 华南前侏罗纪构造[J]. 地质学报,94(2):333-360. doi: 10.3969/j.issn.0001-5717.2020.02.001
|
| [124] |
孙涛,2006. 新编华南花岗岩分布图及其说明[J]. 地质通报,25(3):332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002
|
| [125] |
王丽丽,2015. 华南赣州地区早古生代晚期—中生代花岗岩类地球化学与岩石成因[D]. 北京:中国地质大学(北京).
|
| [126] |
王联魁,张玉泉,刘师先,1975. 南岭诸广山花岗岩体的多次侵入活动和某些地球化学特征[J]. 地球化学,4(3):189-201. doi: 10.3321/j.issn:0379-1726.1975.03.004
|
| [127] |
吴福元,李献华,杨进辉,等,2007. 花岗岩成因研究的若干问题[J]. 岩石学报,23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
|
| [128] |
徐文景,2017. 华夏地块诸广-万洋山地区早古生代陆内岩浆作用与岩石成因[D]. 南京:南京大学.
|
| [129] |
张芳荣,舒良树,王德滋,等,2009. 华南东段加里东期花岗岩类形成构造背景探讨[J]. 地学前缘,16(1):248-260. doi: 10.3321/j.issn:1005-2321.2009.01.027
|
| [130] |
张芳荣,2011. 江西中—南部加里东期花岗岩地质地球化学特征及其成因[D]. 南京:南京大学.
|
| [131] |
张旗,王元龙,金惟俊,等,2008. 造山前、造山和造山后花岗岩的识别[J]. 地质通报,27(1):1-18. doi: 10.3969/j.issn.1671-2552.2008.01.001
|
| [132] |
张素梅,2023. 华南诸广山复式岩基的特征、成因及构造意义[D]. 北京:中国地质科学院.
|
| [133] |
中国科学院贵阳地球化学研究所同位素年龄实验室,湖北地质科学研究所同位素年龄实验室,1972. 南岭及其邻区花岗岩同位素年龄的研究[J]. 地球化学,1(2):119-134.
|
| [134] |
周航兵,潘家永,钟福军,等,2018. 粤北长江铀矿田细粒黑云母花岗岩的成因及其与铀成矿关系[J]. 矿物岩石,38(1):10-19.
|
| [135] |
朱捌,2010. 地幔流体与铀成矿作用研究:以诸广山南部铀矿田为例[D]. 成都:成都理工大学:31-57.
|