留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全球气候变化与地质灾害响应分析

高杨 李滨 冯振 左晓

刘嵘, 马见青, 李庆春, 等, 2016. 重磁电综合地球物理探测河套盆地深部结构. 地质力学学报, 22 (4): 943-954.
引用本文: 高杨, 李滨, 冯振, 等, 2017. 全球气候变化与地质灾害响应分析. 地质力学学报, 23 (1): 65-77.
LIU Rong, MA Jian-qing, LI Qing-chun, et al., 2016. GRAVITY, MAGNETIC AND ELECTRIC COMPREHENSIVE GEOPHYSICAL PROSPECTING FOR DEEP STRUCTURES IN HETAO BASIN. Journal of Geomechanics, 22 (4): 943-954.
Citation: GAO Yang, LI Bin, FENG Zhen, et al., 2017. GLOBAL CLIMATE CHANGE AND GEOLOGICAL DISASTER RESPONSE ANALYSIS. Journal of Geomechanics, 23 (1): 65-77.

全球气候变化与地质灾害响应分析

基金项目: 

国家自然科学基金项目 41472295

国家自然科学基金项目 41302246

十二五国家科技支撑项目 2012BAK10B01

国土资源地质调查项目 1212011220140

国土资源地质调查项目 12120114079101

详细信息
    作者简介:

    高杨(1989-),男,博士研究生,主要从事工程地质与地质灾害领域研究工作。E-mail:737263992@qq.com

  • 中图分类号: P694P534.63

GLOBAL CLIMATE CHANGE AND GEOLOGICAL DISASTER RESPONSE ANALYSIS

  • 摘要: 对全球气候变化对地质灾害的响应关系,尤其是对滑坡和泥石流灾害的响应关系进行了综述。工业化革命以来,特别是近几十年来全球气候发生着重要的变化,全球几乎所有地区都经历着升温过程。全球气候变化对极端天气事件(极端降雨、气温升高、强风和洪水灾害)的影响尤为强烈,并且增加了地质灾害的发生风险。其中,水循环和气温的变化是影响地质灾害发生的直接因素。气温上升会导致大气层含水量升高、冰川冻土退化、海平面上升、蒸发作用增强;水循环变化会导致降雨频率、降水周期、降水强度的改变。日益增加的极端天气与同岩土体相互作用,导致了不同类型地质灾害的发生,严重威胁着人类的生活起居。

     

  • 河套盆地位于华北克拉通的北缘, 夹于阴山造山带与鄂尔多斯盆地之间, 为一个近东西向的狭长型新生代断陷盆地[1](见图 1)。前人研究认为, 在阴山造山带造山过程中, 主要是以结晶基底为受力边界层, 并控制着上覆沉积盖层的构造变形[2~3]。河套盆地及其邻近地域的构造类型众多且复杂多样, 既存在稳定的克拉通与油气沉积盆地, 又包括活动的造山带。金属、非金属矿产资源与油、气、煤等能源在该区蕴藏丰富[4~6]。因此厘定该盆地的沉积建造和结晶基底的起伏结构, 对于研究盆地的形成与演化、研究资源的分布都具有重要的理论意义和实际价值。我国近年来针对鄂尔多斯盆地与华北克拉通地域的深部壳、幔结构与其形成的动力学过程开展了大量的地质与地球物理工作[7~11], 并取得了大量有意义的成果, 但针对河套盆地地域的研究却不多见。

    图  1  河套盆地及邻区构造纲要图
    Figure  1.  Structure outline of Hetao Basin and adjacent area

    河套盆地西界为狼山山前断裂, 东界为和林格尔断陷, 北界为色尔腾山、乌位山和大青山山前断裂, 南界为鄂尔多斯北缘断裂, 盆地总体走向近东西, 长约400 km, 宽40~80 km, 是鄂尔多斯块体周缘规模最大、垂直差异活动最强烈的断陷带[12]。由于受到北侧蒙古古生代板块的南向挤压、南侧鄂尔多斯陆块和山西陆块的阻挡以及鄂尔多斯盆地稳定陆块的左旋运动[13~14], 导致在该断陷盆地的周边时有地震发生。基于已有对鄂尔多斯陆块北缘主要活动断裂分布和晚第四纪强震复发特征的研究, 推测河套盆地为未来最可能发生强震的地区之一[4]

    对河套断陷带南北边界断裂——鄂尔多斯北界断裂、色尔腾山前断裂的性质, 河套盆地第四纪沉积物特征、厚度及沉积相变化, 河套沉积基底构造的探测, 是本次地球物理工作的重点, 同时开展第四纪含水层分布规律的探测, 目的是为区调填图地层单元的建立、关键地质问题的解决提供地球物理解释。本文利用河套盆地南北向的重磁电综合剖面研究了该区的结晶基底起伏及断裂分布, 为进一步深化研究该区的构造特征提供有力依据。

    研究区位于内蒙古呼勒斯太苏木(K48E017024)、塔尔湖镇(K48E018024)、复兴城(K48E019024)、吉尔嘎朗图乡(K48E020024)4幅1:50000图幅内, 工作区地理坐标范围:东经107°45'—108°00', 北纬40°40'—41°20', 总面积1510 km2(见图 2)。

    图  2  河套盆地研究区概况图
    Figure  2.  DEM of the Hetao Basin and location of the study area

    本次勘查目的层主要为河套盆地第四系及其基底地层。一般情况下, 如果不考虑地下水矿化度以及地下温度的影响, 潜水面以下第四系不同堆积物中, 粗砂、砂砾石电阻率相对为高值, 中、细砂电阻率稍低, 黏土的电阻率最低, 电性(收集)特征变化见表 1

    表  1  河套盆地第四系不同堆积物电阻率统计
    Table  1.  Resistivity statistics of different Quaternary deposits in the Hetao Basin
    岩性电阻率/(Ω·m)
    粗砂、砂砾石>50
    中砂30~40
    细砂20~30
    黏土<20
    下载: 导出CSV 
    | 显示表格

    在勘查区内, 地下水矿化度差异较大, 是影响电阻率变化的主要因素。结合在同类地区勘查的经验, 测区电阻率随地层岩性和地下水矿化度(收集)变化特征见表 2

    表  2  河套盆地潜水面以下第四系不同堆积物电阻率及地下水矿化度特征
    Table  2.  Characteristics of resistivity of Quaternary deposits below water table and groundwater salinity in the Hetao Basin
    地层岩性电阻率/(Ω·m)地下水矿化度/(g·L-1)
    粗砂、砂砾石>15<3
    中粗砂10~152~3
    中细砂7~103~5
    细砂、黏土<7>3
    下载: 导出CSV 
    | 显示表格

    前人对阴山造山带地区采集标本并测定了磁化率[15], 可作为测区岩石磁性参数变化的依据(见表 3)。

    表  3  鄂尔多斯—阴山一带岩石磁化率参数[15]
    Table  3.  Rock magnetic susceptibility parameters in the Erdos-Yinshan area
    时代阴山造山带鄂尔多斯盆地
    岩性磁化率/(10-5SI)岩性磁化率/(10-5SI)
    太古代片麻岩、混合烟及变粒岩30~10000片麻岩及变粒岩、基性火山岩1800~5000
    下元古代大理岩、板岩及石英砂岩10~50花岗岩、混合岩、大理岩20
    中上元古代板岩10~40浅变质岩1~9
    石英粉砂岩20~3000
    古生代凝灰岩10~30碳酸盐岩、陆相碎屑岩<20
    砂岩40~100
    中生代砾岩、泥岩、砂岩200~500粗碎屑岩1~9
    基性火山岩1500~3000泥岩、粉砂岩10~30
    新生代黏土岩50风积沙土50
    含砾细沙、泥岩200~800
    下载: 导出CSV 
    | 显示表格

