Volume 29 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
LIU Jin, WANG Jian, TAN Jingqiang, et al., 2023. Sedimentary paleo-environment and organic matter enrichment in the Lucaogou Formation of the Jimsar Sag. Journal of Geomechanics, 29 (5): 631-647. DOI: 10.12090/j.issn.1006-6616.2022127
Citation: LIU Jin, WANG Jian, TAN Jingqiang, et al., 2023. Sedimentary paleo-environment and organic matter enrichment in the Lucaogou Formation of the Jimsar Sag. Journal of Geomechanics, 29 (5): 631-647. DOI: 10.12090/j.issn.1006-6616.2022127

Sedimentary paleo-environment and organic matter enrichment in the Lucaogou Formation of the Jimsar Sag

doi: 10.12090/j.issn.1006-6616.2022127
Funds:

the Fund of the National Natural Science Foundation of China 41872151

the Project of the Sino-German Science Center M0588

the Key Research and Development Plan of Hunan Province 2022WK2004

the Major Project of the Department of Natural Resources of Hunan Province 2022-05

More Information
  • Received: 2023-01-09
  • Revised: 2023-06-13
  • Accepted: 2023-06-19
  • The Lucaogou Formation in the Jimsar Sag is the main target layer of shale oil exploration and development in continental basins. However, its paleo-environmental information and organic matter enrichment mechanism still need to be determined. In order to investigate the paleo-environment of the Permian Lucaogou Formation, based on core and thin section observation, we carried out major and trace element analyses on 26 source rocks from Well J10025 by using X-ray fluorescence spectroscopy(XRF) and inductively coupled plasma mass spectrometry(ICP-MS). This analysis, combined with GC-MS biomarker data and typical sedimentary structures, reflects the paleo-environmental characteristics of the Luchaogou Formation. Geochemical indicators such as C-value, Sr/Ba, V/Cr, Pr/Ph, P, and Co show that the Lucaogou Formation was generally developed in a saline lake environment under an arid to semi-arid climate, with relatively deep water during deposition and hypoxic to anoxic conditions. The upper member was deposited in a semi-arid, brackish lake with weak reducibility, deep water body, and high productivity. In contrast, the lower member was deposited in an extremely dry, highly saline, and strongly reductive shallow lake with low productivity. The paleo-environment of the upper member fluctuated wildly, while that of the lower member was relatively stable. The correlation analyses between paleo-environmental indicators and TOC show that the preservation conditions and dilution rate of organic matter have limited influence on organic matter enrichment of the Lucaogou Formation. At the same time, the primary productivity is the main controlling factor.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • ALGEO T J, KUWAHARA K, SANO H, et al., 2011. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 65-83. doi: 10.1016/j.palaeo.2010.07.007
    ALGEO T J, LIU J S, 2020. A re-assessment of elemental proxies for paleoredox analysis[J]. Chemical Geology, 540: 119549. doi: 10.1016/j.chemgeo.2020.119549
    BOYNTON W V, 1984. Cosmochemistry of the rare earth elements: meteorite studies[J]. Developments in Geochemistry, 2: 63-114.
    CHENG L M, LI Y F, LU M, et al. 2022. Identification method of shale deformation structure based on whole core CT scanning: a case study of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Xinjiang oil & Gas, 18(3): 19-24. (in Chinese with English abstract)
    ESKENAZY G M, 1987. Rare earth elements in a sampled coal from the Pirin deposit, Bulgaria[J]. International Journal of Coal Geology, 7(3): 301-314. doi: 10.1016/0166-5162(87)90041-3
    FANG S H, XU H M, SONG Y, et al., 2005. Characteristics and evolution of the composite petroleum system in Jimsar depression, eastern Junggar Basin[J]. Acta Geoscientia Sinica, 26(3): 259-264. (in Chinese with English abstract)
