Citation: | XIN Peng, WANG Tao, LIU Jiamei, et al., 2022. The geological structure and sliding mode of the slopes in the Yigong landslide source area, Tibet. Journal of Geomechanics, 28 (6): 1012-1023. DOI: 10.12090/j.issn.1006-6616.2022072 |
The unstable slopes of BH01, BH02, and BH03 in the Yigong landslide source area in Tibet threaten the safety of major engineering facilities downstream. In order to prevent and control the disaster risk caused by the high-elevation sliding of blocks, it is urgent to analyze the geological structure of the slope in the above-mentioned source area and their deformation trends. Based on the Pleiades digital elevation model with a precision of 2 m and its topographical shadow, this paper draws up evidence from three aspects: quantitative geomorphology, geological structure, and landslide science. In addition, it is preliminarily determined that the source area of the Yigong landslide has four secondary slope units, including the cuesta in the front imbricated thrust-fault zone, the block in the thrust-fault zone, the block in the strike-slip fault zone, and the NE-trending rift zone. There are two primary control structural planes in the slope, dipping southeast and southwest, respectively. The geological survey of the line has confirmed that the above two groups of structural planes are related to thrust faults and strike-slip faults in the imbricated nappe. The NE-trending rift crosscutting the ridge may be related to the recent EW-extensional deformation of the nappe. With the above-mentioned geological structures, the slopes in the Yigong landslide source area show multi-stage and multi-phase deep sliding along the NE-trending rift zone and have the creep-tension-shear sliding mechanism with rock landslide. According to the extension depth of the tensile fractures in the source area, the BH02 block has the potential risk of accelerated slippage. Moreover, the BH03 block is also unstable.
ABD EL-WAHED M, HARRAZ H, EL-BEHAIRY M H, 2016. Transpressional imbricate thrust zones controlling gold mineralization in the central eastern desert of Egypt[J]. Ore Geology Reviews, 78: 424-446. doi: 10.1016/j.oregeorev.2016.03.022
|
DAI X J, YIN Y P, XING A G, 2019. Simulation and dynamic analysis of Yigong rockslide-debris avalanche-dam breaking disaster chain[J]. The Chinese Journal of Geological Hazard and Control, 30(5): 1-8. (in Chinese with English abstract)
|
DING L, ZHONG D L, 2013. The tectonic evolution of the eastern Himalaya syntaxis since the collision of the Indian and Eurasian plates[J]. Chinese Journal of Geology, 48(2): 317-333. (in Chinese with English abstract)
|
DU S H, ZHANG X Y, ZHANG G C, et al., 2021. Development characteristics of unloading zones of high and steep bank slope in the Yiong Tsangpo of Tibet and its engineering significance[J]. Geological Bulletin of China, 40(12): 2043-2051. (in Chinese with English abstract) doi: 10.12097/j.issn.1671-2552.2021.12.007
|
EL BEDOUI S, GUGLIELMI Y, LEBOURG T, et al., 2009. Deep-seated failure propagation in a fractured rock slope over 10, 000 years: The La Clapière slope, the south-eastern French Alps. Geomorphology, 105(3-4): 232-238. doi: 10.1016/j.geomorph.2008.09.025
|
FU X L, TANG M G, YE R Q, et al., 2021. Study on deformation and stability of hydrodynamic landslide under different reservoir water fluctuation modes[J]. Water Resources and Hydropower Engineering, 52(1): 201-211. (in Chinese with English abstract)
|
GUO C B, MONTGOMERY D R, ZHANG Y S, et al., 2020. Evidence for repeated failure of the giant Yigong landslide on the edge of the Tibetan Plateau[J]. Scientific Reports, 10(1): 14371. doi: 10.1038/s41598-020-71335-w
|
HU L, XIN P, WANG T, et al., 2021. Centrifuge model tests on the near-horizontal slide of hard soil-soft rock landslides[J]. Journal of Geomechanics, 27(1): 73-82. (in Chinese with English abstract)