    收集了内蒙古地区主要岩石密度(样本34个, 大小30 mm×60 mm), 其中板岩密度2.9 g/cm3, 闪长岩密度在2.7 g/cm3以上; 砂岩密度在2.6 g/cm3左右, 部分粉砂岩密度达到了2.87 g/cm3; 黑云母二长花岗岩的密度与砂岩的相近, 在2.6~2.7 g/cm3之间变化。

    河套盆地地区新第三系和第四系密度2.0~2.1 g/cm3, 侏罗—白垩纪地层密度2.40~2.66 g/cm3, 乌拉山群高磁性基底密度2.30~2.55 g/cm3, 基底和其上覆地层之间有明显的密度界面[16]。在老地层出露或基底埋藏较浅的地区, 产生高重力异常; 相反地, 老地层埋藏深的地方, 出现局部重力低异常。

    综上分析, 通过高精度重力、磁法测量可以揭示测区内深部基底构造特征及断裂构造分布情况; 利用超高密度电法和音频大地电磁测深, 可对河套地区的地下含水层、浅层第四纪冲洪积物厚度和分层等进行探测和研究。

    1:25000高精度重力剖面近南北贯穿工作区, 点距100 m, 剖面长度91.5 km; 1:10000高精度磁法剖面近南北贯穿工作区, 与重力剖面重合, 点距40 m, 剖面长度110 km; 测线分布详情见图 2。超高密度电法剖面每个排列64根电极, 电极距10 m, 分31个排列布设在重磁剖面的局部地段, 累计长度19.45 km。

    南北穿过测区的实测布格重力异常剖面见图 3, 幅值变化约100×10-5 m/s2, 中部相对平缓, 南侧异常值上升, 北侧出现较强的梯度变化带, 说明这里山前断裂发育, 且为沉积基底的最厚处。

    图  3  100-110-120测线实测布格重力异常(Δg)与区域重力对比剖面
    Figure  3.  The measured Bouguer gravity anomaly (Δg) compared with regional gravity anomaly in line 100-110-120

    河套盆地地形起伏变化于1000~1150 m之间, 地势极为平缓; 在河套盆地北部的阴山造山带地域地形高程又逐渐提升。根据经典的地壳均衡假说, 布格重力异常与地势一般呈现反相关的"镜像"关系, 即地势越高, 布格重力异常值越低。但在河套盆地, 其布格重力异常与地势的分布却呈现一种近似"同步变化"的特征, 这是由于盆地内部巨厚低密度沉积物质填充所致。进入测区后布格重力值开始缓慢下降, 并且在41°09'(测点55 km)左右降至最低值, 然后在约41°16'(测点80 km)左右开始迅速提升, 直至出测区都维持高布格异常值。

    图 4所示的130线布格重力异常也显示类似的特征, 在约10 km的水平距离内, 异常变化达80×10-5 m/s2, 说明山前断裂产状较陡。

    图  4  130测线实测布格重力异常(Δg)剖面图
    Figure  4.  Measured Bouguer gravity anomaly profile of profite 130

    根据收集的资料, 河套盆地内新生界主要以风积砂土为主, 磁性极弱。盆地结晶基底为强磁性, 与上覆沉积地层之间有明显的磁性差异, 是区内磁场出现正异常区或异常带的主要原因。

    图 5是近南北贯穿测区的1:10000实测磁异常与1:200000航磁异常剖面对比图[17~18], 二者具有较好的一致性, 但实测异常局部变化更明显, 精度更高。由于河套盆地大部分都被较厚的新生代沉积地层覆盖[19~20], 沉积层弱磁性对磁异常贡献则很小, 磁异常主要来自于结晶基底的岩石。

    图  5  100-110-120测线实测磁异常(ΔT)与航磁异常对比剖面图
    Figure  5.  Measured magnetic anomalies (ΔT) and aeromagnetic anomaly profile of profile 100-110-120

    超高密度电法数据采集过程中使用多通道数据采集方式, 充分利用已经布好的电极, 除供电电极以外其他电极均可以进行数据采集, 在此过程中缩短了因为进行单一数据采集而消耗的时间, 并且增大了数据采集量, 从而提高了工作效率[21]。超高密度电法一次数据采集量很大, 保证了数据处理的可靠性。45-44号排列位于测区中部, 为北东方位, 起点坐标(107°51'E, 41°05'N)。在610~920 m段反演显示明显的低-高-低三层结构; 在550~570 m间, 推测有断层存在, 两侧电阻率有明显变化; 地层分布呈水平层状(见图 6)。整条断面电阻率低于100 Ω·m, 剖面南侧0~550 m测点之间电阻率低于40 Ω·m。L100线断面位于测区南部黄河沿岸, 排列为北北西方位, 起点坐标(107°12'E, 40°47'N), 断面长1821 m。525~1100 m间电阻率最低, 电阻率低于5 Ω·m(见图 7)。南、北两端地电分布呈现高-低-高的结构特征, 但电阻率差异并不明显。推测地层呈水平层状, 富含地下水且有一定矿化度。110线断面位于测区中部西侧, 排列为北东方位, 起点坐标(107°45'E, 41°01'N)。0~570 m间电阻率断面呈现高-低二层结构, 浅地表电阻率稍高, 为25~38 Ω·m, 下伏地层含水量大, 电阻率10~20 Ω·m; 570~940 m间电阻率断面表现为低-高二层结构, 浅地表电阻率较低, 电阻率低于5 Ω·m, 地层含水量大, 下伏地层电阻率8~10 Ω·m, 上下两层电阻率差异不大(见图 8)。

    图  6  排列45-44超高密度反演断面
    Figure  6.  Ultra high density inversion section in arrangement of 45-44
    图  7  100断面33-36排列超高密度反演断面
    Figure  7.  Super high density inversion in section 33-36 of the 100 cross section
    图  8  110断面37-100排列超高密度反演断面
    Figure  8.  Super high density inversion section in arrangement 37-100 of 110 section

    三条反演断面电阻率均很低, 这主要与地层含水率高有关, 且有一定的矿化度。电性分层明显, 说明盆地地层近似水平。

    110线AMT测深点位于测区中部黄河以北附近, 110号点AMT电阻率反演结果如图 9所示。电阻率模型表现为高、低互层, 地表电阻率较低, 随深度加大逐渐升高; 在1000 m深度范围内电阻率分层明显, 电阻率值低于10 Ω·m。由XY和YX两个模式观测结果反演电阻率分布可以看出, 测点下方电阻率分布表现出较好的横向各向同性, 电阻率很低, 说明沉积环境稳定。

    图  9  110线110号点AMT电阻率反演图
    Figure  9.  AMT resistivity inversion model from point 110 in line 110

    采用中国地质调查局RGIS2012软件进行2.5D重磁联合反演, 得到重磁反演拟合曲线(见图 10), 并结合了该区DEM图与天然地震, 得到该区综合结构模型(见图 11)。

    图  10  重磁反演拟合曲线
    Figure  10.  Fitting curves of gravity and magnetic inversion
    图  11  河套覆盖区深部模型
    1—鄂尔多斯台坳斜坡; ②—基底隆升; ③—乌加河凹陷; F1—F4—河套新断层; F5—狼山南缘断层(色尔腾山前断裂)
    Figure  11.  The deep model of the covered area in Hetao Basin
    4.1.1   推断基底界面特征及断裂
    4.1.1.1   由布格重力异常推断基底界面特征

    重力异常控制因素比较复杂, 它受基底和盖层乃至深部莫霍面等因素的综合影响。河套盆地沉积盖层广泛发育, 层内密度横向差别不大, 层间密度差异明显的主要是盖层与下伏基底, 加之剖面长度有限, 因而将剖面上的重力异常变化主要归结为结晶基底的起伏, 兼有沉积盖层不同类岩性界面的局部影响。

