Citation: | GAO Yunpeng, LIU Jing, HAN Longfei, et al., 2023. Discussion on the magnitude or intensity limitation of paleoearthquake events. Journal of Geomechanics, 29 (5): 704-719. DOI: 10.12090/j.issn.1006-6616.2023034 |
The magnitude is an important parameter that characterizes the size of earthquakes. However, in paleoearthquake studies, it is difficult to precisely determine the rupture parameters closely related to seismic moment, making it challenging to directly calculate the magnitude of events. Researchers often assume that event sequences consist of characteristic earthquakes with similar magnitudes or use empirical relationships based on known magnitudes of historical earthquakes to estimate magnitudes. However, previous studies have shown that the assumption of characteristic earthquakes is overly simplistic, and magnitude estimation based on empirical relationships is limited by various errors. Therefore, there is a pressing need to explore new methods to improve the reliability of magnitude assessments for ancient earthquake events. In recent years, the successful application of three-dimensional combination trenches has demonstrated that these trenches contain rich deformation information about events, confirming the feasibility of assessing event sizes within trenches. Using the example of the Copper Mine trench on the Altyn Tagh fault, this article utilizes the deformation intensity revealed within the trench, including vertical displacement, deformation zone width, and total tensile strain, to estimate the scale of the event sequence. Data analysis results indicate that the deformation intensity parameters have a certain positive correlation with the relative magnitude, and there is also some correlation among these parameters. Therefore, the information on deformation intensity within the trench can be used to assess the relative magnitude of events, and fully exploring the deformation information within trenches can provide valuable insights and references for the reasonable evaluation of the magnitude of paleoearthquake events. This underscores the importance of considering such information in paleoearthquake research.
ADAMS J, 1981. Earthquake-dammed lakes in New Zealand[J]. Geology, 9(5): 215-219. doi: 10.1130/0091-7613(1981)9<215:ELINZ>2.0.CO;2
|
AGNEW D C, ALLEN C R, CLUFF L S, et al., 1988. Probabilities of large earthquakes occurring in California on the San Andreas fault[R]. Menlo Park: U.S. Geological Survey.
|
BAKUN W H, WENTWORTH C M, 1997. Estimating earthquake location and magnitude from seismic intensity data[J]. Bulletin of the Seismological Society of America, 87(6): 1502-1521. doi: 10.1785/BSSA0870061502
|
BERRYMAN K R, COCHRAN U A, CLARK K J, et al., 2012. Major earthquakes occur regularly on an isolated plate boundary fault[J]. Science, 336(6089): 1690-1693. doi: 10.1126/science.1218959
|
BONILLA M G, MARK R K, LIENKAEMPER J J, 1984. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement[J]. Bulletin of the Seismological Society of America, 74(6): 2379-2411.
|
BORMANN P, 2002. New manual of seismological observatory practice (NMSOP-2)[R]. Potsdam: Deutsches GeoForschungszentrum GFZ.
|
BURGETTE R J, HANSON A M, SCHARER K M, et al., 2020. Late Quaternary slip rate of the Central Sierra Madre fault, southern California: implications for slip partitioning and earthquake hazard[J]. Earth and Planetary Science Letters, 530: 115907. doi: 10.1016/j.epsl.2019.115907
|
CHEN L C, RAN Y K, WANG H, et al., 2013. Paleoseismology and kinematic characteristics of the Xiaoyudong rupture, a short but significant strange segment characterized by the May 12, 2008, Mw 7.9 earthquake in Sichuan, China[J]. Tectonophysics, 584: 91-101. doi: 10.1016/j.tecto.2012.08.030
|
CHEN Y T, LIU R F, 2004. Earthquake magnitude[J]. Seismological and Geomagnetic Observation and Research, 25(6): 1-12. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-3246.2004.06.001