|
HU M J, CHENG Q G, WANG F W, 2009. Experimental study on formation of Yigong long-distance high-speed landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 28(1): 138-143. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2009.01.018
|
LHAMO Y, JI J Q, XU Q Q, et al., 2019. Fluvial geomorphological characteristics and its evolution of the Parlung Zangbo in Southeast Tibet[J]. Chinese Journal of Geology, 54(4): 1062-1084. (in Chinese with English abstract)
|
LI J, CHEN N S, OUYANG C J, et al., 2017. Volume of loose materials and the analysis of possibility of blocking and dam break triggered by debris flows in Zhamunonggou[J]. Journal of Catastrophology, 32(1): 80-84, 116. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2017.01.014
|
LI J, CHEN N S, LIU M, et al., 2018. Analysis of main factors for landslide-triggered debris flow in Zhamunong gully on April 9th, 2000[J]. South-to-North Water Transfers and Water Science & Technology, 16(6): 187-193. (in Chinese with English abstract)
|
LI J H, ZHANG Y Q, ZHAO G C, et al., 2017. New insights into Phanerozoic tectonics of South China: early Paleozoic sinistral and Triassic dextral transpression in the east Wuyishan and Chencai domains, NE Cathaysia[J]. Tectonics, 36(5): 819-853. doi: 10.1002/2016TC004461
|
LIU W, 2002. Study on the characteristics of huge scale-super Highspeed-long distance landslide chain in Yigong, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 13(3): 9-18. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2002.03.002
|
LIU Z, LI B, HE K, et al., 2020. An analysis of dynamic response characteristics of the Yigong Landslide in Tibet under strong earthquake[J]. Journal of Geomechanics, 26(4): 471-480. (in Chinese with English abstract)
|
LU X Y, YANG M G, ZHAO D, et al., 2000. Causes and outburst analysis of a large landslide in Zhamulonggou, Yigongzangbu, Tibet[C]//Proceedings of the sixth National Engineering Geology Congress. Beijing: Geological Society of China: 263-264. (in Chinese)
|
LV J T, WANG Z H, ZHOU C H, 2003. Discussion on the Occurrence of Yigong Landslide in Tibet[J]. Earth Science——Journal of China University of Geosciences, 28(1): 107-110. (in Chinese with English abstract)
|
MO Y C, ZUO S Y, WU Z T, et al., 2021. Experiment study on in-situ shearing characteristics and crack propagation of shale structural plane[J]. Water Resources and Hydropower Engineering, 52(3): 134-143. (in Chinese with English abstract)
|
REN S, 2021. Numerical simulation study on the stability of unfavorable geological bodies of a high speed railway[J]. Railway Investigation and Surveying, 47(6): 39-43. (in Chinese with English abstract)
|
TANG P, 2021. Study on critical tension depth and stability in rockslides that conform to the "creep-tension-shear" mechanism[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
|
WANG Z, ZHAO C Y, LIU X J, et al., 2021. Evolution analysis and deformation monitoring of Yigong landslide in Tibet with optical remote sensing and InSAR[J]. Geomatics and Information Science of Wuhan University, 46(10): 1569-1578. (in Chinese with English abstract)
|
WANG Z H, LV J T, 2001. Understand Yigong landslide in Tibet based on the satellite image[J]. Journal of Remote Sensing, 5(4): 312-316. (in Chinese with English abstract)
|
WU A Q, 2019. Series methods of analyzing rock mass stability based on key block theory and their applications to Three Gorges Project[J]. Journal of Yangtze River Scientific Research Institute, 36(2): 1-7. (in Chinese with English abstract)
|
XU L M, WANG T Z, QI D Q, et al., 2004. Study on geotechnical shear band localization: retrospect and prospect[J]. Chinese Quarterly of Mechanics, 25(4): 484-489. (in Chinese with English abstract) doi: 10.3969/j.issn.0254-0053.2004.04.008