    由反演结果看, 测区南端基底变化不大, 沉积厚度在2.5~4.2 km之间, 沉积厚度自南向北增大, 基底界面有明显的起伏变化, 最大厚度沿山前断裂分布, 达6 km。巨厚的低密度沉积建造使之在地表观测到明显的低布格重力异常, 这也是造成布格重力异常与地形高程呈特异的同步变化的主要原因。结晶基底在色尔腾山前断裂处已出露, 野外地质调查可见明显的基底露头。高密度基底沿色尔腾山前断裂升至地表导致该处平均密度值增大, 在地表观测到显著的呈上升趋势的高布格重力异常。根据反演结果, 沉积厚度最大的地区其基底以下地层平均密度要略高于南侧基底密度。

    4.1.1.2   由磁异常推断基底界面特征

    测区南端磁异常在0 nT附近, 而后迅速上升至600 nT左右。从反演过程来看, 如果盆地下方岩石磁性均匀一致的话, 单纯的基底起伏是难以引起如此大的磁场变化的, 况且重力并未发现显著的基底上隆。航磁异常显示在该处也为明显的东西向条带状磁异常高值区, 前人推测为山体属推挤造山机制, 山体不断抬升, 其深部软流层上凸, 地幔底辟活动, 而地幔物质和岩浆则沿块体边界以断裂为通道上涌, 形成高磁性的岩体物质, 导致高梯度变化的正异常带出现。故剖面南部达600 nT的高正磁异常应该是由强磁性乌拉山群岩体引起。测区北端基岩出露区磁异常也为高值区, 剖面中部和北部磁异常宽缓起伏推测是由高磁性基底局部起伏引起(与重力反演结果吻合)。

    4.1.2   隐伏断层推断

    在断裂构造作用下, 地质上会产生各种构造现象。深大断裂可以控制其两侧的构造活动, 使岩层被错断或发生裂开, 相互错断的断裂破坏了原构造的连续性, 形成不同的构造格局。发生断裂的同时往往伴随有岩浆活动, 这样就形成密度与磁性上的横向差异, 这种横向差异在重、磁力异常上必然有所表现, 具备了利用重、磁异常确定断裂构造的地球物理前提, 因而可根据重、磁异常特征来推断断裂。结合1:200000内蒙古区域地质调查(临河幅)及区域重磁资料, 综合推断出5条断裂:

    F1:鄂尔多斯台坳北缘推测断裂, 大致位于吉日嘎郎图镇北侧(纬度40°48')。在该断裂附近重、磁异常都一致显著下降。该断裂或与高磁性结晶基底的局部界面起伏有关。结合以往相邻测区地震资料与测区航磁资料推测, 该断裂走向近东西, 倾向北, 倾角约60°。

    F2:复兴断裂(景阳林推测断层), 大致位于复兴镇南侧(纬度40°55')。在该断裂附近磁异常起伏变化明显, 推测该断裂或与高磁性结晶基底的局部界面起伏有关。结合地震及地质资料推测, 该断裂走向近北西, 倾向北, 倾角约70°。

    F3:复兴断裂(孙家圪旦推测断层), 大致位于复兴镇北侧(纬度40°58')。该断裂附近磁异常由正异常变为负异常, 有明显下降趋势, 布格重力异常也有下降趋势, 与F1、F2一样与高磁性结晶基底的局部界面起伏有关。F2、F3之间基底隆起导致局部微弱重力高。结合地震及地质资料推测, F3走向东西, 倾向北, 倾角约70°。F2、F3统称为复兴断裂。

    F4:即五原断裂(临河凹陷南缘推测断裂), 大致位于塔尔湖镇南侧(纬度41°00')。该断裂附近重磁异常均呈明显下降趋势, 直至降到最低值。推测该断裂面亦是一个岩性分界面, 断裂南侧岩体磁性高(乌拉山群), 北侧岩体磁性低(色尔腾山结晶基底)。该断裂北侧即为沉积构造最厚的地区。结合地质及地震资料推测, 该断裂近东西走向, 倾向北, 倾角约45°。

    F5:即狼山—色尔腾山前断裂, 是位于河套盆地北界的一条深大断裂。沿该断裂以北基底迅速升至地表, 导致磁异常和布格重力异常都随之迅速增大至局部高值。该断裂在1~3 km深度产状陡, 浅部及深部倾角减小, 呈上陡下缓铲型, 结合地质资料, 该断裂走向东西, 倾角40°—60°, 倾向南。

    天然地震是地壳运动最直观的表现之一, 也是地下构造活动鲜明的标志。本次共收集了研究区63个天然地震事件, 时间范围自1971至2016, 其中Ms>3级的地震有10个[22](见表 4), 其目的是为了对隐伏断层的推论提供依据。通过对天然地震数据的投影, 可以清晰观测到在上文推测的隐伏断层周围均出现地震密集现象。但是狼山南缘断层附近未见有天然地震聚集, 断层活动时间早于1971年。

    表  4  天然地震事件
    Table  4.  Earthquake events
    日期纬度经度深度/km震级(Ms)
    1971/5/741°00'00″108°00'00″204.0
    1979/9/2841°12'00″108°00'00″153.2
    2001/12/1741°09'36″107°51'36″153.1
    2002/12/440°57'54″107°52'19″334.7
    2005/2/2740°53'60″107°45'00″114.5
    2005/2/2740°44'17″107°54'32″104.0
    2005/2/2740°52'48″107°49'12″203.6
    2005/3/2541°00'00″107°47'60″153.6
    2005/3/2540°51'00″107°49'12″53.3
    2006/6/541°17'60″107°47'60″124.8
    注:天然地震数据来自http://data.earthquake.cn/data/index.jsp
    下载: 导出CSV 
    | 显示表格

    重磁联合反演表明, 测区基底埋深普遍超过2000 m, 北端盆地中心基底埋深达7000 m。结合以往相邻测区地震资料与测区航磁资料推测出5条断裂(F1—F5), F1走向近东西, 倾向北, 倾角约60°; F2走向近北西, 倾向北, 倾角约70°; F3走向东西, 倾向北, 倾角约70°; F4走向北西, 倾向北, 倾角约45°; F5(即色尔腾山前断裂)走向东西, 倾角40°—60°, 倾向南。

    河套盆地北缘色尔腾山前断裂带在重、磁、超高密度电法剖面上均有异常反应。该异常区随着基底抬升, 布格重力异常向北呈增大趋势, 梯度变化明显。断裂带两侧的电阻率差异明显, 电性分界面向南倾斜, 且山前断裂附近冲洪积扇沉积分层结构明显。

    超高密度电法和音频大地电磁测深结果表明, 河套盆地下覆沉积地层的电阻率很低, 电性分层明显, 电阻率分布表现出较好的横向各向同性, 这些都与地层含水率高有关, 且有一定的矿化度。同时说明河套盆地地层近似水平, 沉积环境稳定。

  • 图  1  全球大型滑坡分布图(据ICL)