|
DAËRON M, KLINGER Y, TAPPONNIER P, et al., 2007. 12, 000-year-long record of 10 to 13 paleoearthquakes on the Yammouneh fault, Levant fault system, Lebanon[J]. Bulletin of the seismological society of America, 97(3): 749-771. doi: 10.1785/0120060106
|
DUFFY B, QUIGLEY M, BARRELL D J A, et al., 2013. Fault kinematics and surface deformation across a releasing bend during the 2010 MW 7.1 Darfield, New Zealand, earthquake revealed by differential LiDAR and cadastral surveying[J]. GSA Bulletin, 125(3-4): 420-431. doi: 10.1130/B30753.1
|
ELLIOTT A J, OSKIN M E, LIU-ZENG J, et al., 2015. Rupture termination at restraining bends: the last great earthquake on the Altyn Tagh Fault[J]. Geophysical Research Letters, 42(7): 2164-2170. doi: 10.1002/2015GL063107
|
FUMAL T E, SCHWARTZ D P, PEZZOPANE S K, et al., 1993. A 100-year average recurrence interval for the san Andreas fault at Wrightwood, California[J]. Science, 259(5092): 199-203. doi: 10.1126/science.259.5092.199
|
GOLD R D, DUROSS C B, DELANO J E, et al., 2019. Four major Holocene earthquakes on the Reelfoot fault recorded by Sackungen in the New Madrid seismic zone, USA[J]. Journal of Geophysical Research: Solid Earth, 124(3): 3105-3126. doi: 10.1029/2018JB016806
|
GRANT L B, SIEH K, 1994. Paleoseismic evidence of clustered earthquakes on the San Andreas Fault in the Carrizo Plain, California[J]. Journal of Geophysical Research: Solid Earth, 99(B4): 6819-6841. doi: 10.1029/94JB00125
|
GREEN R A, OBERMEIER S F, OLSON S M, 2005. Engineering geologic and geotechnical analysis of paleoseismic shaking using liquefaction effects: field examples[J]. Engineering Geology, 76(3-4): 263-293. doi: 10.1016/j.enggeo.2004.07.026
|
GÜRPINAR A, 2005. The importance of paleoseismology in seismic hazard studies for critical facilities[J]. Tectonophysics, 408(1-4): 23-28. doi: 10.1016/j.tecto.2005.05.042
|
HADDAD D E, AKÇIZ S O, ARROWSMITH J R, et al., 2012. Applications of airborne and terrestrial laser scanning to paleoseismology[J]. Geosphere, 8(4): 771-786. doi: 10.1130/GES00701.1
|
HANKS T C, KANAMORI H, 1979. A moment magnitude scale[J]. Journal of Geophysical Research: Solid Earth, 84(B5): 2348-2350. doi: 10.1029/JB084iB05p02348
|
HANKS T C, BAKUN W H, 2002. A bilinear source-scaling model for M-log a observations of continental earthquakes[J]. Bulletin of the Seismological Society of America, 92(5): 1841-1846. doi: 10.1785/0120010148
|
HEATON T H, TAJIMA F, MORI A W, 1986. Estimating ground motions using recorded accelerograms[J]. Surveys in Geophysics, 8(1): 25-83. doi: 10.1007/BF01904051
|
HOLZER T L, GALLOWAY D L, 2005. Impacts of land subsidence caused by withdrawal of underground fluids in the United States[M]//EHLEN J, HANEBERG W C, LARSON R A. Humans as geologic agents. Boulder: Geological Society of America, 87-99.
|
JIA J P, 2012. Statistics[M]. 5th ed. Beijing: China Renmin University Press. (in Chinese)
|
KANAMORI H, 1977. The energy release in great earthquakes[J]. Journal of Geophysical Research, 82(20): 2981-2987. doi: 10.1029/JB082i020p02981
|
KEEFER D K, 1984. Landslides caused by earthquakes[J]. GSA Bulletin, 95(4): 406-421. doi: 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
|
KHROMOVSKIKH V S, 1989. Determination of magnitudes of ancient earthquakes from dimensions of observed seismodislocations[J]. Tectonophysics, 166(1-3): 269-280. doi: 10.1016/0040-1951(89)90219-9
|
KLINGER Y, ETCHEBES M, TAPPONNIER P, et al., 2011. Characteristic slip for five great earthquakes along the Fuyun Fault in China[J]. Nature Geoscience, 4(6): 389-392. doi: 10.1038/ngeo1158
|
KONDO H, ÖZAKSOY V, YILDIRIM C, 2010. Slip history of the 1944 Bolu-Gerede earthquake rupture along the North Anatolian fault system: implications for recurrence behavior of multisegment earthquakes[J]. Journal of Geophysical Research: Solid Earth, 115(B4): B04316.