|
XU Q, WANG S T, CHAI H J, et al., 2007. The rock avalanche-flow landslide event in Yigong of Tibet[C]//Proceedings of the first Academic Conference on Rock mechanics and Engineering Examples in China. Sanya: Chinese Society for Rock Mechanics & Engineering: 53-58. (in Chinese)
|
XUE L, QIN S Q, PAN X H, CHEN H G, 2018. Mechanism and physical prediction model of instability of the locked-segment type slopes[J]. Journal of Engineering Geology, 26(1): 179-192. (in Chinese with English abstract)
|
YIN Y P, 2000. Rapid huge landslide and hazard reduction of Yigong River in the Bomi, Tibet[J]. Hydrogeology and Engineering Geology, 27(4): 8-11. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2000.04.003
|
YUAN H, GUO C B, WU R A, et al., 2021. Research progress and prospects of the giant Yigong long run-out landslide, Tibetan Plateau, China[J/OL]. Geological Bulletin of China, 1-19 (2021-12-28). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=ZQYD20211224001&uniplatform=NZKPT&v=6NsVd1mv4-TVf339iB4QJJtzUauj0xYWfAZlPDk7X7nkxg43Nada9LHlKwA9CQp8. (in Chinese with English abstract)
|
ZHANG J J, DING L, 2003. East-west extension in Tibetan Plateau and its significance to tectonic evolution[J]. Chinese Journal of Geology, 38(2): 179-189. (in Chinese with English abstract) doi: 10.3321/j.issn:0563-5020.2003.02.005
|
ZHANG J J, JI J Q, ZHONG D L, et al., 2004. Structural pattern of eastern Himalayan Syntaxis in Namjagbarwa and its formation process[J]. Science in China Series D: Earth Sciences, 47(2): 138-150. doi: 10.1360/02yd0042
|
ZHANG J J, LIU J K, GAO B, et al., 2018. Characteristics of material sources of Galongqu glacial debris flow and the influence to Zhamo road[J]. Journal of Geomechanics, 24(1): 106-115. (in Chinese with English abstract)
|
ZHANG Y S, DU G L, GUO C B, et al., 2021. Research on typical geomechanical model of high-position landslides on the Sichuan-Tibet traffic corridor[J]. Acta Geologica Sinica, 95(3): 605-617. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2021.03.001
|
ZHAO Y F, GONG W B, JIANG W, et al., 2021. Multi-stage characteristics and tectonic significance of the Jiali fault in Guxiang-Tongmai section, South Tibet[J]. Geoscience, 35(1): 220-233. (in Chinese with English abstract)
|
ZHOU J W, CUI P, HAO M H, 2016. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China[J]. Landslides, 13(1): 39-54. doi: 10.1007/s10346-014-0553-2
|
戴兴建, 殷跃平, 邢爱国, 2019. 易贡滑坡-碎屑流-堰塞坝溃坝链生灾害全过程模拟与动态特征分析[J]. 中国地质灾害与防治学报, 30(5): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201905001.htm
|
丁林, 钟大赉, 2013. 印度与欧亚板块碰撞以来东喜马拉雅构造结的演化[J]. 地质科学, 48(2): 317-333. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201302003.htm
|
杜世回, 张晓宇, 章广成, 等, 2021. 西藏易贡藏布高陡岸坡卸荷带发育特征及其工程意义[J]. 地质通报, 40(12): 2043-2051. doi: 10.12097/j.issn.1671-2552.2021.12.007
|
付小林, 汤明高, 叶润青, 等, 2021. 不同库水消落方式下动水压力型滑坡变形与稳定性响应研究[J]. 水利水电技术, 52(1): 201-211. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202101021.htm
|
胡乐, 辛鹏, 王涛, 等, 2021. 硬土软岩滑坡近水平滑移的离心机模型试验研究[J]. 地质力学学报, 27(1): 73-82. doi: 10.12090/j.issn.1006-6616.2021.27.01.008
|
胡明鉴, 程谦恭, 汪发武, 2009. 易贡远程高速滑坡形成原因试验探索[J]. 岩石力学与工程学报, 28(1): 138-143. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200901021.htm
|
李俊, 陈宁生, 欧阳朝军, 等, 2017. 扎木弄沟滑坡型泥石流物源及堵河溃坝可能性分析[J]. 灾害学, 32(1): 80-84, 116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201701015.htm
|
李俊, 陈宁生, 刘美, 等, 2018. 2000年易贡乡扎木弄沟滑坡型泥石流主控因素分析[J]. 南水北调与水利科技, 16(6): 187-193. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201806026.htm
|
刘伟, 2002. 西藏易贡巨型超高速远程滑坡地质灾害链特征研析[J]. 中国地质灾害与防治学报, 13(3): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200203001.htm
|
刘铮, 李滨, 贺凯, 等, 2020. 地震作用下西藏易贡滑坡动力响应特征分析[J]. 地质力学学报, 26(4): 471-480. doi: 10.12090/j.issn.1006-6616.2020.26.04.040
|
鲁修元, 杨明刚, 赵丹, 等, 2000. 西藏易贡藏布扎木弄沟特大型滑坡成因及溃决分析[C]//第六届全国工程地质大会论文集. 北京: 中国地质学会: 263-264.