    Figure  1.  Distribution of global large landslides

    图  2  全球气温变化趋势曲线图

    Figure  2.  Global temperature change tread curve

    图  3  气候变化对滑坡灾害响应分析图

    Figure  3.  Analysis of the response of climate change to landslide disasters

  • [1] OBERTHUR S. & OTY H E. The Kyoto Protocol: International Climate Policy for The 21st Century (International and European Environmental Policy Series)[J]. Springer, 1999: 359.
    [2] FIGUEIRO A S. & COELHO NETTO A L. Climaticvariability and pluviometrictrends in a humid tropical environmentat Resende municipality-middle Paraíba do Sul rivervalley (Rio de Janeiro-Brazil)[J]. Brazilian Geographical Journal: Geosciences and Humanities research medium, 2011, 2 (2): 256~273.
    [3] JENKINS G J, PERRY M. & PRIOR J: The Climate of the United Kingdom and Recent Trends. Hadley Centre, Met Office, Exeter[J]. UK:2009: available from:http://ukclimateprojections.defra.gov.uk.
    [4] JENKINS G J, MURPHY J M, SEXTON D M H, LOWE J A, JONES P and KILSBY C G. UK Climate Projections[J]. Briefing report. Met Office Hadley Centre, Exeter, UK, 2009, available from:http://ukclimateprojections.defra.gov.uk.
    [5] BRUNETTI M, BUFFONI L, MANGIANTI F, MAUGERI M. & NANNI T. Temperature, precipitation and extreme events during the last century in Italy[J]. Global and Planetary Change, 2004a, vol. 40: pp 141~149. doi: 10.1016/S0921~8181(03)00104~8
    [6] BRUNETTI M, MAUGERI M, MONTI F. & NANNI T. Changes in daily precipitation frequency and distribution in Italy over the last 120 years[J]. Journal of Geophysical Research, 2004b, vol. 109: D05102. doi: 10.1029/2003JD004296.
    [7] TRENBERTH K. Changes in precipitation with climate change.Climate Research[J]. 2011, vol. 47: pp 123~138.
    [8] KOSTOPOULOU E. & JONES P D. Assessment of climate extremes in the eastern Mediterranean[J]. Meteorology and Atmospheric Physics, 2005, 89: 69~85. doi: 10.1007/s00703-005-0122~2
    [9] SMITH T M, REYNOLDS R W. A global merged land and sea surface temperature reconstruction based on historical observations (1880~1997)[J]. Journal of Climate, 2005, 18: 2021~2036. doi: 10.1175/JCLI3362.1
    [10] TRENBERTH K E, JONES P D, AMBENIE P, BOJARJU R, EASTERLING D, KLEIN TANK A, PARKER D, RAHIMZADEH F, RENWICK J A, RUSTICUCCI M, SODEN B, ZHAI P. Observations: Surface and Atmospheric Climate change. In: Solomon S, Qin, D, Manning M, Chen Z, Marquis M, Averyt, K B, Tignor M, Miller H L. (Eds.), Climate Change 2007, The Physical Science Basis, Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[J]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007: pp. 235~336.
    [11] WALSH J D, WUEBBLES K, HAYHOE J, KOSSIN K, KUNKEL G, STPHENS P, THORNE R, VOSE M, WEHNER J, WILLIS D, ANDERSON S, DONEV R, FEELY P, HENNON V, KHARIN T, KNUTSON F, LANDERER T, LENTON J, KENNEDY and R SOMERVILLE. Chapter 2: Our Changing Climate. Climate Change Impacts in the United States: The Third National Climate Assessment, In: Melillo, J.M., Richmond, T.C., Yohe, G.W. (Eds.), U.S[J]. Global Change Research Program, 2014:pp. 19~67. doi:10.7930/J0KW5CXT.
    [12] DIRMEVER P A and KINTER J L Ⅲ. The Maya Express—Late spring floods in the U.S. Midwest[J]. Eos, Transactions of the American Geophysical Union, 2009, 90: 101~102. doi: 10.1029/2009EO120001
    [13] BUSH E J, LODER J W, JAMES T S, MORTSCH L D, COHEN S J. An Overview of Canada's Changing Climate; In Canada in a Changing Climate: Sector Perspectives on Impacts and Adaptation[J]. Eds.: F.J. Warren and D.S. Lemmen, Government of Canada, Ottawa, ON, 2014: 23~64. https://www.researchgate.net/publication/263368741_Bush_EJ_Loder_JW_James_TS_Mortsch_LD_and_Cohen_SJ_et_al_2014_An_Overview_of_Canada's_Changing_Climate_in_Canada_in_a_Changing_Climate_Sector_Perspectives_on_Impacts_and_Adaptation_ed_FJ_Warren_and_DS_
    [14] CHURCH J A., CLARK P U., CAZENAVE A, GREGORY J M, JEVREJEVA S, LEVENMANN A, MERRIFIELD M A, MILNE G A, NEREM R S, NUNN P D, PAYNE A J, PFEFFER W T, STAMMER D, UNNIKRISHNAN A S. Sea Level Change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[J] Eds: T.F. Stocker, D. Qin, G K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    [15] YIN Y, CHENG Y, LIANG J et al. Heavy-rainfall-induced catastrophic rockslide-debris flow at Sanxicun, Dujiangyan, after the Wenchuan Ms 8.0 earthquake[J]. Landslides, 2015: 1~15. doi: 10.1007/s10346-015-0554~9
    [16] IVERSON R M, GEOGE D L, ALLSTADT K, REID M R, COLLINS B D, VALLANCE J W, SCHILLING S P, GODT J W, CANNON C M, MAGIRL C S, BAUM R L, COE J A, SCHULZ W H, BOWER J B. Landslide mobility and hazards: broad implications of the Oso disaster[J]. Earth and42 Planetary Science Letters, 2015, 412: 197~208. doi: 10.1016/j.epsl.2014.12.020
    [17] COE J A, KEAN J W, GODT J W, BAUM R L, JONES E S, GOCHIS D J, ANDERSON G S. New insights into debris-flow hazards from an extraordinary event in the Colorado Front Range[J]. GSA Today, 2014, 24: 4~10. http://www.geosociety.org/gsatoday/archive/24/10/abstract/i1052~5173~24~10~4.htm
    [18] COE J. Forensic Analysis of the May 2014 West Salt Creek Rock Avalanche in Western Colorado[C]. 2015 AGU Fall Meeting, Agu, 2015.
    [19] NBC NEWS. Final body found after deadly landslide in Sitka, Alaska[N] NBC News online article, August 25, 2015.
    [20] LUND W R, KNUDSEN T R, BOWMAN S D. Investigation of the December 12, 2013, fatal rock fall at 368 West Main Street, Rockville, Utah[J]. Utah Geological Survey Report of Investigation, 2014, 273: pp20.
    [21] ISHIZUKA T, OKAMOTO A. & NAKAGOMI J. Emergency structural and non-structural measures against secondary disasters by landslide dams in Kii Peninsula, Japan caused by typhoon Talas in 2011[J]. M. Chigira (Ed.), Characterization, Prediction, and Management of Deep-seated Catastrophic Landslides, Disaster Prevention Research Institute, Kyoto University, (2012): pp. 38~44.
    [22] COELHO NETTO, A L. Produça-o de Sedimentos em Bacias Fluviais Florestadas do Macia-o da Tijuca: respostas aos eventos extremos de fevereiro de 1996[J]. Anais do Ⅱ Encontro nacional de Engenharia de Sedimentos, 1996, 1: 209~217.
    [23] HUGGEL C, CLAGUE J J. & KORUP O. Is climate change responsible for changing landslide activity in high mountains[J]. Earth Surface Processes and Landforms, 2012, 37: 77~91. doi: 10.1002/esp.v37.1
    [24] DYURGEROV M B, MEIER M F. Twentieth century climate change: evidence from small glaciers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 1406~1411. doi: 10.1073/pnas.97.4.1406
    [25] LUCKMAN B, KAVANAGH T. Impact of climate fluctuations on mountain environments in the Canadian Rockies[J]. Ambio, 2000, 29: 371~380. doi: 10.1579/0044~7447~29.7.371
    [26] FRANCOU B, VUILLE M, WAGNON P, MENDOZA J, SICART J. Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16°S[M]. Journal of Geophysical Research, 2003: 108, 4154.
    [27] KASER G, HARDY D R, MOLG T, BRADLEY R S, HYERA T M. Modern glacier retreat on Kilimanjaro as evidence of climate change: observations and facts[J]. International Journal of Climatology, 2004, 24: 329~339. doi: 10.1002/(ISSN)1097-0088
    [28] BLAIR R W JR. Moraine and valley wall collapse due to rapid deglaciation in Mount Cook National Park, New Zealand[J]. Mountain Research and Development, 1994, 14: 347~358. doi: 10.2307/3673731
    [29] GERTTSEMA M, CLAGUE J J, SCHWAB J W, EVANS S G. An overview of recent large catastrophic landslides in northern British Columbia, Canada[J]. Engineering Geology, 2006, 83: 120~143. doi: 10.1016/j.enggeo.2005.06.028