|
LIN Z, LIU-ZENG J, WELDON R J, et al., 2020. Modeling repeated coseismic slip to identify and characterize individual earthquakes from geomorphic offsets on strike-slip faults[J]. Earth and Planetary Science Letters, 545: 116313. doi: 10.1016/j.epsl.2020.116313
|
LIU J, KLINGER Y, SIEH K, et al., 2004. Six similar sequential ruptures of the San Andreas fault, Carrizo Plain, California[J]. Geology, 32(8): 649-652. doi: 10.1130/G20478.1
|
LIU J, YUAN Z D, XU Y R, et al., 2021. Paleoseismic investigation of the recurrence behavior of large earthquakes on active faults[J]. Earth Science Frontiers, 28(2): 211-231. (in Chinese with English abstract)
|
LIU J, XU J, OU Q, et al., 2023. Discussion on the overestimated magnitude of the 1920 Haiyuan earthquake[J]. Acta Seismologica Sinica, 45(4): 579-596. (in Chinese with English abstract)
|
LIU-ZENG J, KLINGER Y, XU X, et al., 2007. Millennial recurrence of large earthquakes on the Haiyuan fault near Songshan, Gansu Province, China[J]. Bulletin of the Seismological Society of America, 97(1B): 14-34. doi: 10.1785/0120050118
|
LIU-ZENG J, SHAO Y X, KLINGER Y, et al., 2015. Variability in magnitude of paleoearthquakes revealed by trenching and historical records, along the Haiyuan Fault, China[J]. Journal of Geophysical Research: Solid Earth, 120(12): 8304-8333. doi: 10.1002/2015JB012163
|
LUDWIG L G, AKÇIZ S O, NORIEGA G R, et al., 2010. Climate-modulated channel incision and rupture history of the San Andreas fault in the Carrizo Plain[J]. Science, 327(5969): 1117-1119. doi: 10.1126/science.1182837
|
MASON D B, 1996. Earthquake magnitude potential of the Intermountain Seismic Belt, USA, from surface-parameter scaling of late Quaternary faults[J]. Bulletin of the Seismological Society of America, 86(5): 1487-1506. doi: 10.1785/BSSA0860051487
|
MCCALPIN J P, SLEMMONS D B, 1998. Statistics of paleoseismic data[R]. Estes Park: U.S. Geological Survey.
|
MCCALPIN J P, 2009. Paleoseismology[M]. 2nd ed. Burlington: Academic Press: 615.
|
MCGILL S F, SIEH K, 1991. Surficial offsets on the Central and Eastern Garlock Fault associated with prehistoric earthquakes[J]. Journal of Geophysical Research: Solid Earth, 96(B13): 21597-21621. doi: 10.1029/91JB02030
|
MCGILL S F, RUBIN C M, 1999. Surficial slip distribution on the central Emerson fault during the June 28, 1992, Landers earthquake, California[J]. Journal of Geophysical Research: Solid Earth, 104(B3): 4811-4833. doi: 10.1029/98JB01556
|
MILLINER C W D, DOLAN J F, HOLLINGSWORTH J, et al., 2015. Quantifying near-field and off-fault deformation patterns of the 1992 Mw 7.3 Landers earthquake[J]. Geochemistry, Geophysics, Geosystems, 16(5): 1577-1598. doi: 10.1002/2014GC005693
|
MUNSON P J, OBERMEIER S F, MUNSON C A, et al., 1997. Liquefaction evidence for Holocene and latest Pleistocene seismicity in the southern halves of Indiana and Illinois: a preliminary overview[J]. Seismological Research Letters, 68(4): 521-536. doi: 10.1785/gssrl.68.4.521
|
OSKIN M E, ARROWSMITH J R, CORONA A H, et al., 2012. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LIDAR[J]. Science, 335(6069): 702-705. doi: 10.1126/science.1213778
|
PAMPEYAN E H, HOLZER T L, CLARK M M, 1988. Modern ground failure in the Garlock fault zone, Fremont Valley, California[J]. GSA Bulletin, 100(5): 677-691. doi: 10.1130/0016-7606(1988)100<0677:MGFITG>2.3.CO;2
|
PAN J W, BAI M K, LI C, et al., 2021. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo (Qinghai) MS7.4 earthquake[J]. Acta Geologica Sinica, 95(6): 1655-1670. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2021.06.001
|
RAN Y K, DENG Q D, 1999. History, status and trend about the research of paleoseismology[J]. Chinese Science Bulletin, 44(10): 880-889. doi: 10.1007/BF02885057
|
REITMAN N G, MUELLER K J, TUCKER G E, et al., 2019. Offset channels may not accurately record strike-slip fault displacement: evidence from landscape evolution models[J]. Journal of Geophysical Research: Solid Earth, 124(12): 13427-13451. doi: 10.1029/2019JB018596
|
REN Z K, ZHANG Z Q, CHEN T, et al., 2016. Clustering of offsets on the Haiyuan fault and their relationship to paleoearthquakes[J]. GSA Bulletin, 128(1-2): 3-18.
