Volume 25 Issue S1
May  2019
Turn off MathJax
Article Contents
QIU Ruizhao, CHEN Yuming, CHEN Xiufa, et al., 2019. DISCUSSION ON THE TWO TYPES OF PORPHYRY COPPER MINERALIZATION IN NORTHERN CHILE AND NORTHWEST ARGENTINA. Journal of Geomechanics, 25 (S1): 129-134. DOI: 10.12090/j.issn.1006-6616.2019.25.S1.022
Citation: QIU Ruizhao, CHEN Yuming, CHEN Xiufa, et al., 2019. DISCUSSION ON THE TWO TYPES OF PORPHYRY COPPER MINERALIZATION IN NORTHERN CHILE AND NORTHWEST ARGENTINA. Journal of Geomechanics, 25 (S1): 129-134. DOI: 10.12090/j.issn.1006-6616.2019.25.S1.022

DISCUSSION ON THE TWO TYPES OF PORPHYRY COPPER MINERALIZATION IN NORTHERN CHILE AND NORTHWEST ARGENTINA

doi: 10.12090/j.issn.1006-6616.2019.25.S1.022
More Information
  • Published: 2019-05-01
  • The Mesozoic-Cenozoic porphyry copper deposits in northern Chile and northwestern Argentina were formed in the orogenic setting of the Paleozoic terrane collocation. With the opening of the Atlantic Ocean, the South American continent drifted westward, in Mesozoic-Cenozoic the South American craton was subducted beneath the Paleozoic orogenic belts to form a thicker or double crust. As a part of the active continental margin of South America, northern Chile continuously "swallowed" the Pacific (Nasca) plate which subducted eastward. The mineralization of porphyry copper deposits in northern Chile occurred after the large-scale magmatic activity which caused by slab-failure subduction of the Pacific (Nazca) plate, and repeatedly took place along the reactivated lithosphere discontinuities (the pre-existing Paleozoic splice zones and regional faults), forming so-called Andean-type porphyry copper deposits; The large-scale copper (gold, molybdenum) mineralization in northwestern Argentina was associated with the collapse of the thickened orogenic belt. The large-scale mineralization was controlled by the large-scale magmatism caused by the de-rooting of the orogenic lithosphere, asthenospheric material and thermal upwelling. Overall, Porphyry copper deposits of the Andean-type and orogenic collapse-type in northern Chile and northwestern Argentina, as well as the formation of the Andean copper (gold) metallogenic belt in South America, are closely related to the westward drift of the South American continent and the opening of the Atlantic Ocean since the Mesozoic and Cenozoic.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    MALONEY K T, CLARKE G L, KLEPEIS K A, et al. The Late Jurassic to present evolution of the Andean margin:Drivers and the geological record[J]. Tectonics, 2013, 32(5):1049-1065. doi: 10.1002/tect.20067
    [2]
    EDUARDO O Z. Servicio geotogico minero argentino insllthho de geologfa y recursos minerales, anales no 44. Mapa Metalogenetico De America Do Sul Metallgenic Map of South America, 1: 5, 000, 000, Memoria Explicativa/Explanatory Text. Es propiedad del instituto de geologla y recursos minerales-segemar[M]. Prohibida su reproduccion Armado y diseno editorial: OSVALDO D. CACCAGLIO. 2005.
    [3]
    RICHARDS J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98(8):1515-1533. doi: 10.2113/gsecongeo.98.8.1515
    [4]
    SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1):3-41. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232405025/
    [5]
    KHOMICH V G, BORISKINA N G, SANTOSH M. A geodynamic perspective of world-class gold deposits in East Asia[J]. Gondwana Research, 2014, 26(3-4):816-833. doi: 10.1016/j.gr.2014.05.007
    [6]
    BERTRAND G, GUILLOU-FROTTIER L, LOISELET C. Distribution of porphyry copper deposits along the Western Tethyan and Andean subduction zones:Insights from a paleotectonic approach[J]. Ore Geology Reviews, 2014, 60:174-190. doi: 10.1016/j.oregeorev.2013.12.015
    [7]
    RAMOS V A. The tectonic regime along the Andes:Present-day and mesozoic regimes[J]. Geological Journal, 2010, 45(1):2-25. doi: 10.1002/(ISSN)1099-1034
    [8]
    SCHELLART W P. Overriding plate shortening and extension above subduction zones:A parametric study to explain formation of the Andes mountains[J]. Geological Society of America Bulletin, 2008, 120(11-12):1441-1454. doi: 10.1130/B26360.1
    [9]
    BUTTERWORTH N, STEINBERG D, MÜLLER R D, et al. Tectonic environments of South American porphyry copper magmatism through time revealed by spatiotemporal data mining[J]. Tectonics, 2016, 35(12):2847-2862. doi: 10.1002/2016TC004289
    [10]
    COOKE D R, HOLLINGS P, WALSHE J L. Giant porphyry deposits:characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5):801-818. doi: 10.2113/gsecongeo.100.5.801
    [11]
    RICHARDS J P. Giant ore deposits formed by optimal alignments and combinations of geological processes[J]. Nature Geoscience, 2013, 6(11):911-916. doi: 10.1038/ngeo1920
    [12]
    REGNIER M, CHIU J M, SMALLEY R, et al. Crustal thickness variation in the Andean foreland, Argentina, from converted waves[J]. Bulletin of the Seismological Society of America, 1994, 84(4):1097-1111.
    [13]
    DALZIEL I W D, FORSYTHE R D. Andean evolution and the terrane concept[C]//HOWELL D G. Tectonostratigraphic Terranes of the Circum-Pacific Region: Circum-Pacific-Council for Energy and Mineral Resources Earth Science Series. 1985, 1: 565-581.
    [14]
    RAMOS V A. Tectonics of the late proterozoic-early paleozoic:A collisional history of Southern South America[J]. Episodes, 1988, 11(3):168-174.
    [15]
    BAHLBURG H, HERVÉ F. Geodynamic evolution and tectonostratigraphic terranes of northwestern Argentina and northern Chile[J]. GSA Bulletin, 1997, 109(7):869-884. doi: 10.1130/0016-7606(1997)109<0869:GEATTO>2.3.CO;2
    [16]
    邱瑞照, 李廷栋, 周肃, 等.中国大陆岩石圈物质组成及演化[M].北京:地质出版社, 2006:1-308.