    [30] HUGENHOLTZ C H, MOORMAN B J, BARLOW J, WAINSTEIN P A. Large-scale moraine deformation at the Athabasca glacier, Jasper National Park, Alberta, Canada[J]. Landslides, 2008, 5: 251~260. doi: 10.1007/s10346-008-0116~5
    [31] FISCHER L, PURVES R S, HUGGEL C, NOETZLI J and HAEBERLI W. On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas[J]. Natural Hazards and Earth System Sciences, 2012, 12: 241~254. doi: 10.5194/nhess~12~241~2012
    [32] HAEBERLI W. Mountain permafrost-research frontiers and a special long-term challenge[J]. Cold Regions Science and Technology, 2013, 96: 71~76. doi: 10.1016/j.coldregions.2013.02.004
    [33] REBETEZ M, LUGON R, BAERISWYL P A. Climatic change and debris flows in high mountain regions: the case study of the Ritigraben torrent (Swiss Alps)[J]. Climatic Change, 1997, 36: 371~389. doi: 10.1023/A:1005356130392
    [34] CHIARLE M, IANNOTTI S, MORTARA G. & DELINE P. Recent debris flow occurrences associated with glaciers in the Alps[J]. Global and Planetary Change, 2007, vol. 56: pp 123~136. doi: 10.1016/j.gloplacha.2006.07.003
    [35] LEGG N T, MEIGS A J, GRANT G E and KENNARD P. Debris flow initiation in proglacial gullies on Mount Rainier, Washington[J]. Geomorphology, 2014, 226: 249~260. doi: 10.1016/j.geomorph.2014.08.003
    [36] LANCASTER S T, NOLIN A E, COPELAND E A, GRANT G E. Periglacial debris-flow initiation and susceptibility and glacier recession from imagery, airborne LiDAR, and ground-based mapping[J]. Geosphere 8, 2012: 417~430. http://geosphere.geoscienceworld.org/content/early/2012/03/06/GES00713.1
    [37] BROWN J, FERRIANS O J JR, HEGINBOTTOM J A, MELNIKOV E S. Circum-arctic map of permafrost and ground-ice conditions[J]. Circum-Pacific Map CP~45, 1:10, 000, 000-scale, U.S. Geological Survey in Cooperation with the Circum-Pacific Council for Energy and Mineral Resources, Washington, D.C, 1997, 1 sheet.
    [38] NELSON F E, BRIGHAM L W, HINKEL K M, SMITH O, PARKER W, TUCKER W, ROMANOVSKY V E, VINSON T, SHIKLOMANOV N I, COLE D M, LEE W, KLENE A E, SAXTON A. Climate change, permafrost, and impacts on civil infrastructure. U.S[J]. Arctic Research Commission Permafrost Task Force Special Report 01-03, Arlington, Virginia, 2003: pp 62. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.383.5664
    [39] BROOKS S M. & SPENCER T. Shoreline retreat and sediment release in response to accelerating sea level rise: Measuring and modelling cliffline dynamics on the Suffolk Coast, UK[J]. Global and Planetary Change, 2012, 80~81:165~179. doi: 10.1016/j.gloplacha.2011.10.008
    [40] Frechette J D, Meyer G A. Holocene fire-related alluvial-fan deposition and climate in ponderosa pine and mixed-conifer forests, Sacramento Mountains, New Mexico[J]. The Holocene 19, 2009: 639~651.
    [41] NOTT J F, THOMAS M F, PRICE D M.Alluvial fans, landslides and Late Quaternary climatic change in the wet tropics of northeast Queensland[J]. Australian Journal of Earth Sciences 48, 2001: 875~882. doi: 10.1046/j.1440-0952.2001.00906.x
    [42] BIGIO E, SWETNAM T W, BAISAN C H. A comparison and integration of tree-ring and alluvial records of fire history at the Missionary Ridge Fire, Durango, Colorado, USA[J]. The Holocene 20, 2010: 1047~1061. doi: 10.1177/0959683610369502
    [43] RAHARDJO H, SATYANAGA A. & LEONG E C. Effects of Flux Boundary Conditions on Pore-water Pressure Distribution in Slope[J]. Journal of Engineering Geology, Special Issue on Unsaturated Soils: Theory and Applications, 2013a, Vol. 165: 133~142. https://dr.ntu.edu.sg/handle/10220/11306
    [44] RAHARDJO H, SANTOSO V A, LEONG E C, NG Y S, TAM C P H AND SATYANAGA A. Use of Recycled Crushed Concrete and Secudrain in Capillary Barrier for Slope Stabilization[J]. Canadian Geotechnical Journal, 2013b, 50: 1~12. doi: 10.1139/cgj~2012-0057
    [45] HEATH R C. & LEHR J H. A New Approach to The Disposal of Solidwaste on Land[J]. Ground Water, 1987, 25 (3): 258~264. doi: 10.1111/gwat.1987.25.issue~3
    [46] MORRIS P H, GRAHAM J. & WILLIAMS D J. Cracking in Drying Soils[J]. Canadian Geotechnical Journal, 1992, 29(2): 263~277. doi: 10.1139/t92-030
    [47] HEWITT P J. & PHILIP L K. Problems of Clay Desiccation in Composite Lining Systems[J]. Engineering Geology, 1999, 53(1): 107~113. http://www.sciencedirect.com/science/article/pii/S001379529900023X
    [48] KEEFER D K, WILSON R C, MARK R K, BRABB Ⅲ E E, ELLEN S D, HARP E L, WIECZOREK G F, ALGER C S, ZATKIN R S. Realtime landslide warning during heavy rainfall[J]. Science, 1987, 238 (13): 921~925.
    [49] WIECZOREK G F, SARMIENTO. Rainfall, peizometric levels, and debris flows near La Honda, California in storms between 1975 and 1983[J]. In: Ellen, S.D., Wieczorek, G.F. (Eds.), Landslides, Floods, and Marine Effects of the Storm of January 3~5, 1982, in the San Francisco Bay Region, California. U.S. Geological Survey Professional Paper, 1988, 1434: 43~62.
    [50] NEARY D G, SWIFT L W. Rainfall thresholds for triggering a debris avalanching event in the southern Appalachian Mountains[J]. Reviews in Engineering Geology, 1987, 7: 81~92. doi: 10.1130/REG7
    [51] CAINE N. The rainfall intensity: duration control of shallow landslides and debris flows[J]. Geografiska Annaler. Series A. Physical Geography, 1980: 23~27. doi: 10.1007%2Fs10346-007-0112~1/fulltext.html
    [52] VARGAS M. & PICHLER E. Residual soil and rock slides in Santos, Brazil[J]. In Proc.4th Pan-AmericanConfon SMFE, 1957, 6 (27): 394~398.
    [53] COSTA NUNES A D. Landslides in soils of decomposed rock due to intense rainstorms[J]. In Proc. Ⅶernational conference on soil mechanics and foundation engineering, Mexico, 1969: pp. 547~554.
    [54] GUIDICINI G. & IWASA O Y. Tentative correlation between rainfall and landslides in a humid tropical environment[J]. Bulletin of the International Association of Engineering Geology-Bulletin de l'Association Internationale de Géologie de l'Ingénieur, 1977, 16 (1): 13~20. doi: 10.1007%2FBF02591434
    [55] KANJI M A, MASSAD F. & CRUZ P T. Debris flows in areas of residual soils: occurrence and characteristics[J]. In International Workshop on Occurrence and Mechanism of Flows in Natural Slopes and Earthfills, 2003: pp 1~13. https://www.researchgate.net/publication/284534613_Debris_flows_in_areas_of_residual_soils_occurrence_and_characteristics_International_Workshop_on_Occurrence_and_Mechanisms_of_Flows_in_Natural_Slopes_and_Earthfills_Iw-Flows_2003_Sorrento
    [56] NIETO A S. & BARANY I. Interim report on catastrophic rain induced landslides in Rio de Janeiro and Petropolis, Brazil[J]. Report to Committee on Natural Disasters, National Research Council, Department of Geology, University of Illinois. Urbana, April. 1988.
    [57] DIXON N, BROOK E.Impact of predicted climate change on landslide reactivation: case study of Mam Tor, UK[J]. Landslides, 2007, 4: 137~147. doi: 10.1007/s10346-006-0071-y
    [58] WINTER M G, DENT J, MACGREGOR F, DEMPSEY P, MOTION A, SHACKMAN L. Debris flow, rainfall and climate change in Scotland[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2010, 43: 429~446. doi: 10.1144/1470~9236/08~108
    [59] PICCARRETA M, CAPOLONGO D, MICCOLI M N. & BENTIVENGA M. Global change and long-term gully sediment production dynamics in Basilicata, southern Italy[J]. Environmental Earth Sciences, 2012, vol. 67: pp 1619~1630. doi: 10.1007/s12665-012~1603~5
    [60] BRAND E W. Landslides in Southeast Asia: a state-of-the-art report[M]. Place of publication not identified, 1984.
    [61] CHURCH M, MILES M J. Meteorological antecedents to debris flow in southwestern British Columbia; some case studies[J]. Reviews in Engineering Geology, 1987, 7: 63~80. doi: 10.1130/REG7