|
ROCKWELL T K, DAWSON T E, YOUNG BEN-HORIN J, et al., 2015. A 21-event, 4, 000-year history of surface ruptures in the Anza seismic gap, San Jacinto Fault, and implications for long-term earthquake production on a major plate boundary fault[J]. Pure and Applied Geophysics, 172(5): 1143-1165. doi: 10.1007/s00024-014-0955-z
|
RUBIN C M, 1996. Systematic underestimation of earthquake magnitudes from large intracontinental reverse faults: historical ruptures break across segment boundaries[J]. Geology, 24(11): 989-992. doi: 10.1130/0091-7613(1996)024<0989:SUOEMF>2.3.CO;2
|
SCHARER K, WELDON II R, STREIG A, et al., 2014. Paleoearthquakes at Frazier Mountain, California delimit extent and frequency of past San Andreas Fault ruptures along 1857 trace[J]. Geophysical Research Letters, 41(13): 4527-4534. doi: 10.1002/2014GL060318
|
SCHARER K M, WELDON R J, FUMAL T E, et al., 2007. Paleoearthquakes on the southern san Andreas fault, Wrightwood, California, 3000 to 1500 B.C. : a new method for evaluating paleoseismic evidence and earthquake horizons[J]. Bulletin of the Seismological Society of America, 97(4): 1054-1093. doi: 10.1785/0120060137
|
SCHOLZ C H, 2019. The mechanics of earthquakes and faulting[M]. 3rd ed. Cambridge: Cambridge University Press.
|
SCHUSTER R L, LOGAN R L, PRINGLE P T, 1992. Prehistoric rock avalanches in the Olympic Mountains, Washington[J]. Science, 258(5088): 1620-1621. doi: 10.1126/science.258.5088.1620
|
SCHWARTZ D P, COPPERSMITH K J, 1984. Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas fault zones[J]. Journal of Geophysical Research: Solid Earth, 89(B7): 5681-5698. doi: 10.1029/JB089iB07p05681
|
SCOTT C P, DELONG S B, ARROWSMITH J R, 2020. Distribution of aseismic deformation along the Central San Andreas and Calaveras faults from differencing repeat airborne lidar[J]. Geophysical Research Letters, 47(22): e2020GL090628. doi: 10.1029/2020GL090628
|
SHAO Y X, LIU-ZENG J, OSKIN M E, et al., 2018. Paleoseismic investigation of the Aksay restraining double bend, Altyn Tagh fault, and its implication for barrier-breaching ruptures[J]. Journal of Geophysical Research: Solid Earth, 123(5): 4307-4330. doi: 10.1029/2017JB015397
|
SIEH K, STUIVER M, BRILLINGER D, 1989. A more precise chronology of earthquakes produced by the San Andreas Fault in southern California[J]. Journal of Geophysical Research: Solid Earth, 94(B1): 603-623. doi: 10.1029/JB094iB01p00603
|
SIEH K, NATAWIDJAJA D H, MELTZNER A J, et al., 2008. Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra[J]. Science, 322(5908): 1674-1678. doi: 10.1126/science.1163589
|
SIEH K E, 1978. Slip along the San Andreas fault associated with the great 1857 earthquake[J]. Bulletin of the Seismological Society of America, 68(5): 1421-1448.