    FENG W P, WANG F Y, WANG Z X, et al., 2020. Characteristics and origin of crude oils in the Wulanhua sag[J]. Journal of Geomechanics, 26(6): 932-940. (in Chinese with English abstract)
    GE H K, CHEN Y K, TENG W W, et al., 2021. Micro-Mechanism of Production and Method of Enhanced Oil Recovery for Jimsar Shale Oil[J]. Xinjiang oil & Gas, 17(3): 84-90 (in Chinese with English abstract).
    GUO X G, HE W J, YANG S, et al., 2019. Evaluation and application of key technologies of "Sweet Area" of shale oil in Junggar Basin: case study of Permian Lucaogou Formation in Jimusar Depression[J]. Natural Gas Geoscience, 30(8): 1168-1179. (in Chinese with English abstract)
    HATCH J R, LEVENTHAL J S, 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. [J]. Chemical Geology, 99(1-3): 65-82. doi: 10.1016/0009-2541(92)90031-Y
    HU J J, MA Y S, WANG Z X, et al., 2017. Palaeoenvironment and palaeoclimate of the middle to late Jurassic revealed by geochemical records in northern margin of Qaidam Basin[J]. Journal of Palaeogeography, 19(3): 480-490. (in Chinese with English abstract)
    JIA C Z, 2017. Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory[J]. Petroleum Exploration and Development, 44(1): 1-11. (in Chinese with English abstract) doi: 10.1016/S1876-3804(17)30002-2
    JIANG Y H, HOU D J, LI H, et al., 2020. Impact of the paleoclimate, paleoenvironment, and algae bloom: organic matter accumulation in the lacustrine Lucaogou Formation of Jimsar Sag, Junggar basin, NW China[J]. Energies, 13(6): 1488. doi: 10.3390/en13061488
    JIANG Z F, DING X J, WANG Z Q, et al., 2020. Sedimentary paleoenvironment of source rocks of Permian Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs, 32(6): 109-119. (in Chinese with English abstract)
    JIANG Z X, ZHANG W Z, LIANG C, et al., 2014. Characteristics and evaluation elements of shale oil reservoir[J]. Acta Petrolei Sinica, 35(1): 184-196. (in Chinese with English abstract)
    JIN Z J, ZHU R K, LIANG X P, et al., 2021. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 48(6): 1276-1287. (in Chinese with English abstract)
    JONES B, MANNING D A C, 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 111(1-4): 111-129. doi: 10.1016/0009-2541(94)90085-X
    KUANG L C, TANG Y, LEI D W, et al., 2012. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 39(6): 657-667. (in Chinese with English abstract)
    LIAO K X, WANG M A, PENG H, et al. 2021. Analysis of Factors Affecting the Dehydration Effect of Shale Gas Triethylene Glycol Dehydration Unit[J]Journal of Liaoning Petrochemical University, 41(5): 1-8. (in Chinese with English abstract)
    LIN X H, ZHAN Z W, ZOU Y R, et al., 2019. Elemental geochemical characteristics of the Lucaogou Formation oil shale in the southeastern Junggar Basin and its depositional environmental implications[J]. Geochimica, 48(1): 67-78. (in Chinese with English abstract)
    LIU H, CAO G, 2022. Opportunities and challenges for scientific and technological innovation and development of oil and gas production engineering in the new era[J]. Oil Drilling & Production Technology, 44(5): 529-539. DOI: 10.13639/j.odpt.2022.05.001.(in Chinese with English abstract)
    LIU D D, FAN Q Q, ZHANG C, et al., 2022. Paleoenvironment evolution of the Permian Lucaogou Formation in the southern Junggar Basin, NW China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 603: 111198. doi: 10.1016/j.palaeo.2022.111198
    LUO J C, TIAN J J, MA J H, et al., 2022. Sedimentary environment and organic matter enrichment mechanism of Permian Lucaogou Formation in Jiye-1 well area, Jimsar Sag[J]. Lithologic Reservoirs, 34(5): 73-85. (in Chinese with English abstract)