    [62] EL-HADJI I T. & SINGH V P. Space-time-frequency analysis of rainfall, runoff and temperature in the Casamance River basin, South Senegal, West Africa[J]. Water-South Africa, 2002, 28 (3): 4378~4738. http://www.oalib.com/paper/1349510
    [63] MCSAVENEY M J, GRIFFITHS G A. Drought, rain, and movement of a recurrent earthflow complex in New Zealand[J]. Geology, 1987, 15 (7): 643~646. doi: 10.1130/0091~7613(1987)15<643:DRAMOA>2.0.CO;2
    [64] JAEDICKE C, SOLHEIM A, BLIKRA L H, STALSBERG K, SORTEBERG A, AAHEIM A, KRONHOLM K., VIKHAMAR-SCHULER D, ISAKSEN K, SLETTEN K, KRISTENSEN K, BARSTAD I, MELCHIORRE C, HØYDAL Ø A., MESTL H. Spatial and temporal variations of Norwegian geohazards in a changing climate, the GeoExtreme project[J]. Natural Hazards and Earth System Sciences, 2008, 8: 893~904. doi: 10.5194/nhess~8~893~2008
    [65] RAHARDJO H, SATYANAGA A, LEONG E C et al. Performance of an instrumented slope covered with shrubs and deep-rooted grass[J]. Soils and Foundations, 2014, 54 (3): 417~425. doi: 10.1016/j.sandf.2014.04.010
    [66] SMETHURST J A, CLARKE D. & POWRIE W. Factors controlling the seasonal variation in soil water content and pore water pressures within a lightly vegetated clay slope[J]. Géotechnique, 2012, 62 (5): 429~446. doi: 10.1680/geot.10.P.097
    [67] BRIGGS K, SMETHURST J & POWRIE W. Modelling the Influence of Tree Removal on Embankment Slope Hydrology. In Landslide Science for a Safer Geoenvironment[J]. Springer International Publishing, 2014: pp 241~246. doi: 10.1007/978~3~319-04999~1_32
    [68] LUMB P. Slope failures in Hong Kong[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1975, 8 (1): 31~65. doi: 10.1144/GSL.QJEG.1975.008.01.02
    [69] BUMA J. & DEHN M. A method for predicting the impact of climate change on slope stability[J]. Environ. Geol, 1998, 35 (1998): 190~196. http://cat.inist.fr/?aModele=afficheN&cpsidt=2424420
    [70] HUTCHINSON M F. Interpolating mean rainfall using thin plate smoothing splines[J]. International journal of geographical information systems, 1995, 9 (4): 385~403. doi: 10.1080/02693799508902045
    [71] WINTER M G, DENT J, MACGREGOR F, DEMPSEY P, MOTION A, SHACKMAN L. Debris flow, rainfall and climate change in Scotland[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2010, 43: 429~446. doi: 10.1144/1470~9236/08~108
    [72] JAKOB M, LAMBERT S. Climate change effects on landslides along the southwest coast of British Columbia[J]. Geomorphology, 2009, 107 (3): 275~284. http://cat.inist.fr/?aModele=afficheN&cpsidt=21691110
    [73] GUTHRIE R H, MITCHELL S J, LANQUAYE-OPOKU N, EVANS S G. Extreme weather and landslide initiation in coastal British Columbia[J]. Quarterly Journal of Engineering Geology and Hydrogeology 2010, 43 (4): 417~428. doi: 10.1144/1470~9236/08~119
    [74] GEERTSEMA M. Quick clay landslides, landscape evolution, and climate change-a perspective from British Columbia[J]. In the Proceedings of the Second world Landslide Forum, Rome, 2011: 6. doi: 10.1007/978~3~642~31337-0_15/fulltext.html
    [75] XING A G, WANG G, YIN Y P et al. Dynamic analysis and field investigation of a fluidized landslide in Guanling, Guizhou, China[J]. Engineering Geology, 2014, 181: 1~14. doi: 10.1016/j.enggeo.2014.07.022
    [76] NADIM F, SCHACK PEDERSEN S A, SCHMIDT-THOMé P, SIGMUNDSSON F, ENGDAH F. Natural hazards in Nordic countries[J]. Episodes, 2009a, Vol. 31, No. 1: pp 176~184. https://www.researchgate.net/publication/239610819_Natural_hazards_in_Nordic_Countries
    [77] COELHO NETTO A L C, SATO A M, AVELAR A S, VIANNA L G G, ARAúJO I S, FERREIRA D L. & SILVA R P. January 2011: The Extreme Landslide Disaster in Brazil[J]. In Landslide Science and Practice Springer Berlin Heidelberg, 2013: pp. 377~384. doi: 10.1007/978~3~642~31319~6_51/fulltext.html
    [78] ROUAINIA M, DAVIES O, O'BRIEN T. & GLENDINNING S. Numerical Modeling of Climate Effects on Slope Stability. Proc[J]. The Institution of Civil Engineers, Engineering Sustainability, 2009, 162 (ES2): pp.81~89.
    [79] KILSBY C, GLENDINNING S, HUGHES P N, PARKIN G. & BRANSBY M F. Climate-change impacts on long-term.performance of slopes[J]. Proc. of The Institution of Civil Engineers, Engineering Sustainability, 2009, 162 (ES2): pp.59~66. doi: 10.1680/ensu.2009.162.2.59
    [80] ALONSO E E, GENS A. & DELAHAYE C H. Influence of rainfall on the deformation and stability of a slope in overconsolidated clays: a case study[J]. Hydrogeology Journal, 2003, Vol. 11:pp. 174~192. doi: 10.1007/s10040-002-0245~1
    [81] LAMBECK K. Late Devensian and Holocene shorelines of the British Isles and North Sea from models of glacio-hydro-isostatic rebound[J]. Journal of the Geological Society-London, 1995, 152 (3): 437~448. doi: 10.1144/gsjgs.152.3.0437
    [82] COROMINAS J. Litologías inestables. Monografíano 3. Sociedad Española de Geomorfología[J]. Zaragoza, 1989: pp.81~96.
    [83] ARAÑA V, BADIOLA E R, BERGA L et al. "Riesgos geológicos en España. Estado de la cuestión"[J]. Ⅲ Congreso Geológico de España y Ⅷ Congreso Latinoamericano de Geología, Tomo, 2: pp: 671~745. https://www.researchgate.net/publication/40933256_Riesgos_geologicos_en_Espana_estado_de_la_cuestion
    [84] DíAZ DE TERáN, J.R; CENDRERO A.; ARAÑA V; BADIOLA E R; BERGA L; CARRACEDO J C; CHACóN J; COELLO J; COROMINAS J; DABRIO C; DURáN J J; ELíZAGA E; FERRER M; GARCíA M.; GARZóN G; GONZáLEZ A; GOY J L; LóPEZ J; MARTíNEZ-GOYTRE J; MEZCUA J; NUEZ J. DE LA; SALINAS J L; SOLER V; VAL J DEL; & ZAZO C. Geomorphological Hazards in Spain[J]. In: Geomorphological hazards of Europe, (C. Embleton & Ch. Embleton-Hamann, eds), 1997, 56.
    [85] COROMINAS J. & BAEZA C. "Landslides in the Eastern Pyrenees-Spain". In M. del Prete (Ed): Movimenti franosie metodi di stabilizzazione. Consiglio Nazionale delle Ricerche. Pub. no 481[J]. Italia, 1992: pp. 25~42.
    [86] BERGANZA F AND MODRANO R. The instability phenomenon of the banks of the river Duero in its passage through Aranda (Burgos) in Tertiary soils[J]. 1978, Ⅲ International Congres IAEG. Sect. Ⅰ (1). Madrid: 197~208.
    [87] COROMINAS J. Landslides and Climate. In E.N. Bromhead (ed.)[J]. Ⅷ International Symposium on Landslides, Cardiff, UK, Keynote lectures, CD_ROM, 2000.
    [88] COROMINAS J, MOYA J AND HüRLIMANN M. Landslide rainfall triggers in the Spanish Eastern Pyrenees[J]. Proceedings 4th EGS Conference on Mediterranean Storms. Mallorca. CD-ROM, 2002. https://www.researchgate.net/publication/267966643_LANDSLIDE_RAINFALL_TRIGGERS_IN_THE_SPANISH_EASTERN_PYRENEES
    [89] GUZZETTI F, REICHENBACH P, CARDINALI M, GALLI M. & ARDIZZONE F. Probabilistic landslide hazard assessment at the basin scale[J]. Geomorphology, 2005a, 72 (1/4): 272~299. http://www.sciencedirect.com/science/article/pii/S0169555X05001911
    [90] BONNARD CH. Los deslizamientos de tierra: Fenómeno natural o fenómeno inducido por el hombre. Proceedings 1st Panam. Symp on Landslides[J]. Guayaquil, Ecuador, 1994, 2: 1~15.
    [91] WUEBBLES D J, AND KUNKEL K., WEHNER M AND ZOBEL Z. Severe weather in United States under a changing climate[J]. EOS, Transactions, American Geophysical Union, 2014, 95 (no. 18): 149~150. doi: 10.1002/2014EO180001/pdf
    [92] JMA (Japan Meteorological Agency). Climate change monitoring report 2013, 2014.
    [93] NVE. Norwegian Water Resources and Energy Directorate. Landslides in Southern Norway May 2013. Jordskred i S-Norge mai 2013. 2014, Rapport nr 52~2014.
    [94] 殷跃平.斜倾厚层山体滑坡视向滑动机制研究[J].岩石力学与工程学报, 2010, 29 (2). http://cdmd.cnki.com.cn/Article/CDMD~82501~1012371283.htm

