Volume 25 Issue 5
Oct.  2019
Turn off MathJax
Article Contents
ZHANG Shuanhong, PEI Junling, HU Guohui, et al., 2019. GENETIC LINK BETWEEN LARGE IGNEOUS PROVINCES AND LARGE VOLUMES OF BLACK SHALE DEPOSITION AND ITS IMPLICATIONS. Journal of Geomechanics, 25 (5): 920-931. DOI: 10.12090/j.issn.1006-6616.2019.25.05.075
Citation: ZHANG Shuanhong, PEI Junling, HU Guohui, et al., 2019. GENETIC LINK BETWEEN LARGE IGNEOUS PROVINCES AND LARGE VOLUMES OF BLACK SHALE DEPOSITION AND ITS IMPLICATIONS. Journal of Geomechanics, 25 (5): 920-931. DOI: 10.12090/j.issn.1006-6616.2019.25.05.075

GENETIC LINK BETWEEN LARGE IGNEOUS PROVINCES AND LARGE VOLUMES OF BLACK SHALE DEPOSITION AND ITS IMPLICATIONS

doi: 10.12090/j.issn.1006-6616.2019.25.05.075
More Information
  • Received: 2019-09-01
  • Revised: 2019-09-23
  • Published: 2019-10-31
  • Large igneous provinces (LIPs) have a significant influence on global climate changes and mass extinction events. Previous results show that some of the Global Boundary Stratotype Section and Points (GSSPs) in the Phanerozoic international geologic time scale are corresponding to the coeval global-scale LIPs, mass extinction events and/or ocean anoxic events (OAEs) represented by black shales. However, due to limited knowledge of atmospheric oxygen concentrations, ocean redox conditions and early fossils during the Meso-Neoproterozoic Era prior to the Ediacaran period, little is known on the climate and environmental effects of LIPs and link between LIPs and black shales during a billion years in "Earth's Middle Age" (or "Boring Billion") from 1800 Ma to 800 Ma. Recent results on global distribution of the~1380 Ma LIPs and black shales indicate a temporal and genetic link between the~1380 Ma LIPs and black shales in the Columbia (Nuna) supercontinent. The~1380 Ma LIPs are widely distributed in Baltica, North America, Greenland, Siberia, Kalahari, Congo, West Africa, Amazonia, East Antarctica and West Australia; the coeval black shales have been identified in North China and Northern Australia Graton, and probably in Siberia, Brazil and India Cratons. We proposed that the~1380 Ma black shales were deposited in an and/or several large marine basins, not some restricted basins as previously regarded. Comparisons of the baddeleyite/zircon U-Pb ages of~1380 Ma LIPs and zircon U-Pb ages of tuffs from the black shales within the Xiamaling Formation indicate that global deposition of the~1380 Ma black shales are related to an oceanic anoxic event induced by environment effects of the~1380 Ma LIPs, and the coeval black shales and LIPs provide a robust natural marker for the Calymmian-Ectasian boundary at 1383 Ma. Preliminary results on global distribution of other Meso-Neoproterozoic LIPs and black shales suggest that several other stages of LIPs in "Earth's Middle Age" are correlated with coeval black shales and can potentially provide more natural markers for the Meso-Neoproterozoic geological time scale.

     

  • Full-text Translaiton by iFLYTEK

    The full translation of the current issue may be delayed. If you encounter a 404 page, please try again later.
  • loading
  • [1]
    ERNST R E. Large igneous provinces[M]. Cambridge:Cambridge University Press, 2014:653.
    [2]
    WIGNALL P B. Large igneous provinces and mass extinctions[J]. Earth-Science Reviews, 2001, 53(1-3):1-33. http://d.old.wanfangdata.com.cn/Periodical/dzlp201301015
    [3]
    SOBOLEV S V, SOBOLEV A V, KUZMIN D V, et al. Linking mantle plumes, large igneous provinces and environmental catastrophes[J]. Nature, 2011, 477(7364):312-316. doi: 10.1038/nature10385
    [4]
    WIGNALL P B. The link between large igneous province eruptions and mass extinctions[J]. Elements, 2005, 1(5):293-297. doi: 10.2113/gselements.1.5.293
    [5]
    KERR A C. Oceanic LIPs:the kiss of death[J]. Elements, 2005, 1:289-292. doi: 10.2113/gselements.1.5.289
    [6]
    KERR A C. Oceanic plateaus[M]//HOLLAND H D, TUREKIAN K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 631-667.
    [7]
    GANINO C, ARNDT N T. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces[J]. Geology, 2009, 37(4):323-326. doi: 10.1130/G25325A.1
    [8]
    SVENSEN H, JAMTVEIT B. Metamorphic fluids and global environmental changes[J]. Elements, 2010, 6(3):179-182. doi: 10.2113/gselements.6.3.179
    [9]
    BOND D P G, WIGNALL P B. Large igneous provinces and mass extinctions: an update[M]//KELLER G, KERR A C. Volcanism, Impacts, and Mass Extinctions: Causes and Effects. Boulder: Geological Society of America, 2014, 505: 29-55.
    [10]
    ERNST R E, YOUBI N. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 478:30-52. doi: 10.1016/j.palaeo.2017.03.014
    [11]
    沈树忠, 张华.什么引起五次生物大灭绝?[J].科学通报, 2017, 62(11):1119-1135. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201711007.htm