    MA W L, JIANG X Q, LI X, et al., 2021. Geochemical characteristics and paleoenvironment paleoclimate significance of mudstone in the Shang-Gan-Chai-Gou Formation at the northwestern margin of Qaidam Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(5): 1166-1180. (in Chinese with English abstract)
    MA Z L, TAN J Q, ZHAO H, et al., 2020. Organic geochemistry and geological significance of oil seepage from the Devonian of Luquan area, Yunnan Province[J]. Journal of Geomechanics, 26(6): 952-960. (in Chinese with English abstract)
    MCLENNAN S M, 1993. 100th Anniversary symposium: evolution of the earth's surface ‖ weathering and global denudation[J]. Journal of Geology, 101(2): 295-303. doi: 10.1086/648222
    MCLENNAN S M, 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2(4): 2000GC000109.
    MORADI A V, SARI A, AKKAYA P, 2016. Geochemistry of the Miocene oil shale (Hançili Formation) in the Çankırı-Çorum Basin, Central Turkey: Implications for Paleoclimate conditions, source-area weathering, provenance and tectonic setting[J]. Sedimentary Geology, 341: 289-303. doi: 10.1016/j.sedgeo.2016.05.002
    MUKHOPADHYAY P K, GORMLY J R, 1984. Hydrocarbon potential of two types of resinite[J]. Organic Geochemistry, 6: 439-454. doi: 10.1016/0146-6380(84)90067-6
    PAN Y S, HUANG Z L, LI T J, et al., 2020. Environmental response to volcanic activity and its effect on organic matter enrichment in the Permian Lucaogou Formation of the Malang Sag, Santanghu Basin, Northwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 560: 110024. doi: 10.1016/j.palaeo.2020.110024
    PENG X F, WANG L J, JIANG L P, 2012. Geochemical characteristics of the Lucaogou Formation oil shale in the southeastern margin of the Junggar Basin and its environmental implications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 31(2): 121-127, 151. (in Chinese with English abstract)
    PETERS K E, WALTERS C C, MOLDOWAN J M, 2005. The biomarker guide[M]. Cambridge: Cambridge University Press.
    QU C S, QIU L W, YANG Y Q, et al., 2017. Carbon and oxygen isotope compositions of carbonatic rock from Permian Lucaogou Formation in the Jimsar Sag, NW China and their paleolimnological significance[J]. Acta Geologica Sinica, 91(3): 605-616. (in Chinese with English abstract)
    REN X C, XIU J L, LIU L, et al., 2023. Late Paleozoic-Mesozoic structural style, deformation sequence, and formation process and mechanism of the checkboard structure in the eastern Junggar Basin[J]. Journal of Geomechanics, 29(2): 155-173. (in Chinese with English abstract)
    ROHLING E J, 2000. Paleosalinity: confidence limits and future applications[J]. Marine Geology, 163(1-4): 1-11. doi: 10.1016/S0025-3227(99)00097-3
    SCHOELL M, HWANG R J, CARLSON R M K, et al., 1994. Carbon isotopic composition of individual biomarkers in gilsonites (Utah)[J]. Organic Geochemistry, 21(6-7): 673-683. doi: 10.1016/0146-6380(94)90012-4
    SHI H, LI Z X, YANG Y Y, et al., 2022. The factors influencing the enrichment of organic matters in the Carboniferous source rocks, Ounan depression, eastern Qaidam basin[J]. Journal of Geomechanics, 28(2): 203-216. (in Chinese with English abstract)
    SHI Z S, CHEN K Y, SHI J, et al., 2003. Feasibility analysis of the application of the ratio of strontium to barium on the identifying sedimentary environment[J]. Fault-Block Oil & Gas Field, 10(2): 12-16. (in Chinese with English abstract)
    SI C S, CHEN N G, YU C F, et al., 2013. Sedimentary characteristics of tight oil reservoir in Permian Lucaogou Formation, Jimsar Sag[J]. Petroleum Geology & Experiment, 35(5): 528-533. (in Chinese with English abstract)
    SU Y, ZHA M, DING X J, et al., 2019. Petrographic, palynologic and geochemical characteristics of source rocks of the Permian Lucaogou formation in Jimsar Sag, Junggar Basin, NW China: origin of organic matter input and depositional environments[J]. Journal of Petroleum Science and Engineering, 183: 106364. doi: 10.1016/j.petrol.2019.106364