    Yin Yue-ping. Study on the sliding mechanism of the inclined thick layer landslide[J]. Journal Of Rock Mechanics And Engineering, 2010, 29 (2). http://cdmd.cnki.com.cn/Article/CDMD~82501~1012371283.htm
    [95] 冯振, 殷跃平, 李滨, 等.斜倾厚层岩质滑坡视向滑动的土工离心模型试验[J].岩石力学与工程学报, 2012, 31 (5): 890~897. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201205005.htm

    Feng Zhen, Yin Yue-ping, Li Bin, et al. The centrifugal model test of the visual sliding of the inclined thick layered rock slope[J]. Journal Of Rock Mechanics And Engineering, 2012, 31 (5): 890~897. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201205005.htm
    [96] 殷跃平, 朱继良, 杨胜元.贵州关岭大寨高速远程滑坡—碎屑流研究[J].工程地质学报, 2010, 4: 445~454. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201004003.htm

    Yin Yue-ping, Zhu Ji-liang, Yang Sheng-yuan. Investigation of a High Speed And Long Run out Rockslide Debris Flow At Dazhai In Guanling of Guizhou Province[J]. Journal of Engineering Geology, 2010, 18 (4): 445~454. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201004003.htm
    [97] 翟盘茂, 刘静.气候变暖背景下的极端天气气候事件与防灾减灾[J].中国工程科学, 2012, 9:55~63+84. doi: 10.3969/j.issn.1672~4178.2012.03.011

    Zhai Pan-mao, Liu Jing. Extreme weather and climate events and disaster prevention and mitigation in the context of climate warming[J]. Engineering Science in China, 2012, 9:55~63+84. doi: 10.3969/j.issn.1672~4178.2012.03.011
    [98] 胡凯衡, 葛永刚, 崔鹏, 郭晓军, 杨伟.对甘肃舟曲特大泥石流灾害的初步认识[J].山地学报, 2010, 5: 628~634. doi: 10.3969/j.issn.1008~2786.2010.05.017

    Hu Kai-heng, Ge Yong-gang, Cui Peng, Guo Xiao-jun, Yang Wei. A preliminary understanding of the catastrophic debris flow disaster in Zhouqu, Gansu. Journal of Mountain Science, 2010, 5: 628~634. doi: 10.3969/j.issn.1008~2786.2010.05.017
    [99] 刘传正, 苗天宝, 陈红旗, 等.甘肃舟曲2010年8月8日特大山洪泥石流灾害的基本特征及成因[J].地质通报, 2011, 1: 141~150. doi: 10.3969/j.issn.1671~2552.2011.01.015

    Liu Chuan-zheng, Miao Tian-bao, Chen Hong-qi, et al. The basic characteristics and causes of the catastrophic debris flow disaster in Zhouqu, Gansu, August 8, 2010[J]. Geological Bulletin, 2011, 1: 141~150. doi: 10.3969/j.issn.1671~2552.2011.01.015
    [100] 殷跃平.西藏波密贡高速巨型滑波特征及减灾研究[J].水文地质工程地质, 2000 (4): 8~11. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200004002.htm

    Yin Yue-ping. Tibet Bomigong high-speed landslide characteristics and disaster reduction research giant[J]. Hydro Geological Engineering Geology, 2000 (4): 8~11. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200004002.htm
    [101] 曲焰. 蠕变滑动与降雨量的相关关系[J]. 滑坡论文选集编辑委员会: 1987年全国滑坡学术讨论会滑坡论文选集. 成都: 四川科学技术出版社, 1989: 198~204.