    SHEN S Z, ZHANGH Hua. What caused the five mass extinctions?[J]. Chinese Science Bulletin, 2017, 62(11):1119-1135(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201711007.htm
    [12]
    BLACK B A, NEELY R R, LAMARQUE J F, et al. Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing[J]. Nature Geoscience, 2018, 11(12):949-954. doi: 10.1038/s41561-018-0261-y
    [13]
    BROADLEY M W, BARRY P H, BALLENTINE C J, et al. End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles[J]. Nature Geoscience, 2018, 11(9):682-687. doi: 10.1038/s41561-018-0215-4
    [14]
    MARZOLI A, RENNE P R, PICCIRILLO E M, et al. Extensive 200 million-year-old continental flood basalts of the central Atlantic magmatic province[J]. Science, 1999, 284(5414):616-618. doi: 10.1126/science.284.5414.616
    [15]
    MARZOLI A, BERTRAND H, KNIGHT K B, et al. Synchrony of the central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis[J]. Geology, 2004, 32(11):973-976. doi: 10.1130/G20652.1
    [16]
    ZHOU M F, MALPAS J, SONG X Y, et al. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction[J]. Earth and Planetary Science Letters, 2002, 196(3-4):113-122. doi: 10.1016/S0012-821X(01)00608-2
    [17]
    KAMO S L, CZAMANSKE G K, AMELIN Y, et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma[J]. Earth and Planetary Science Letters, 2003, 214(1-2):75-91. doi: 10.1016/S0012-821X(03)00347-9
    [18]
    REICHOW M K, PRINGLE M S, AL'MUKHAMEDOV A I, et al. The timing and extent of the eruption of the Siberian traps large igneous province:Implications for the end-Permian environmental crisis[J]. Earth and Planetary Science Letters, 2009, 277(1-3):9-20.
    [19]
    WHITESIDE J H, OLSEN P E, EGLINTON T I, et al. Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15):6721-6725. doi: 10.1073/pnas.1001706107
    [20]
    SCHALLER M F, WRIGHT J D, KENT D V, et al. Rapid emplacement of the central Atlantic magmatic province as a net sink for CO2[J]. Earth and Planetary Science Letters, 2012, 323-324:27-39. doi: 10.1016/j.epsl.2011.12.028
    [21]
    BLACKBURN T J, OLSEN P E, BOWRING S A, et al. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province[J]. Science, 2013, 340(6135):941-945. doi: 10.1126/science.1234204
    [22]
    BURGESS S D, BOWRING S A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction[J]. Science Advances, 2015, 1(7):e1500470, doi: 10.1126/sciadv.1500470.
    [23]
    CLAPHAM M E, RENNE P R. Flood basalts and mass extinctions[J]. Annual Review of Earth and Planetary Sciences, 2019, 47:275-303. doi: 10.1146/annurev-earth-053018-060136
    [24]
    杨競红, 蒋少涌, 凌洪飞, 等.黑色页岩与大洋缺氧事件的Re-Os同位素示踪与定年研究[J].地学前缘, 2005, 12(2):143-150. doi: 10.3321/j.issn:1005-2321.2005.02.016

