Volume 28 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
CAI Houan, GAO Haiou, FAN Shijia, et al., 2022. The metallogenic model of the sandstone-type copper deposits in the Kangcun area, Kuqa Basin, Xinjiang. Journal of Geomechanics, 28 (1): 78-89. DOI: 10.12090/j.issn.1006-6616.20222805
Citation: CAI Houan, GAO Haiou, FAN Shijia, et al., 2022. The metallogenic model of the sandstone-type copper deposits in the Kangcun area, Kuqa Basin, Xinjiang. Journal of Geomechanics, 28 (1): 78-89. DOI: 10.12090/j.issn.1006-6616.20222805

The metallogenic model of the sandstone-type copper deposits in the Kangcun area, Kuqa Basin, Xinjiang

doi: 10.12090/j.issn.1006-6616.20222805
Funds:

the Geological Survey Project of China Geological Survey DD20160001

More Information
  • Received: 2021-10-12
  • Revised: 2021-12-30
  • A series of sandstone-type copper deposits and occurrence distribute in the Kuqa basin, Xinjiang. We carried out a research into the sedimentary environment and metallogenic model of the copper deposits in the Kangcun area based on field surveys. The relationship between the sedimentary environment/facies in the area and the copper mineralization were summarized so as to explore the genesis of mineralization and the metallogenic model. We identified main sedimentary facies types of alluvial fans, fan deltas, and lakes in the Neogene strata, and further identification of five subfacies and seven microfacies were made. Our research results reveal that the genesis of sandstone-type copper mineralization is related to the sedimentary environment, and the mineralized bodies are mainly distributed in fan delta plain facies and fan delta front facies. Detrital zircon dating results of two samples are 427.4±6.6 Ma, 387.3±3.3 Ma and 424.6±2.3 Ma, 279.9±6.8 Ma respectively. It indicates that the source of the copper-bearing sandy conglomerate in the Miocene Jidike Formation (N1j) is mainly from the strata and magmatic rock products formed by the geological evolution during the Late Silurian to Early Permian. The mineralization in the Kangcun area belongs to the sandstone-type copper mineralization. The deep copper enrichment is TSR-type mineralization, and the surface mineralization is caused by the surficial and underground brine. The copper mineralization in the Kangcun area was formed after the diagenesis of Neogene sandstone. It is epigenetic enrichment, and is mainly controlled by fault structure and epigenetic brine in the Late Neogene.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • CAO Y T, 2010. Development and regularity of evaporates and its metallization in Kuqa basin from Paleogene to Neogene[D]. Beijing: Chinese Academy of Geological Sciences: 1-158. (in Chinese with English abstract)
    CAO Y T, LIU C L, CHEN Y Z, et al., 2010. Characteristics of copper mineralization in the Kuqa foreland basin, and origin, enrichment and distribution of copper[J]. Acta Geologica Sinica, 84(12): 1791-1804. (in Chinese with English abstract)
    FANG W X, JIA R X, GUO Y Q, et al., 2016. Hydrocarbon-rich basin fluid with reductibility and metallogenic mechanism for glutenite-type Cu-Pb-Zn-U deposits in the western of Tarim basin[J]. Journal of Earth Sciences and Environment, 38(6): 727-752. (in Chinese with English abstract)
    FANG W X, JIA R X, WANG L, 2017. Types of basin fluids, mechanism of discolored alterations and metal mineralizations of glutenite-type Cu-Pb-Zu-U deposits in intercontinental red-bed basin of the western Tarim basin[J]. Journal of Earth Sciences and Environment, 39(5): 585-619. (in Chinese with English abstract)
    FANG W X, WANG L, JIA R X, 2018. Mosaic tectonics of Mesozoic to Cenozoic basin-mountain-plateau in the Western Tarim Basin, China: Glutenite-typeCu-Pb-Zn-celesite-U-coal metallogenic system[J]. Journal of Earth Sciences and Environment, 40(6): 663-705. (in Chinese with English abstract)
    FANG W X, WANG L, WANG S C, et al., 2019. Metallogenic regularity and prospecting forecast of the western Tarim Basin glutenite Cu-Pb-Zn deposi[M]. Beijing: Science Press: 1-422. (in Chinese)
    GUO X P, DING X Z, HE X X, et al., 2002. New progress in the study of marine transgressional events and marine strata of the Meso-Cenozoic in the Tarim basin[J]. Acta Geologica Sinica, 76(3): 299-307. (in Chinese with English abstract)
    HITZMAN M, KIRKHAM R, BROUGHTON D, et al., 2005. The sediment-hosted stratiform copper ore system[M]//HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. Economic geology: one hundredth anniversary volume. Littleton: Society of Economic Geologists: 609-642.