|
SIEH K E, 1984. Lateral offsets and revised dates of large prehistoric earthquakes at Pallett Creek, southern California[J]. Journal of Geophysical Research: Solid Earth, 89(B9): 7641-7670. doi: 10.1029/JB089iB09p07641
|
SLEMMONS D B, 1982. Determination of design earthquake magnitude for microzonation[C]. s. n. //Proceedings of the 3rd international earthquake microzonation conference. Earthquake Society: 119-130.
|
STIRLING M, RHOADES D, BERRYMAN K, 2002. Comparison of earthquake scaling relations derived from data of the instrumental and preinstrumental era[J]. Bulletin of the Seismological Society of America, 92(2): 812-830. doi: 10.1785/0120000221
|
STREIG A R, DAWSON T E, WELDON II R J, 2014. Paleoseismic evidence of the 1890 and 1838 earthquakes on the Santa Cruz mountains section of the san Andreas fault, near Corralitos, californiapaleoseismic evidence of the 1890 and 1838 earthquakes on the SAS of the San Andreas Fault, near Corralitos[J]. Bulletin of the Seismological Society of America, 104(1): 285-300. doi: 10.1785/0120130009
|
TANG M Y, LIU J, SHAO Y X, et al., 2015. Analysis about the minimum magnitude earthquake associated with surface ruptures[J]. Seismology and Geology, 37(4): 1193-1214. (in Chinese with English abstract)
|
WALLACE R E, 1981. Active faults, paleoseismology, and earthquake hazards in the western United States[M]//SIMPSON D W, RICHARDS P G. Earthquake prediction: an international review. Washington: American Geophysical Union: 209-216.
|
WASHBURN Z, DUPONT-NIVET G, WANG X F, et al., 2003. Paleoseismology of the Xorxol segment of the central Altyn Tagh fault, Xinjiang, China[J]. Annals of Geophysics, 46(5): 1015-1034.
|
WECHSLER N, ROCKWELL T K, KLINGER Y, 2018. Variable slip-rate and slip-per-event on a plate boundary fault: the Dead Sea fault in northern Israel[J]. Tectonophysics, 722: 210-226. doi: 10.1016/j.tecto.2017.10.017
|
WELDON II R J, FUMAL T E, POWERS T J, et al., 2002. Structure and earthquake offsets on the San Andreas fault at the Wrightwood, California, paleoseismic site[J]. Bulletin of the Seismological Society of America, 92(7): 2704-2725. doi: 10.1785/0120000612
|
WELDON II R J, BIASI G P, 2013. Appendix I: Probability of detection of ground rupture at paleoseismic sites[R]. U.S. Geological Survey Open-File Report 2013-1165-I, and California Geological Survey Special Report. 228-I.
|
WELLS D L, COPPERSMITH K J, 1993. Likelihood of surface rupture as a function of magnitude[J]. Seismological Research Letters, 64(1): 54.
|
WELLS D L, COPPERSMITH K J, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the seismological Society of America, 84(4): 974-1002. doi: 10.1785/BSSA0840040974
|
WEN X Z, 1993. Fracture segmentation and earthquake potential probability estimation of Xiaojiang fault zone[J]. Acta Seismologica Sinica, 15(5): 322-330. (in Chinese)
|
WEN X Z, FAN J, YI G X, et al., 2008. A seismic gap on the Anninghe fault in western Sichuan, China[J]. Science in China Series D: Earth Sciences, 51(10): 1375-1387. doi: 10.1007/s11430-008-0114-4
|
WEN X Z, MA S L, XU X W, et al., 2008. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China[J]. Physics of the Earth and Planetary Interiors, 168(1-2): 16-36. doi: 10.1016/j.pepi.2008.04.013
|
XU X W, YU G H, KLINGER Y, et al., 2006. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (Mw7.8), northern Tibetan Plateau, China[J]. Journal of Geophysical Research: Solid Earth, 111(B5): B05316.