    YANG J H, JIANG S Y, LING H F, et al. Re-Os isotope tracing and dating of black shales and oceanic anoxic events[J]. Earth Science Frontiers, 2005, 12(2):143-150(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2005.02.016
    [25]
    LENNIGER M, NØHR-HANSEN H, HILLS L V, et al. Arctic black shale formation during Cretaceous oceanic anoxic event 2[J]. Geology, 2014, 42(9):799-802. doi: 10.1130/G35732.1
    [26]
    PEARCE C R, COHEN A S, COE A L, et al. Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic[J]. Geology, 2008, 36(3):231-234. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9427e16907594e5f28e0b8d164ec9895
    [27]
    JENKYNS H C. Geochemistry of oceanic anoxic events[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3):Q03004, doi: 10.1029/2009GC002788.
    [28]
    PERCIVAL L M E, WITT M L I, MATHER T A, et al. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE:a link to the Karoo-Ferrar Large Igneous Province[J]. Earth and Planetary Science Letters, 2015, 428:267-280. doi: 10.1016/j.epsl.2015.06.064
    [29]
    CRAIG J, BIFFI U, GALIMBERTI R F, et al. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks[J]. Marine and Petroleum Geology, 2013, 40:1-47. doi: 10.1016/j.marpetgeo.2012.09.011
    [30]
    ARTHUR M A, SAGEMAN B B. Marine black shales:depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 1994, 22:499-551. doi: 10.1146/annurev.ea.22.050194.002435
    [31]
    SCHLANGER S O, JENKYNS H C. Cretaceous oceanic anoxic events:causes and consequences[J]. Geologie En Mijnbouw, 1976, 55(3):179-184. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025046758/
    [32]
    ALEXANDRE J T, TUENTER E, HENSTRA G A, et al. The mid-Cretaceous North Atlantic nutrient trap:Black shales and OAEs[J]. Paleoceanography and Paleoclimatology, 2010, 25(4):PA4201, doi: 10.1029/2010PA001925.
    [33]
    WINGUTH C, WINGUTH A M E. Simulating Permian-Triassic oceanic anoxia distribution:Implications for species extinction and recovery[J]. Geology, 2012, 40(2):127-130. http://cn.bing.com/academic/profile?id=92d3106df93be7d8c19de3254f497ed3&encoded=0&v=paper_preview&mkt=zh-cn
    [34]
    SONG H J, WIGNALL P B, TONG J N, et al. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition and the link with end-Permian extinction and recovery[J]. Earth and Planetary Science Letters, 2012, 353-354:12-21. doi: 10.1016/j.epsl.2012.07.005
    [35]
    XU W M, RUHL M, HESSELBO S P, et al. Orbital pacing of the Early Jurassic carbon cycle, black-shale formation and seabed methane seepage[J]. Sedimentology, 2017, 64(1):127-149. doi: 10.1111/sed.12329
    [36]
    UVEGES B T, JUNIUM C K, BOYER D L, et al. Biogeochemical controls on black shale deposition during the Frasnian-Famennian biotic crisis in the Illinois and Appalachian Basins, USA, inferred from stable isotopes of nitrogen and carbon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 531:108787. doi: 10.1016/j.palaeo.2018.05.031
    [37]
    HOLLAND H D. The oxygenation of the atmosphere and oceans[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2006, 361(1470):903-915. doi: 10.1098/rstb.2006.1838
    [38]
    YOUNG G M. Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history[J]. Geoscience Frontiers, 2013, 4(3):247-261. doi: 10.1016/j.gsf.2012.07.003
    [39]
    CAWOOD P A, HAWKESWORTH C J. Earth's middle age[J]. Geology, 2014, 42(6):503-506. doi: 10.1130/G35402.1
    [40]
    ZHAI M G, HU B, ZHAO T P, et al. Late Paleoproterozoic-Neoproterozoic multi-rifting events in the North China Craton and their geological significance:a study advance and review[J]. Tectonophysics, 2015, 662:153-166. doi: 10.1016/j.tecto.2015.01.019
    [41]
    ALLEN P A, ERIKSSON P G, ALKMIM F F, et al. Chapter 2 Classification of basins, with special reference to Proterozoic examples[J]. Geological Society, London, Memoirs, 2015, 43(1):5-28. doi: 10.1144/M43.2
    [42]
    LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature, 2014, 506(7488):307-315. doi: 10.1038/nature13068
    [43]
    CANFIELD D E. The early history of atmospheric oxygen:homage to Robert M. Garrels[J]. Annual Review of Earth and Planetary Sciences, 2015, 33:1-36. doi: 10.1146-annurev.earth.33.092203.122711/
    [44]
    LEE C T A, YEUNG L Y, MCKENZIE N R, et al. Two-step rise of atmospheric oxygen linked to the growth of continents[J]. Nature Geoscience, 2016, 9(6):417-424. doi: 10.1038/ngeo2707
    [45]
    CANFIELD D E. A new model for Proterozoic ocean chemistry[J]. Nature, 1998, 396(6710):450-453. doi: 10.1038/24839
    [46]
    CANFIELD D E, HABICHT K S, THAMDRUP B. The Archean sulfur cycle and the early history of atmospheric oxygen[J]. Science, 2000, 288(5466):658-661. doi: 10.1126/science.288.5466.658
    [47]
    CANFIELD D E, POULTON S W, NARBONNE G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808):92-95. doi: 10.1126/science.1135013
    [48]
    OCH L M, SHIELDS-ZHOU G A. The Neoproterozoic oxygenation event:Environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews, 2012, 110(1-4):26-57. doi: 10.1016/j.earscirev.2011.09.004
    [49]
    PLANAVSKY N J, REINHARD C T, WANG X L, et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals[J]. Science, 2014, 346(6209):635-638. doi: 10.1126/science.1258410
    [50]
    ZHANG S C, WANG X M, WANG H J, et al. Reply to Planavsky et al.:Strong evidence for high atmospheric oxygen levels 1, 400 million years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(19):E2552-E2553. doi: 10.1073/pnas.1603982113
    [51]
    ZHU S X, ZHU M Y, KNOLL A H, et al. Decimetre-scale multicellular eukaryotes from the 1. 56-billion-year-old Gaoyuzhuang Formation in North China[J]. Nature Communications, 2016, 7:11500, doi: 10.1038/ncomms11500.
    [52]
    阎玉忠, 朱士兴.山西永济白草坪组具刺疑源类的发现及其地质意义[J].微体古生物学报, 1992, 9(3):267-282. http://www.cnki.com.cn/Article/CJFDTotal-WSGT199203004.htm