    HUA R M, 1995. On the three major genetic models of stratiform copper deposits[J]. Geological Review, 41(2): 112-120. (in Chinese with English abstract)
    JIA C Z, WEI G Q, YAO H J, et al., 1995. Tectonic evolution and regional structural geology[M]. Beijing: Petroleum Industry Press. (in Chinese)
    JIA R X, FANG W X, WANG L, et al., 2017. Hydrocarbon-rich reducing basin fluid with in sareke glutenite type copper deposit, Wuqia, Xinjiang[J]. Geotectonica et Metallogenia, 41(4): 721-733. (in Chinese with English abstract)
    JIA R X, FANG W X, 2021. The migration rule of the ore-forming fluids in the Meso-Cenozoic Basins, Southwestern Tianshan, China[J]. Journal of Geomechanics, 27 (4): 529-441. (in Chinese with English abstract)
    LI J F, ZHAO Y, PEI J L, et al., 2017. Cenozoic marine sedimentation problem of the Tarim basin[J]. Journal of Geomechanics, 23(1): 141-149. (in Chinese with English abstract)
    LI S J, SHI Y H, WANG Q C, 2006. The analysis of detrital heavy minerals in Cretaceous-Tertiary sandstones, Kuqa Depression and their implications for provenance[J]. Acta Sedimentologica Sinica, 24(1): 28-35. (in Chinese with English abstract)
    LI X, ZHONG D K, LI Y, et al., 2013. Sedimentary characteristics and evolution of the Neogene and Quaternary in Kuqa Depression of Tarim Basin[J]. Journal of Paleography, 15(2): 169-180. (in Chinese with English abstract)
    LI Z, WANG D X, LIN W, et al., 2004. Mesozoic-Cenozoic clastic composition in Kuqa depression, northwest China: implication for provenance types and tectonic attributes[J]. Acta Petrologica Sinica, 20(3): 655-666. (in Chinese with English abstract)
    LIN C S, LIU J Y, ZHANG Y M, et al., 2002. Characteristics of tertiary structural sequence and its response to foreland tectonism in Kuqa depression[J]. Science in China (Series D), 32(3): 177-183. (in Chinese)
    LIU B P, WANG Z Q, ZHANG C H, et al., 1996. Tectonic framework and evolution in southwest Tianshan mountains, China[M]. Wuhan: China University of Geosciences Press: 1-120. (in Chinese)
    LIU D Q, TANG Y L, ZHOU R H, 2005. Copper deposits and nickel deposits in Xinjiang, China[M]. Beijing: Geological Publishing House: 171. (in Chinese)
    LIU J Y, LIN C S, XIAO J X, 2003. The characteristic of sequence stratigraphy and depositional systems of the palaeogene kuqa depression[J]. Coal Geology & Exploration, 31(6): 8-10. (in Chinese with English abstract)
    LIU X, FAN H R, HU F F, et al., 2015. Research progresses on sediment-hosted stratiform copper deposit[J]. Geological Review, 61(1): 45-63. (in Chinese with English abstract)
    LIU Z H, LU H F, LI X J, et al., 2000. Tectonic evolution of Kuqa rejuvenated foreland basin[J]. Scientia Geologica Sinica, 35(4): 482-492. (in Chinese with English abstract)
    LU K G, WANG G R, SUN X, 2019. Interlayered oxidation-zone styles in fault-fold belts of the northern Tarim basin and its controlling to the formation of sandstone-type uranium deposits[J]. Journal of Geomechanics, 25(1): 115-124. (in Chinese with English abstract)
    QIAN J F, XIAO A C, YANG S F, 2012. Research on mesozoic-cenozoic structural characteristics and evolution in northwestern margin, Tarim basin[M]. Hangzhou: Zhejiang Business University Press: 1-128. (in Chinese)
    QIU F Q, DING Y, WANG H, 2000. Source analysis on deposits of Kuche basin[J]. Xinjiang Geology, 18(3): 252-257. (in Chinese with English abstract)
    SHI W G, GONG E P, CHU Y G, et al., 2015. Sedimentary system and depositional environment of copper-bearing rock series of Neogene in Baicheng County, Xinjiang. Acta Sedimentologica Sinica, 33(6): 1074-1086. (in Chinese with English abstract)