|
吕杰堂, 王治华, 周成虎, 2003. 西藏易贡大滑坡成因探讨[J]. 地球科学——中国地质大学学报, 28(1): 107-110. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200301018.htm
|
莫云川, 左双英, 吴占廷, 等, 2021. 页岩结构面原位剪切特性及裂缝扩展试验研究[J]. 水利水电技术, 52(3): 134-143. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202103015.htm
|
任申, 2021. 某高速铁路不良地质体稳定性研究[J]. 铁道勘察, 47(6): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TLHC202106008.htm
|
唐鹏, 2021. "蠕滑-拉裂-剪断"型锁固岩质滑坡后缘拉裂临界深度与稳定性研究[D]. 成都: 成都理工大学.
|
王哲, 赵超英, 刘晓杰, 等, 2021. 西藏易贡滑坡演化光学遥感分析与InSAR形变监测[J]. 武汉大学学报(信息科学版), 46(10): 1569-1578. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202110015.htm
|
王治华, 吕杰堂, 2001. 从卫星图像上认识西藏易贡滑坡[J]. 遥感学报, 5(4): 312-316. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200104011.htm
|
邬爱清, 2019. 基于关键块体理论的岩体稳定性分析方法及其在三峡工程中的应用[J]. 长江科学院院报, 36(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201902004.htm
|
徐连民, 王天竹, 祁德庆, 等, 2004. 岩土中的剪切带局部化问题研究: 回顾与展望[J]. 力学季刊, 25(4): 484-489. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX200404007.htm
|
许强, 王士天, 柴贺军, 等, 2007. 西藏易贡特大山体崩塌滑坡事件[C]//中国岩石力学与工程实例第一届学术会议论文集. 三亚: 中国岩石力学与工程学会: 53-58.
|
薛雷, 秦四清, 泮晓华, 等, 2018. 锁固型斜坡失稳机理及其物理预测模型[J]. 工程地质学报, 26(1): 179-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801020.htm
|
央金拉姆, 季建清, 徐芹芹, 等, 2019. 藏东南帕隆藏布现今河流地貌特征及其晚第四纪演化[J]. 地质科学, 54(4): 1062-1084.
|
殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质, 27(4): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200004002.htm
|
袁浩, 郭长宝, 吴瑞安, 等, 2021. 西藏易贡高位远程滑坡研究进展与展望[J/OL]. 地质通报, 1-19 (2021-12-28). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=ZQYD20211224001&uniplatform=NZKPT&v=6NsVd1mv4-TVf339iB4QJJtzUauj0xYWfAZlPDk7X7nkxg43Nada9LHlKwA9CQp8.
|
张佳佳, 刘建康, 高波, 等, 2018. 藏东南嘎龙曲冰川泥石流的物源特征及其对扎墨公路的影响[J]. 地质力学学报, 24(1): 106-115. doi: 10.12090/j.issn.1006-6616.2018.24.01.012
|
张进江, 丁林, 2003. 青藏高原东西向伸展及其地质意义[J]. 地质科学, 38(2): 179-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200302005.htm
|
张进江, 季建清, 钟大赉, 等, 2003. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨[J]. 中国科学(D辑), 33(4): 373-383. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200304009.htm
|
张永双, 杜国梁, 郭长宝, 等, 2021. 川藏交通廊道典型高位滑坡地质力学模式[J]. 地质学报, 95(3): 605-617. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202103001.htm
|
赵远方, 公王斌, 江万, 等, 2021. 藏南嘉黎断裂古乡-通麦段多期活动特征及其构造意义[J]. 现代地质, 35(1): 220-233. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101025.htm
|