    YAN Y Z, ZHU S X. Discovery of Acanthomorphic acritarchs from the Baicaoping formation in Yongji, Shanxi and its geological significance[J]. Acta Micropalaeontologica Sinica, 1992, 9(3):267-282(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-WSGT199203004.htm
    [53]
    尹崇玉, 高林志.中国早期具刺疑源类的演化及生物地层学意义[J].地质学报, 1995, 69(4):360-371. doi: 10.3321/j.issn:0001-5717.1995.04.001

    YIN C Y, GAO L Z. The early evolution of the acanthomorphic acritarchs in China and their biostratigraphical implication[J]. Acta Geologica Sinica, 1995, 69(4):360-371(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.1995.04.001
    [54]
    YIN L M. Acanthomorphic acritarchs from Meso-Neoproterozoic shales of the Ruyang Group, Shanxi, China[J]. Review of Palaeobotany and Palynology, 1997, 98(1-2):15-25. doi: 10.1016/S0034-6667(97)00022-5
    [55]
    尹磊明, 边立曾, 袁训来.山西中元古代汝阳群分枝管状藻体和显微环状螺旋加厚管体的发现[J].中国科学(D辑), 2003, 33(8):769-774. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200308008

    YIN L M, BIAN L Z, YUAN X L. Discovery of branched tubular algae and microscopic tubes with annular-helical thickening from the Mesoproterozoic Ruyang Group of Shanxi, North China[J]. Science in China Series D Earth Sciences, 2004, 47(10):880-885. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200308008
    [56]
    尹磊明, 袁训来, 边立曾, 等.东秦岭北坡中元古代晚期微体生物群一个早期生命的新窗口[J].古生物学报, 2004, 43(1):1-13. http://d.old.wanfangdata.com.cn/Periodical/gswxb200401001

    YIN L M, YUAN X L, BIAN L Z, et al. Late Mesoproterozoic microfossil assemblage on northern slope of eastern Qinling mountains, China:A new window on early Eukaryotes[J]. Acta Palaeontologica Sinica, 2004, 43(1):1-13(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gswxb200401001
    [57]
    高维, 张传恒, 王自强.华北古陆南缘豫西新元古代大型疑源类及古地理环境分析[J].中国地质, 2011, 38(5):1232-1243. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201105010