    SHAO L Y, HE Z P, GU J Y, et al., 2006. Lithofacies palaeogeography of the Paleogene in Tarim Basin[J]. Journal of Palaeogeography, 8(3): 353-364. (in Chinese with English abstract)
    SHAO L Y, LUO W L, GU J Y, et al., 2007. A basin-wide sequence stratigraphic analysis of the Paleogene in Tarim Basin[J]. Journal of Palaeogeography, 9(3): 283-292. (in Chinese with English abstract)
    SILLITOE R H, PERELLÓ J, GARCÍAA, 2010. Sulfide-bearing veinlets throughout the stratiform mineralization of the Central African Copperbelt: temporal and genetic implications[J]. Economic Geology, 105(8): 1361-1368. doi: 10.2113/econgeo.105.8.1361
    TAN X C, WANG Z Y, LI L, et al., 2006. Arrangement and evolution of Tertiary sedimentary facies in Kuche foreland basin, XinJiang[J]. Acta Sedimentologica Sinica, 24(6): 790-797. (in Chinese with English abstract)
    TIAN Z J, SONG J G, 1999. Tertiary structure characteristics and evolution of Kuche foreland basin[J]. Acta Petrolei Sinca, 20(4): 7-13. (in Chinese with English abstract)
    XIAO Y, 2018. Tectono-thermal evolution of northern Kuqa Depression and South Tien Shan[D]. Beijing: China University of Petroleum(Beijing): 1-88. (in Chinese with English abstract)
    XU Q H, CHEN Y R, JIA G X, et al., 2007. Application of hydrocarbons in metallogenic and mineral resource exploration research[J]. Acta Petrologica Sinica, 23(10): 2623-2638. (in Chinese with English abstract)
    XU Y R, ZHANG S H, 1996. Application and comparison of different views on causing of formation in the prospect for sandrock copper[J]. Journal of Zhejiang Normal University (Natural Sciences), 19(3): 98-103. (in Chinese with English abstract)
    YAN F L, LU H F, JIA D, et al., 2003. The Meso-Cenozoic subsidence features of Kuqa Depression, Tarim Basin[J]. Journal of Nanjing University (Natural Sciences), 39(1): 31-39. (in Chinese with English abstract)
    YANG B, 2018. Red bed Cu-Pb-Zn deposits and mineralization of hot brine in continental red bed basin[J]. Chinese Geology, 45(3): 441-455. (in Chinese with English abstract)
    YANG G, QIAN X L, 1995. Subsidence of the Kuqa depression and Mesozoic-Cenozoic structural reactivations in Tianshan[J]. Xinjiang Geology, 13(3): 264-274. (in Chinese with English abstract)
    ZHANG L, YE L, ZHU C C, et al., 2020. Discovery and prospecting significance of marine sedimentary sandstone-type copper deposits in Wuqia County, western margin of Tarim Basin[J]. Mineral Exploration, 11(4): 656-663. (in Chinese with English abstract)
    ZHANG M L, TAN C X, TANG L J, et al., 2004. An analysis of the Mesozoic-Cenozoic tectonic stress field in Kuqa depression, Tarim Basin[J]. Acta Geoscientica Sinica, 25(6): 615-619. (in Chinese with English abstract)
    ZHANG T, CHEN Z L, HUANG H Y, et al., 2020, Geochemical characteristics of gold-bearing minerals and its geological significance in the Ashawayi gold deposit in the southwestern Tianshan Orogen[J]. Journal of Geomechanics, 26 (3): 443-458. (in Chinese with English abstract)
    ZHAO M J, LU X S, ZHUO Q G, et al., 2015. Characteristics and distribution law of hydrocarbon accumulation in Kuqa foreland basin[J]. Acta Petrolei Sinica, 36(4): 395-404. (in Chinese with English abstract)
    ZHU X Y, WANG J B, 2014. Study on metallogenic system of Pb-Zn, Cu and U deposits associated with basin brines in the southwestern Tarim basin, Xinjiang[J]. Mineral Exploration, 5(2): 136-148. (in Chinese with English abstract)
    曹养同, 2010. 新疆库车盆地古近系-新近系蒸发岩系发育规律及其金属成矿研究[D]. 北京: 中国地质科学院: 1-158.