    TANG Y, ZHENG M L, WANG X T, et al., 2022. Sedimentary paleoenvironment of source rocks of Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Natural Gas Geoscience, 33(5): 677-692. (in Chinese with English abstract)
    TAO S, TANG D Z, ZHOU C Y, et al., 2009. Element Geochemical Characteristics of the Lower Assemblage Hydrocarbon Source Rocks in Southeast Sichuan-Central Guizhou (Chuandongnan-Qianzhong) Region and Its Periphery Areas and Their Implications to Sedimentary Environments[J]. Geology in China, 36(2): 397-403. (in Chinese with English abstract)
    TRIBOVILLARD N, ALGEO T J, LYONS T, et al., 2006. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012
    WANG F, LIU X C, DENG X Q, et al., 2017. Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 35(6): 1265-1273. (in Chinese with English abstract)
    WANG H, MA S Z, NIU D L, et al., 2022. Elemental geochemical characteristics of fine grained sedimentary rocks of the Lucaogou Formation in the western Jimusar Sag of the Junggar Basin and their paleo-environmental significances[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 41(1): 143-150. (in Chinese with English abstract)
    WANG Z W, FU X G, FENG X L, et al., 2017. Geochemical features of the black shales from the Wuyu Basin, southern Tibet: implications for palaeoenvironment and palaeoclimate[J]. Geological Journal, 52(2): 282-297. doi: 10.1002/gj.2756
    WEI W, ALGEO T J, 2020. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks[J]. Geochimica et Cosmochimica Acta, 287: 341-366. doi: 10.1016/j.gca.2019.06.034
    WU H G, HU W X, CAO J, et al., 2016. A unique lacustrine mixed dolomitic-clastic sequence for tight oil reservoir within the middle Permian Lucaogou Formation of the Junggar Basin, NW China: reservoir characteristics and origin[J]. Marine and Petroleum Geology, 76: 115-132. doi: 10.1016/j.marpetgeo.2016.05.007
    WU X Z, HE D F, YANG D S, et al., 2012. Structural character and hydrocarbon accumulation in the Luliang uplift, Junggar Basin[J]. Chinese Journal of Geology, 47(1): 73-91. (in Chinese with English abstract) doi: 10.3969/j.issn.0563-5020.2012.01.007
    WU Z P, ZHOU Y Q, 2000. Using the characteristic elements from meteoritic must in strata to calculate sedimentation rate[J]. Acta Sedimentologica Sinica, 18(3): 395-399. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0550.2000.03.012
    XIE W Q, TAN J Q, WANG W H, et al., 2021. Middle Jurassic lacustrine source rocks controlled by an aridification event: a case study in the northern Qaidam Basin (NW China)[J]. International Journal of Coal Geology, 242: 103779. doi: 10.1016/j.coal.2021.103779
    XU Y B, SUN P C, LI Z, et al., 2022. The geochemical characteristics and metallogenic condition of Permian Lucaogou Formation oil shale in Jimsar, Junggar Basin, Xinjiang[J]. Geology in China, 49(1): 311-323. (in Chinese with English abstract)
    ZHANG J C, LIN L M, LI Y X, et al., 2012. Classification and evaluation of shale oil[J]. Earth Science Frontiers, 19(5): 322-331. (in Chinese with English abstract)
    ZHANG S, LIU Y Q, JIAO X, et al., 2018. Sedimentary environment and Formation mechanisim of dolomitic rocks in the middle Permian Lucaogou Formation, Jimusar Depression, Junggar Basin[J]. Journal of Palaeogeography (Chinese Edition), 20(1): 33-48. (in Chinese with English abstract)
    ZHANG W W, HAN C C, TIAN J J, et al., 2021. Sequence stratigraphy division and evolutionary features of Permian Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs, 33(5): 45-58. (in Chinese with English abstract)
    ZHANG X, ZHUANG X G, TU Q J, et al., 2018. Depositional process and mechanism of organic matter accumulation of Lucaogou Shale in Southern Junggar Basin, Northwest China[J]. Earth Science, 43(2): 538-550. (in Chinese with English abstract)