    GAO W, ZHANG C H, WANG Z Q. The discovery of large-scale acanthomorphic acritarch assemblage on the southern margin of North China old land and an analysis of its paleogeographic environment[J]. Geology in China, 2011, 38(5):1232-1243(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201105010
    [58]
    尹崇玉, 高林志.豫西鲁山洛峪口组宏观藻类的发现及地质意义[J].地质学报, 2000, 74(4):339-344. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200004006

    YIN C Y, GAO L Z. Discovery of macroscopic algal fossils in the Luoyukou Formation Lushan County, Western Henan, and its stratigraphic significance[J]. Acta Geologica Sinica, 2000, 74(4):339-344(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb200004006
    [59]
    胡健民, 孟庆任, 李文厚.豫西前寒武纪汝阳群蠕虫状遗迹化石[J].科学通报, 1996, 41(20):1868-1870. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb199620014

    HU J M, MENG Q R, LI W H. Vermiform trace fossils from the Precambrian Ruyang Group, western Henan[J]. Chinese Science Bulletin, 1997, 42(3):251-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb199620014
    [60]
    苏文博, 李怀坤, 徐莉, 等.华北克拉通南缘洛峪群-汝阳群属于中元古界长城系——河南汝州洛峪口组层凝灰岩锆石LA-MC-ICPMS U-Pb年龄的直接约束[J].地质调查与研究, 2012, 35(2):96-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201202003

    SU W B, LI H K, XU L, et al. Luoyu and Ruyang Group at the south margin of the North China Craton (NCC) should belong in the Mesoproterozoic Changchengian System:direct constraints from the LA-MC-ICPMS U-Pb age of the Tuffite in the Luoyukou Formation, Ruzhou, Henan, China[J]. Geological Survey and Research, 2012, 35(2):96-108(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201202003
    [61]
    李承东, 赵利刚, 常青松, 等.豫西洛峪口组凝灰岩锆石LA-MC-ICPMS U-Pb年龄及地层归属讨论[J].中国地质, 2017, 44(3):511-525. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201703009

    LI C D, ZHAO L G, CHANG Q S, et al. Zircon U-Pb dating of tuff bed from Luoyukou Formation in western Henan Province on the southern margin of the North China Craton and its stratigraphic attribution discussion[J]. Geology in China, 2017, 44(3):511-525(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201703009
    [62]
    SEILACHER A, BOSE P K, PFLVGER F. Triploblastic animals more than 1 billion years ago:Trace fossil evidence from India[J]. Science, 1998, 282(5386):80-83. doi: 10.1126/science.282.5386.80
    [63]
    RASMUSSEN B, BOSE P K, SARKAR S, et al. 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, Lower Vindhyan, India:possible implications for early evolution of animals[J]. Geology, 2002, 30(2):103-106. http://cn.bing.com/academic/profile?id=d7d3ab1fbcbaabcba67ae99d36f6d845&encoded=0&v=paper_preview&mkt=zh-cn
    [64]
    ZHANG S C, WANG X M, WANG H J, et al. Sufficient oxygen for animal respiration 1, 400 million years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(7):1731-1736. doi: 10.1073/pnas.1523449113
    [65]
    ZHANG K, ZHU X K, WOOD R A, et al. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes[J]. Nature Geoscience, 2018, 11(5):345-350. doi: 10.1038/s41561-018-0111-y
    [66]
    DIAMOND C W, LYONS T W. Mid-Proterozoic redox evolution and the possibility of transient oxygenation events[J]. Emerging Topics in Life Sciences, 2018, 2(2):235-245. doi: 10.1042/ETLS20170146
    [67]
    PLANAVSKY N J, SLACK J F, CANNON W F, et al. Evidence for episodic oxygenation in a weakly redox-buffered deep mid-Proterozoic ocean[J]. Chemical Geology, 2018, 483:581-594. doi: 10.1016/j.chemgeo.2018.03.028
    [68]
    LARGE R R, MUKHERJEE I, GREGORY D D, et al. Ocean and atmosphere geochemical proxies derived from trace elements in marine pyrite:Implications for ore genesis in sedimentary basins[J]. Economic Geology, 2017, 112(2):423-450. doi: 10.2113/econgeo.112.2.423
    [69]
    吉利明, 陈践发, 郑建京, 等.华北燕山地区中新元古代沉积记录及其古气候、古环境特征[J].地球科学进展, 2001, 16(6):777-784. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200106006