    曹养同, 刘成林, 陈永志, 等, 2010. 库车前陆盆地古近系-新近系铜矿化特征及铜的来源、富集分布初探[J]. 地质学报, 84(12): 1791-1804. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201012008.htm
    方维萱, 贾润幸, 郭玉乾, 等, 2016. 塔西地区富烃类还原性盆地流体与砂砾岩型铜铅锌-铀矿床成矿机制[J]. 地球科学与环境学报, 38(6): 727-752. doi: 10.3969/j.issn.1672-6561.2016.06.001
    方维萱, 贾润幸, 王磊, 2017. 塔西陆内红层盆地中盆地流体类型、砂砾岩型铜铅锌-铀矿床的大规模褪色化围岩蚀变与金属成矿[J]. 地球科学与环境学报, 39(5): 585-619. doi: 10.3969/j.issn.1672-6561.2017.05.001
    方维萱, 王磊, 贾润幸, 2018. 塔西地区中-新生代盆-山-原镶嵌构造区: 砂砾岩型铜铅锌-天青石-铀-煤成矿系统[J]. 地球科学与环境学报, 40(6): 663-705. doi: 10.3969/j.issn.1672-6561.2018.06.001
    方维萱, 王磊, 王寿成, 等, 2019. 塔西砂砾岩型铜铅锌矿床成矿规律与找矿预测[M]. 北京: 科学出版社: 1-422.
    郭宪璞, 丁孝忠, 何希贤, 等, 2002. 塔里木盆地中新生代海侵和海相地层研究的新进展[J]. 地质学报, 76(3): 299-307. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200203002.htm
    华仁民, 1995. 试论层状铜矿的三种主要成因模式[J]. 地质论评, 41(2): 112-120. doi: 10.3321/j.issn:0371-5736.1995.02.002
    贾承造, 魏国齐, 姚慧君, 等, 1995. 盆地构造演化与区域构造地质[M]. 北京: 石油工业出版社.
    贾润幸, 方维萱, 王磊, 等, 2017. 新疆萨热克砂砾岩型铜矿床富烃类还原性盆地流体特征[J]. 大地构造与成矿学, 41(4): 721-733. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201704009.htm
    贾润幸, 方维萱, 2021. 西南天山中新生代盆地成矿流体运移规律[J]. 地质力学学报, 27(4): 529-541. doi: 10.12090/j.issn.1006-6616.2021.27.04.046
    李建锋, 赵越, 裴军令, 等, 2017. 塔里木盆地新生代海相沉积问题[J]. 地质力学学报, 23(1): 141-149. doi: 10.3969/j.issn.1006-6616.2017.01.010
    李双建, 石永红, 王清晨, 2006. 碎屑重矿物分析对库车坳陷白垩: 第三纪物源变化的指示[J]. 沉积学报, 24(1): 28-35. doi: 10.3969/j.issn.1000-0550.2006.01.004
    李鑫, 钟大康, 李勇, 等, 2013. 塔里木盆地库车坳陷新近系和第四系沉积特征及演化[J]. 古地理学报, 15(2): 169-180. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201302005.htm
    李忠, 王道轩, 林伟, 等, 2004. 库车坳陷中-新生界碎屑组分对物源类型及其构造属性的指示[J]. 岩石学报, 20(3): 655-666. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403029.htm
    林畅松, 刘景彦, 张燕梅, 等, 2002. 库车坳陷第三系构造层序的构成特征及其对前陆构造作用的响应[J]. 中国科学(D辑), 32(3): 177-183. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200203000.htm
    刘本培, 王自强, 张传恒, 等, 1996. 西南天山构造格局与演化[M]. 武汉: 中国地质大学出版社: 1-120.
    刘德权, 唐延龄, 周汝洪, 2005. 中国新疆铜矿床和镍矿床[M]. 北京: 地质出版社: 171.