|
XU Y R, LIU-ZENG J, ALLEN M B, et al., 2022. Understanding historical earthquakes by mapping coseismic landslides in the Loess Plateau, northwest China[J]. Earth Surface Processes and Landforms, 47(9): 2266-2282. doi: 10.1002/esp.5375
|
YAO W Q, WANG Z J, LIU J, et al., 2022. Discussion on coseismic surface rupture length of the 2021 MW7.4 MadoiEarthquake, Qinghai, China[J]. Seismology and Geology, 44(2): 541-559. (in Chinese with English abstract)
|
YEATS R S, SIEH K, ALLEN C R, 1997. The geology of earthquakes[M]. New York: Oxford University Press: 568.
|
YUAN Z D, 2018. Long paleoseismic record on the Wuzunxiaoer-Xorkoli section of the central Altyn Tagh fault[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract)
|
YUAN Z D, LIU-ZENG J, WANG W, et al., 2018. A 6000-year-long paleoseismologic record of earthquakes along the Xorkoli section of the Altyn Tagh fault, China[J]. Earth and Planetary Science Letters, 497: 193-203. doi: 10.1016/j.epsl.2018.06.008
|
YUAN Z D, LIU-ZENG J, ZHOU Y, et al., 2020. Paleoseismologic record of earthquakes along the Wuzunxiaoer section of the Altyn Tagh fault and its implication for cascade rupture behavior[J]. Science China Earth Sciences, 63(1): 93-107. doi: 10.1007/s11430-019-9376-8
|
ZACHARIASEN J, SIEH K, TAYLOR F W, et al., 1999. Submergence and uplift associated with the giant 1833 Sumatran subduction earthquake: Evidence from coral microatolls[J]. Journal of Geophysical Research: Solid Earth, 104(B1): 895-919. doi: 10.1029/1998JB900050
|
ZIELKE O, ARROWSMITH J R, LUDWIG L G, et al., 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas fault[J]. Science, 327(5969): 1119-1122. doi: 10.1126/science.1182781
|
ZIELKE O, KLINGER Y, ARROWSMITH J R, 2015. Fault slip and earthquake recurrence along strike-slip faults—Contributions of high-resolution geomorphic data[J]. Tectonophysics, 638: 43-62. doi: 10.1016/j.tecto.2014.11.004
|
陈运泰, 刘瑞丰, 2004. 地震的震级[J]. 地震地磁观测与研究, 25(6): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZGJ202001001.htm
|
贾俊平, 2012. 统计学[M]. 5版. 北京: 中国人民大学出版社.
|
刘静, 袁兆德, 徐岳仁, 等, 2021. 古地震学: 活动断裂强震复发规律的研究[J]. 地学前缘, 28(2): 211-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102016.htm
|
刘静, 徐晶, 偶奇, 等, 2023. 关于1920年海原大地震震级高估的讨论[J]. 地震学报, 45(4): 579-596. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB202304001.htm
|
潘家伟, 白明坤, 李超, 等, 2021. 2021年5月22日青海玛多MS7.4地震地表破裂带及发震构造[J]. 地质学报, 95(6): 1655-1670. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202106001.htm
|
冉勇康, 邓起东, 1999. 古地震学研究的历史、现状和发展趋势[J]. 科学通报, 44(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199901002.htm
|
唐茂云, 刘静, 邵延秀, 等, 2015. 中小震级事件产生地表破裂的震例分析[J]. 地震地质, 37(4): 1193-1214. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201504020.htm
|
闻学泽, 1993. 小江断裂带的破裂分段与地震潜势概率估计[J]. 地震学报, 15(3): 322-330. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB199303009.htm
|
闻学泽, 范军, 易桂喜, 等, 2008. 川西安宁河断裂上的地震空区[J]. 中国科学D辑: 地球科学, 38(7): 797-807. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200807002.htm
|
姚文倩, 王子君, 刘静, 等, 2022. 2021年青海玛多MW7.4地震同震地表破裂长度的讨论[J]. 地震地质, 44(2): 541-559. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202202016.htm
|
袁兆德, 2018. 阿尔金断裂中段乌尊硝尔-索尔库里段长序列古地震记录[D]. 北京: 中国地震局地质研究所.
|
袁兆德, 刘静, 周游, 等, 2020. 阿尔金断裂中段乌尊硝尔段古地震记录与级联破裂行为[J]. 中国科学: 地球科学, 50(1): 50-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202001003.htm
|