    JI L M, CHEN J F, ZHENG J J, et al. Sedimental records and characteristics of palaeoclimate and palaeoenvironment in the Yanshan area, North China in the Mesoprot-erozoic and the Neoproterozoic[J]. Advance in Earth Sciences, 2001, 16(6):777-784. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200106006
    [70]
    KLEIN C. Some Precambrian banded iron-formations (BIFs) from around the world:Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins[J]. American Mineralogist, 2005, 90(10):1473-1499. doi: 10.2138/am.2005.1871
    [71]
    ERNST R E, WINGATE M T D, BUCHAN K L, et al. Global record of 1600-700 Ma Large Igneous Provinces (LIPs):implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents[J]. Precambrian Research, 2008, 160(1-2):159-178. doi: 10.1016/j.precamres.2007.04.019
    [72]
    RAVIZZA G, TUREKIAN K K. Application of the 187Re-187Os system to black shale geochronometry[J]. Geochimica et Cosmochimica Acta, 1989, 53(12):3257-3262. doi: 10.1016/0016-7037(89)90105-1
    [73]
    KENDALL B, CREASER R A, SELBY D. Re-Os geochronology of postglacial black shales in Australia:Constraints on the timing of "Sturtian" glaciation[J]. Geology, 2006, 34(9):729-732. doi: 10.1130/G22775.1
    [74]
    TURGEON S C, CREASER R A, ALGEO T J. Re-Os depositional ages and seawater Os estimates for the Frasnian-Famennian boundary:Implications for weathering rates, land plant evolution, and extinction mechanisms[J]. Earth and Planetary Science Letters, 2007, 261(3-4):649-661. doi: 10.1016/j.epsl.2007.07.031
    [75]
    XU G P, HANNAH J L, STEIN H J, et al. Re-Os geochronology of Arctic black shales to evaluate the Anisian-Ladinian boundary and global faunal correlations[J]. Earth and Planetary Science Letters, 2009, 288(3-4):581-587. doi: 10.1016/j.epsl.2009.10.022
    [76]
    KENDALL B, CREASER R A, GORDON G W, et al. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia[J]. Geochimica et Cosmochimica Acta, 2009, 73(9):2534-2558. doi: 10.1016/j.gca.2009.02.013
    [77]
    ACKEN D V, THOMSON D, RAINBIRD R H, et al. Constraining the depositional history of the Neoproterozoic Shaler Supergroup, Amundsen Basin, NW Canada:Rhenium-osmium dating of black shales from the Wynniatt and Boot Inlet Formations[J]. Precambrian Research, 2013, 236:124-131. doi: 10.1016/j.precamres.2013.07.012
    [78]
    GEBOY N J, KAUFMAN A J, WALKER R J, et al. Re-Os age constraints and new observations of Proterozoic glacial deposits in the Vazante Group, Brazil[J]. Precambrian Research, 2013, 238:199-213. doi: 10.1016/j.precamres.2013.10.010
    [79]
    BERTONI M E, ROONEY A D, SELBY D, et al. Neoproterozoic Re-Os systematics of organic-rich rocks in the São Francisco Basin, Brazil and implications for hydrocarbon exploration[J]. Precambrian Research, 2014, 255:355-366. doi: 10.1016/j.precamres.2014.10.010
    [80]
    LIU Y F, BAGAS L, NIE F J, et al. Re-Os system of black schist from the Mesoproterozoic Bayan Obo Group, Central Inner Mongolia, China and its geological implications[J]. Lithos, 2016, 261:296-306. doi: 10.1016/j.lithos.2015.11.023
    [81]
    高林志, 张传恒, 史晓颖, 等.华北青白口系下马岭组凝灰岩锆石SHRIMP U-Pb定年[J].地质通报, 2007, 26(3):249-255. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200703001

    GAO L Z, ZHANG C H, SHI X Y, et al. Zircon SHRIMP U-Pb dating of the tuff bed in the Xiamaling Formation of the Qingbaikouan System in North China[J]. Geological Bulletin of China, 2007, 26(3):249-255(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgqydz200703001
    [82]
    高林志, 张传恒, 尹崇玉, 等.华北古陆中-新元古代年代地层框架SHRIMP锆石年龄新依据[J].地球学报, 2008, 29(3):366-376. http://d.old.wanfangdata.com.cn/Periodical/dqxb200803010