    Qu Yan. Correlation between creep sliding and rainfall[J]. The Editorial Committee of landslides: 1987 the national landslide Symposium on landslides. Chengdu: Sichuan science and Technology Press, 1989: 198~204.
    [102] 杜榕桓, 刘新民, 袁建模, 等.长江三峡工程库区滑坡与泥石流研究[M].四川科学技术出版社, 1991.

    Dun Long-heng, Liu Xin-min, Yuan Jian-mo, et al. Study on landslide and debris flow in the reservoir area of the Three Gorges Project[M]. Sichuan Science and Technology Press, 1991.
    [103] 谢剑明, 刘礼领, 殷坤龙, 等.浙江省滑坡灾害预警预报的降雨阀值研究[J].地质科技情报, 2003, 22 (4): 101~105. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200304019.htm

    Xie Jian-ming, Liu Li-ling, Yin Kun-long, et al. The rainfall threshold of Zhejiang province landslide disaster warning and forecast[J]. Geological Science And Technology Information, 2003, 22 (4): 101~105. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200304019.htm
    [104] 刘传正, 温铭生, 唐灿.中国地质灾害气象预警初步研究[J].地质通报, 2004, 23 (4): 303~309. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200404000.htm

    Liu Chuan-zheng, Wen Ming-sheng, Tang Shan. A preliminary study on the meteorological early warning of geological hazards in China[J]. Geological Bulletin, 2004, 23 (4): 303~309. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200404000.htm
    [105] 刘艳辉, 唐灿, 李铁锋, 等.地质灾害与降雨雨型的关系研究[J].工程地质学报, 2009, 17(5): 656~661. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200905012.htm

    Liu Yan-hui, Tang Can, Li Tie-feng, et al. Study on the relationship between geological hazards and Rainfall Type[J]. Journal Of Engineering Geology, 2009, 17(5): 656~661. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200905012.htm
    [106] 王恭先, 李天池.我国滑坡研究的回顾与展望[J].1989.

    Wang Gong-xian, Li Tian-chi. Review and Prospect of research on Landslide in China[J]. 1989.
    [107] 彭满华, 刘东燕.受污染土体滑坡破坏的微观机理初探[J].地下空间, 2000, 20 (4): 259~263. http://www.cnki.com.cn/Article/CJFDTOTAL-BASE200004003.htm

    Peng Man-hua, Liu Dong-yan, A preliminary study on the micro mechanism of landslide failure in contaminated soil[J]. Underground Space, 2000, 20 (4): 259~263. http://www.cnki.com.cn/Article/CJFDTOTAL-BASE200004003.htm
    [108] 张倬元, 刘汉超.中国地质环境的基本特征及其对人类工程活动的制约[J].地质灾害与环境保护, 1997, 8 (1): 1~18. http://www.cnki.com.cn/Article/CJFDTOTAL-DZHB701.000.htm

    Zhang Zhuo-yuan, Liu Han-chao. The basic characteristics of China's geological environment and its constraints on human engineering activities[J]. Geological Hazards And Environmental Protection, 1997, 8 (1): 1~18. http://www.cnki.com.cn/Article/CJFDTOTAL-DZHB701.000.htm
    [109] 黄润秋.中国西南岩石高边坡的主要特征及其演化[J].地球科学进展, 2005, 20(3): 292~297. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200503004.htm

    Huang Run-qiu. The main characteristics and evolution of high rock slope in Southwest China[J]. Advances in Earth Sciences, 2005, 20(3): 292~297. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200503004.htm
    [110] 李兆平, 张弥.考虑降雨入渗影响的非饱和土边坡瞬态安全系数研究[J].土木工程学报, 2001, 34(5): 57~61. http://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200105012.htm

    Li Zhao-ping, Zhang Mi. Study on the transient safety factor of unsaturated soil slope under the influence of rainfall infiltration[J]. China Civil Engineering Journal, 2001, 34(5): 57~61. http://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200105012.htm
    [111] 詹良通, 吴宏伟, 包承纲, 等.降雨入渗条件下非饱和膨胀土边坡原位监测[J].岩土力学, 2003, 24(2): 151~158. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200302002.htm

    Zhan Liang-tong, Wu Hong-wei, Bao Cheng-gang, et al. In situ monitoring of unsaturated expansive soil slope under the condition of rainfall infiltration[J]. Rock And Soil Mechanics, 2003, 24(2): 151~158. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200302002.htm
    [112] 戚国庆, 黄润秋.土水特征曲线的通用数学模型研究[J].工程地质学报, 2004, 12(2): 182~186. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200402011.htm

    Qi Guo-qing, Huang Run-qiu. General mathematical model of soil water characteristic curve[J]. Journal Of Engineering Geology, 2004, 12(2): 182~186. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200402011.htm
    [113] 徐晶, 李伟华.台风强降雨诱发地质灾害的雨量特征分析[J].气象, 2009, 35(8): 42~48. doi: 10.7519/j.issn.1000-0526.2009.08.005

    Xu Jing, Li Wei-hua. Rainfall characteristics of geological hazards induced by Typhoon Heavy Rainfall[J]. Meteorological, 2009, 35(8): 42~48. doi: 10.7519/j.issn.1000-0526.2009.08.005
    [114] 黄俊宝.闽东南台风暴雨型滑坡成灾临界降雨量研究[J].资源保障环境安全——地质工作使命"华东六省一市地学科技论坛文集, 2011. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZJKX201111006036.htm

    Huang Jun-bao. The storm rain type landslide disaster in southern Taiwan on critical rainfall[J]. Resource Environmental Safety-Geological Work Mission "East China Six Provinces And One City To Learn Science And Technology Forum, 2011. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZJKX201111006036.htm
    [115] 伍宇明, 兰恒星, 高星, 等.台风暴雨型滑坡降雨阈值曲线研究——以福建地区为例[J].工程地质学报, 2014, 2: 14. doi: 10.3969/j.issn.1004~9665.2014.01.003

    Wu Yu-ming, Lan Heng-xing, Gao Xing at al. Study on rainfall threshold curve of typhoon rainstorm type landslide: a case study of Fujian area[J]. Journal Of Engineering Geology, 2014, 2: 14. doi: 10.3969/j.issn.1004~9665.2014.01.003
    [116] 崔鹏, 庄建琦, 陈兴长, 等.汶川地震区震后泥石流活动特征与防治对策[J].四川大学学报:工程科学版, 2010 (5): 10~19. http://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201005005.htm

    Cui Peng, Zhuang Jian-qi, Chen Xing-chang, et al. Characteristics of debris flow after the earthquake in Wenchuan earthquake area and Prevention Countermeasures[J]. Journal of Sichuan University: Engineering Science Edition, 2010 (5): 10~19. http://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201005005.htm
    [117] 王士天, 张倬元, 詹铮, 等.甘肃洒勒山成速滑坡的基本特征及其形成的动力学机制[J].成都地质学院学报, 1988, 2. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG198802009.htm

    Wang Shi-tian, Zhang Zhuo-yuan, Zhan Zheng, et al. The basic characteristics and dynamic mechanism of the formation of the landslide in Gansu[J]. Journal of Chengdu Institute of Geology, 1988, 2. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG198802009.htm
    [118] 余斌, 杨永红, 苏永超, 等.甘肃省舟曲8.7特大泥石流调查研究[J].工程地质学报, 2010, 18(4): 437~444. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201004002.htm

    Yu Bin, Yang Yong-hong, Su Yong-chao, et al. Investigation and Research on the 8.7 super large debris flow in Zhouqu, Gansu Province[J]. Journal of Engineering Geology, 2010, 18 (4): 437~444. http://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201004002.htm
  • 加载中
图(3)
计量
  • 文章访问数:  743
  • HTML全文浏览量:  265
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-26
  • 刊出日期:  2017-02-01

目录

/

返回文章
返回