    刘景彦, 林畅松, 肖建新, 2003. 库车坳陷古近系层序和沉积体系发育特征[J]. 煤田地质与勘探, 31(6): 8-10. doi: 10.3969/j.issn.1001-1986.2003.06.003
    刘玄, 范宏瑞, 胡芳芳, 等, 2015. 沉积岩型层状铜矿床研究进展[J]. 地质论评, 61(1): 45-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201501004.htm
    刘志宏, 卢华复, 李西建, 等, 2000. 库车再生前陆盆地的构造演化[J]. 地质科学, 35(4): 482-492. doi: 10.3321/j.issn:0563-5020.2000.04.012
    鲁克改, 王国荣, 孙潇, 2019. 塔里木盆地北缘断褶带层间氧化带发育样式及砂岩铀矿找矿潜力[J]. 地质力学学报, 25(1): 115-124. doi: 10.12090/j.issn.1006-6616.2019.25.01.011
    钱俊锋, 肖安成, 杨树锋, 2012. 塔里木盆地: 西北缘中、新生代构造特征及演化[M]. 杭州: 浙江工商大学出版社: 1-128.
    邱芳强, 丁勇, 王辉, 2000. 库车盆地的沉积物源分析[J]. 新疆地质, 18(3): 252-257. doi: 10.3969/j.issn.1000-8845.2000.03.008
    时文革, 巩恩普, 褚亦功, 等, 2015. 新疆拜城新近系含铜岩系沉积体系及沉积环境[J]. 沉积学报, 33(6): 1074-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201506002.htm
    邵龙义, 何志平, 顾家裕, 等, 2006. 塔里木盆地古近纪岩相古地理[J]. 古地理学报, 8(3): 353-364. doi: 10.3969/j.issn.1671-1505.2006.03.008
    邵龙义, 罗文林, 顾家裕, 等, 2007. 塔里木盆地古近系层序地层研究[J]. 古地理学报, 9(3): 283-292. doi: 10.3969/j.issn.1671-1505.2007.03.006
    谭秀成, 王振宇, 李凌, 等, 2006. 库车前陆盆地第三系沉积相配置及演化研究[J]. 沉积学报, 24(6): 790-797. doi: 10.3969/j.issn.1000-0550.2006.06.003
    田作基, 宋建国, 1999. 塔里木库车新生代前陆盆地构造特征及形成演化[J]. 石油学报, 20(4): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB904.001.htm
    肖瑶, 2018. 库车坳陷北缘与南天山的构造-热演化关系[D]. 北京: 中国石油大学(北京): 1-88.
    徐庆鸿, 陈远荣, 贾国相, 等, 2007. 烃类组分在金属矿床的成矿理论和矿产勘查研究中的应用[J]. 岩石学报, 23(10): 2623-2638. doi: 10.3969/j.issn.1000-0569.2007.10.028
    徐一仁, 张素华, 1996. 不同成因观点在砂岩铜矿找矿中的应用和比较[J]. 浙江师大学报(自然科学版), 19(3): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSZ603.019.htm
    阎福礼, 卢华复, 贾东, 等, 2003. 塔里木盆地库车坳陷中、新生代沉降特征探讨[J]. 南京大学学报(自然科学), 39(1): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ200301004.htm
    杨兵, 2018. 陆相红层型铜铅锌矿床与红层盆地热卤水成矿作用[J]. 中国地质, 45(3): 441-455. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201803003.htm
    杨庚, 钱祥麟, 1995. 库车坳陷沉降与天山中新生代构造活动[J]. 新疆地质, 13(3): 264-274. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI503.008.htm
    张磊, 叶雷, 朱成成, 等, 2020. 塔里木盆地西缘乌恰地区海相砂岩型铜矿的发现及对找矿的指示意义[J]. 矿产勘查, 11(4): 656-663. doi: 10.3969/j.issn.1674-7801.2020.04.005
    张明利, 谭成轩, 汤良杰, 等, 2004. 塔里木盆地库车坳陷中新生代构造应力场分析[J]. 地球学报, 25(6): 615-619. doi: 10.3321/j.issn:1006-3021.2004.06.004
    张涛, 陈正乐, 黄宏业, 等, 2020. 西南天山阿沙哇义金矿载金矿物地球化学特征及地质意义[J]. 地质力学学报, 26(3): 443-458. doi: 10.12090/j.issn.1006-6616.2020.26.03.038
    赵孟军, 鲁雪松, 卓勤功, 等, 2015. 库车前陆盆地油气成藏特征与分布规律[J]. 石油学报, 36(4): 395-404. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201504001.htm
    祝新友, 王京彬, 2014. 新疆塔西南地区与盆地卤水作用有关的金属矿床成矿系统[J]. 矿产勘查, 5(2): 136-148. doi: 10.3969/j.issn.1674-7801.2014.02.005
  • 加载中

Catalog

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (567) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return