    ZHANG Y S, YANG Y Q, QI Z X, et al., 2003. Sedimentary characteristics and environments of the salt-bearing series of Qianjiang Formation of the Paleogene in Qianjiang Sag of Jianghan Basin[J]. Journal of Palaeogeography, 5(1): 29-35. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1505.2003.01.003
    ZHANG Y Y, HE Z L, JIANG S, et al., 2017. Marine redox stratification during the early Cambrian (ca. 529~509 Ma) and its control on the development of organic-rich shales in Yangtze Platform[J]. Geochemistry, Geophysics, Geosystems, 18(6): 2354-2369. doi: 10.1002/2017GC006864
    ZHAO D F, GUO Y H, WANG G, et al., 2023. Organic matter enrichment mechanism of Youganwo Formation oil shale in the Maoming Basin[J]. Heliyon, 9(2): e13173. doi: 10.1016/j.heliyon.2023.e13173
    ZHAO W Z, HU S Y, HOU L H, et al., 2020. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 47(1): 1-10. (in Chinese with English abstract) doi: 10.1016/S1876-3804(20)60001-5
    ZHI D M, SONG Y, HE W J, et al., 2019. Geological characteristics, resource potential and exploration direction of shale oil in middle-lower Permian, Junggar Basin[J]. Xinjiang Petroleum Geology, 40(4): 389-401. (in Chinese with English abstract)
    ZHONG H L, PU R H, YAN H, et al., 2012. Analysis on paleosalinity and paleoenvironment of late Paleozoic in Tarim Basin[J]. Journal of Northwest University (Natural Science Edition), 42(1): 74-81. (in Chinese with English abstract)
    ZOU C N, YANG Z, CUI J W, 2013. Formation mechanism, geological characteristics and development strategy of Nonmarine shale oil in China[J]. Petroleum Exploration and Development, 40(1): 14-26. (in Chinese with English abstract)
    ZOU C N, PAN S Q, JING Z H, et al., 2020. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 41(1): 1-12. (in Chinese with English abstract) doi: 10.1038/s41401-019-0299-4
    程垒明, 李一凡, 吕明, 等, 2022. 基于全直径岩心CT扫描的页岩变形构造识别方法: 以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 新疆石油天然气, 18(3): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY202203004.htm
    方世虎, 徐怀民, 宋岩, 等, 2005. 准噶尔盆地东部吉木萨尔凹陷复合含油气系统特征及其演化[J]. 地球学报, 26(3): 259-264. doi: 10.3321/j.issn:1006-3021.2005.03.011
    冯伟平, 王飞宇, 王宗秀, 等, 2020. 乌兰花凹陷原油特征及成因[J]. 地质力学学报, 26(6): 932-940. doi: 10.12090/j.issn.1006-6616.2020.26.06.074
    葛洪魁, 陈玉琨, 滕卫卫, 等, 2021. 吉木萨尔页岩油微观产出机理与提高采收率方法探讨[J]. 新疆石油天然气, 17(3): 84-90. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSY202103015.htm
    郭旭光, 何文军, 杨森, 等, 2019. 准噶尔盆地页岩油"甜点区"评价与关键技术应用: 以吉木萨尔凹陷二叠系芦草沟组为例[J]. 天然气地球科学, 30(8): 1168-1179. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201908010.htm
    胡俊杰, 马寅生, 王宗秀, 等, 2017. 地球化学记录揭示的柴达木盆地北缘地区中—晚侏罗世古环境与古气候[J]. 古地理学报, 19(3): 480-490. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201703008.htm
    贾承造, 2017. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发, 44(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701002.htm
    姜在兴, 张文昭, 梁超, 等, 2014. 页岩油储层基本特征及评价要素[J]. 石油学报, 35(1): 184-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401027.htm
    蒋中发, 丁修建, 王忠泉, 等, 2020. 吉木萨尔凹陷二叠系芦草沟组烃源岩沉积古环境[J]. 岩性油气藏, 32(6): 109-119. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202006010.htm
    金之钧, 朱如凯, 梁新平, 等, 2021. 当前陆相页岩油勘探开发值得关注的几个问题[J]. 石油勘探与开发, 48(6): 1276-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202106021.htm
    匡立春, 唐勇, 雷德文, 等, 2012. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J]. 石油勘探与开发, 39(6): 657-667. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201206004.htm
    廖柯熹, 王敏安, 彭浩, 等. 页岩气三甘醇脱水装置脱水效果影响因素分析[J]. 辽宁石油化工大学学报, 2021, 41(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-FSSX202105001.htm
    林晓慧, 詹兆文, 邹艳荣, 等, 2019. 准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境意义[J]. 地球化学, 48(1): 67-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201901006.htm