    QIU Ruizhao, LI Tingdong, ZHOU Shu, et al. the composition and evolution of lithosphere in China continent[M]. Beijing:Geological Publishing House, 2006:1-308(in Chinese).
    [17]
    GRIFFIN W L, BEGG G C, O'REILLY S Y. Continental-root control on the genesis of magmatic ore deposits[J]. Nature Geoscience, 2013, 6(11):905-910. doi: 10.1038/ngeo1954
    [18]
    KAY S M, MPODOZIS C. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust[J]. GSA Today, 2001, 11(3):4-9. doi: 10.1130/1052-5173(2001)011<0004:CAODLT>2.0.CO;2
    [19]
    严光生, 邱瑞照, 连长云, 等.中国大陆斑岩铜矿资源潜力定量评价[J].地学前缘, 2007, 14(5):27-41. doi: 10.3321/j.issn:1005-2321.2007.05.004

    YAN Guangsheng, QIU Ruizhao, LIAN Changyun, et al. Quantitative assessment of the resource potential of porphyry copper systems in China[J]. Earth Science Frontiers, 2007, 14(5):27-41. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2007.05.004
    [20]
    侯增谦, 杨志明.中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型[J].地质学报, 2009, 83(12):1779-1817. doi: 10.3321/j.issn:0001-5717.2009.12.002