    GAO L Z, ZHANG C H, YIN C Y, et al. SHRIMP zircon ages:basis for refining the chronostratigraphic classification of the Meso-and Neoproterozoic strata in North China Old Land[J]. Acta Geoscientica Sinica, 2008, 29(3):366-376(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqxb200803010
    [83]
    高林志, 张传恒, 史晓颖, 等.华北古陆下马岭组归属中元古界的锆石SHRIMP年龄新证据[J].科学通报, 2008, 53(21):2617-2623. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200821013

    GAO L Z, ZHANG C H, SHI X Y, et al. Mesoproterozoic age for Xiamaling formation in North China Plate indicated by zircon SHRIMP dating[J]. Chinese Science Bulletin, 2008, 53(17):2665-2671. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200821013
    [84]
    SU W B, ZHANG S H, HUFF W D, et al. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation:Implications for revised subdivision of the Meso-to Neoproterozoic history of the North China Craton[J]. Gondwana Research, 2008, 14(3):543-553. http://cn.bing.com/academic/profile?id=40a009f8fe781501717168d2481ebc9d&encoded=0&v=paper_preview&mkt=zh-cn
    [85]
    苏文博, 李怀坤, HUFF W D, 等.铁岭组钾质斑脱岩锆石SHRIMP U-Pb年代学研究及其地质意义[J].科学通报, 2010, 55(22):2197-2206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201022005

    SU W B, LI H K, HUFF W D, et al. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation, North China[J]. Chinese Science Bulletin, 2010, 55(29):3312-3323. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201022005
    [86]
    孙会一, 高林志, 包创, 等.河北宽城中元古代串岭沟组凝灰岩SHRIMP锆石U-Pb年龄及其地质意义[J].地质学报, 2013, 87(4):591-596. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201304012

    SUN H Y, GAO L Z, BAO C, et al. SHRIMP zircon U-Pb of Mesoproterozoic Chuanlinggou Formation from Kuancheng County in Hebei Province and its geological implications[J]. Acta Geologica Sinica, 2013, 87(4):591-596(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201304012
    [87]
    ZHANG S C, WANG X M, HAMMARLUND E U, et al. Orbital forcing of climate 1.4 billion years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12):E1406-E1413. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7368572d8c27afdeeaf32a0489df722c
    [88]
    刘典波, 王小琳, 张恒石, 等.华北串岭沟组凝灰岩锆石SHRIMP年龄及其地层学意义[J].地学前缘, 2019, 26(3):183-189. http://d.old.wanfangdata.com.cn/Periodical/dxqy201903022

    LIU D B, WANG X L, ZHANG H S, et al. Zircon SHRIMP U-Pb age of the Chuanlinggou Formation of the Changcheng Group, North China and the stratigraphic implications[J]. Earth Science Frontiers, 2019, 26(3):183-189(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201903022
    [89]
    ZHANG S H, ERNST R E, PEI J L, et al. A temporal and causal link between ca. 1380 Ma large igneous provinces and black shales:Implications for the Mesoproterozoic time scale and paleoenvironment[J]. Geology, 2018, 46(11):963-966.
    [90]
    ZHAO G C, CAWOOD P A, WILDE S A, et al. A review of global 2.1~1.8 Ga orogens:implications for a pre-Rodinia supercontinent[J]. Earth-Science Review, 2002, 59(1-4):125-162. doi: 10.1016/S0012-8252(02)00073-9
    [91]
    EVANS D A D, MITCHELL R N. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna[J]. Geology, 2011, 39(5):443-446. doi: 10.1130/G31654.1
    [92]
    ZHANG S H, LI Z X, EVANS D A D, et al. Pre-Rodinia supercontinent Nuna shaping up:A global synthesis with new paleomagnetic results from North China[J]. Earth and Planetary Science Letters, 2012, 353-354:145-155. doi: 10.1016/j.epsl.2012.07.034
    [93]
    PISAREVSKY S A, ELMING S Å, PESONEN L J, et al. Mesoproterozoic paleogeography:supercontinent and beyond[J]. Precambrian Research, 2014, 244:207-225. doi: 10.1016/j.precamres.2013.05.014
    [94]
    ZHANG S H, ERNST R E, PEI J L, et al. LIPs (large igneous provinces) and anoxia events in 'the Boring Billion'[M]//ERNST R E, SUWAIDI A A, BEKKER A, et al. Environmental Change and Large Igneous Provinces: The Deadly Kiss of LIPs. American Geophysical Union and John Wiley & Sons, Inc., 2019. (in press)
  • 加载中

Catalog

    Figures(9)

    Article Metrics

    Article views (651) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return