    刘合, 曹刚. 新时期采油采气工程科技创新发展的挑战与机遇[J]. 2022, 石油钻采工艺, 44(5): 529-539. DOI: 10.13639/j.odpt.2022.05.001.
    罗锦昌, 田继军, 马静辉, 等, 2022. 吉木萨尔凹陷吉页1井区二叠系芦草沟组沉积环境及有机质富集机理[J]. 岩性油气藏, 34(5): 73-85. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202205006.htm
    马万里, 江小青, 李璇, 等, 2021. 柴达木盆地西北缘上干柴沟组泥岩地球化学特征与古环境古气候意义[J]. 矿物岩石地球化学通报, 40(5): 1166-1180. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202105019.htm
    马中良, 谭静强, 赵晗, 等, 2020. 云南禄劝地区泥盆系油苗地球化学特征及地质意义[J]. 地质力学学报, 26(6): 952-960. doi: 10.12090/j.issn.1006-6616.2020.26.06.076
    彭雪峰, 汪立今, 姜丽萍, 2012. 准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境指示意义[J]. 矿物岩石地球化学通报, 31(2): 121-127, 151. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201202004.htm
    曲长胜, 邱隆伟, 杨勇强, 等, 2017. 吉木萨尔凹陷芦草沟组碳酸盐岩碳氧同位素特征及其古湖泊学意义[J]. 地质学报, 91(3): 605-616. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201703008.htm
    任新成, 修金磊, 刘林, 等, 2023. 准噶尔东部晚古生代—中生代构造样式、变形序列及棋盘格构造的形成过程与机制[J]. 地质力学学报, 29(2): 155-173. doi: 10.12090/j.issn.1006-6616.2022113
    施辉, 李宗星, 杨元元, 等, 2022. 柴东欧南凹陷石炭系烃源岩有机质富集的影响因素[J]. 地质力学学报, 28(2): 203-216. doi: 10.12090/j.issn.1006-6616.2021135
    史忠生, 陈开远, 史军, 等, 2003. 运用锶钡比判定沉积环境的可行性分析[J]. 断块油气田, 10(2): 12-16.
    斯春松, 陈能贵, 余朝丰, 等, 2013. 吉木萨尔凹陷二叠系芦草沟组致密油储层沉积特征[J]. 石油实验地质, 35(5): 528-533. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201305011.htm
    唐勇, 郑孟林, 王霞田, 等, 2022. 准噶尔盆地玛湖凹陷风城组烃源岩沉积古环境[J]. 天然气地球科学, 33(5): 677-692. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202205001.htm
    陶树, 汤达祯, 周传祎, 等, 2009. 川东南-黔中及其周边地区下组合烃源岩元素地球化学特征及沉积环境意义[J]. 中国地质, 36(2): 397-403. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200902014.htm
    王峰, 刘玄春, 邓秀芹, 等, 2017. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报, 35(6): 1265-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201706017.htm
    王欢, 马世忠, 牛东亮, 等, 2022. 准噶尔盆地吉木萨尔凹陷西区芦草沟组细粒岩元素地球化学特征及古环境意义[J]. 矿物岩石地球化学通报, 41(1): 143-150. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202201010.htm
    吴晓智, 何登发, 杨迪生, 等, 2012. 准噶尔盆地陆梁隆起构造特征与油气成藏[J]. 地质科学, 47(1): 73-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201201008.htm
    吴智平, 周瑶琪, 2000. 一种计算沉积速率的新方法: 宇宙尘埃特征元素法[J]. 沉积学报, 18(3): 395-399. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200003011.htm
    徐银波, 孙平昌, 李昭, 等, 2022. 准噶尔盆地吉木萨尔地区二叠系芦草沟组油页岩地球化学特征与成矿条件[J]. 中国地质, 49(1): 311-323. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202201020.htm
    张金川, 林腊梅, 李玉喜, 等, 2012. 页岩油分类与评价[J]. 地学前缘, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htm
    张帅, 柳益群, 焦鑫, 等, 2018. 准噶尔盆地吉木萨尔凹陷中二叠统芦草沟组云质岩沉积环境及白云石成因探讨[J]. 古地理学报, 20(1): 33-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201801003.htm
    张文文, 韩长城, 田继军, 等, 2021. 吉木萨尔凹陷二叠系芦草沟组层序地层划分及演化特征[J]. 岩性油气藏, 33(5): 45-58. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202105005.htm
    张逊, 庄新国, 涂其军, 等, 2018. 准噶尔盆地南缘芦草沟组页岩的沉积过程及有机质富集机理[J]. 地球科学, 43(2): 538-550. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201802015.htm
    张永生, 杨玉卿, 漆智先, 等, 2003. 江汉盆地潜江凹陷古近系潜江组含盐岩系沉积特征与沉积环境[J]. 古地理学报, 5(1): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200301002.htm
    赵文智, 胡素云, 侯连华, 等, 2020. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发, 47(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001002.htm
    支东明, 宋永, 何文军, 等, 2019. 准噶尔盆地中—下二叠统页岩油地质特征、资源潜力及勘探方向[J]. 新疆石油地质, 40(4): 389-401. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201904002.htm
    钟红利, 蒲仁海, 闫华, 等, 2012. 塔里木盆地晚古生代古盐度与古环境探讨[J]. 西北大学学报(自然科学版), 42(1): 74-81. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201201017.htm
    邹才能, 杨智, 崔景伟, 等, 2013. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm
    邹才能, 潘松圻, 荆振华, 等, 2020. 页岩油气革命及影响[J]. 石油学报, 41(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001001.htm
  • 加载中

Catalog

    Figures(9)  / Tables(6)

    Article Metrics

    Article views (643) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return