    HOU Zengqian, YANG Zhiming. Porphyry deposits in continental settings of China:geological characteristics, magmatic-hydrothermal system, and metallogenic model[J]. Acta Geologica Sinica, 2009, 83(12):1779-1817. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2009.12.002
    [21]
    MAKSAEV V, ALMONACID T A, MUNIZAGA F, et al. Geochronological and thermochronological constraints on porphyry copper mineralization in the Domeyko alteration zone, northern Chile[J]. Andean Geology, 2010, 37(1):144-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000002989234
    [22]
    SILLITOE R H, COOPER C, SALE M J, et al. Discovery and geology of the Esquel low-sulfidation epithermal gold deposit, Patagonia, Argentina[C]//GOLDFARB R J, NIELSEN R L. Integrated Methods for Discovery: Global Exploration in the 21st Century. SEG Special Publication 9. Society of Economic Geologists, 2002: 227-240.
    [23]
    VILA T, LINDSAY N, ZAMORA R. Geology of the Manto Verde copper deposit, Northern Chile: a specularite-rich, hydrothermal-tectonic breccia related to the Atacama Fault Zone[C]//CAMUS F, SILLTOE R H, PETERSEN R. Andean copper deposits: new discoveries, mineralization style and metallogeny. Society of Economic Geologists Special Publication, 1996, 5: 1-198.
    [24]
    ZENTILLI M, MAKSAEV V, BORIC R, et al. Spatial coincidence and similar geochemistry of Late Triassic and Eocene-Oligocene magmatism in the Andes of northern Chile:evidence from the MMH porphyry type Cu-Mo deposit, Chuquicamata District[J]. International Journal of Earth Sciences, 2018, 107(3):1097-1126. doi: 10.1007/s00531-018-1595-9
    [25]
    邱瑞照, 李小伟, 周肃, 等.北美科迪勒拉山系中生代大陆拼合[M].北京:地质出版社, 2017:1-238.

    QIU Ruizhao, LI Xiaowei, ZHOU Shu, et al. Mesozoic assembly of the north American cordillera[M]. Beijing:Geological Publishing House, 2017:1-238. (in Chinese)
    [26]
    BRASSE H, SOYER W. A magnetotelluric study in the Southern Chilean Andes[J]. Geophysical Research Letters, 2001, 28(19):3757-3760. doi: 10.1029/2001GL013224
    [27]
    YUAN X C, ASCH G, BATAILE K, et al. Deep seismic images of the Southern Andes[C]//KAY S M, RAMOS V A. Late Cretaceous to recent magmatism and tectonism of the Southern Andean Margin at the latitude of the Neuquen Basin (36-39°S). Geological Society of America, Special Paper, 2006, 407: 61-72.
    [28]
    RAMOS V A, LITVAK V D, FOLGUERA A, et al. An Andean tectonic cycle:From crustal thickening to extension in a thin crust (34°-37°SL)[J]. Geoscience Frontiers, 2014, 5(3):351-367. http://cn.bing.com/academic/profile?id=af116d6abc4096d8db35a619dd1a8e2a&encoded=0&v=paper_preview&mkt=zh-cn
    [29]
    RICHARDS J P, BOYCE A J, PRINGLE M S. Geologic evolution of the Escondida area, northern Chile:a model for spatial and temporal localization of porphyry Cu mineralization[J]. Economic Geology, 2001, 96(2):271-305. http://cn.bing.com/academic/profile?id=5034573e3abbb83b8aaa2ac3a274307a&encoded=0&v=paper_preview&mkt=zh-cn
    [30]
    邱瑞照, 谭永杰, 朱群, 等.中国及邻区重要成矿带成矿规律对比研究[M].北京:地质出版社, 2013:1-598.

    QIU Ruizhao, TAN Yongjie, ZHU Qun, et al. Metallogenic regularity of important metallogenic belts in China and adjacent areas[M]. Beijing:Geological Publishing House, 2013:1-596. (in Chinese)
    [31]
    HORTON B K, FUENTES F, BOLL A, et al. Andean stratigraphic record of the transition from backarc extension to orogenic shortening:A case study from the northern Neuquén Basin, Argentina[J]. Journal of South American Earth Sciences, 2016, 71:17-40. doi: 10.1016/j.jsames.2016.06.003
  • 加载中

Catalog

    Figures(3)

    Article Metrics

    Article views (284) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return