留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Newmark模型的尼泊尔Ms8.1级地震滑坡危险性快速评估

杨志华 张永双 郭长宝 杜国梁

杨志华, 张永双, 郭长宝, 等, 2017. 基于Newmark模型的尼泊尔Ms8.1级地震滑坡危险性快速评估. 地质力学学报, 23 (1): 115-124.
引用本文: 杨志华, 张永双, 郭长宝, 等, 2017. 基于Newmark模型的尼泊尔Ms8.1级地震滑坡危险性快速评估. 地质力学学报, 23 (1): 115-124.
YANG Zhi-hua, ZHANG Yong-shuang, GUO Chang-bao, et al., 2017. LANDSLIDE HAZARD RAPID ASSESSMENT IN THE Ms 8.1 NEPAL EARTHQUAKE-IMPACTED AREA, BASED ON NEWMARK MODEL. Journal of Geomechanics, 23 (1): 115-124.
Citation: YANG Zhi-hua, ZHANG Yong-shuang, GUO Chang-bao, et al., 2017. LANDSLIDE HAZARD RAPID ASSESSMENT IN THE Ms 8.1 NEPAL EARTHQUAKE-IMPACTED AREA, BASED ON NEWMARK MODEL. Journal of Geomechanics, 23 (1): 115-124.

基于Newmark模型的尼泊尔Ms8.1级地震滑坡危险性快速评估

基金项目: 

国家自然科学基金项目 41502313

国家科技基础性工作专项 2011FY110100-2

详细信息
    作者简介:

    杨志华(1982-), 男, 博士, 助理研究员, 主要从事工程地质与地质灾害防治等研究工作。E-mail:yangzh99@163.com

    通讯作者:

    张永双(1968-), 男, 博士, 研究员, 博士生导师, 主要从事工程地质与地质灾害防治等研究工作。E-mail:zhys100@sohu.com

  • 中图分类号: P631.8

LANDSLIDE HAZARD RAPID ASSESSMENT IN THE Ms 8.1 NEPAL EARTHQUAKE-IMPACTED AREA, BASED ON NEWMARK MODEL

  • 摘要: 在研究分析地震灾区地形地貌、地层岩性、地质构造、气象水文和典型地区滑坡的基础上,采用Newmark斜坡累积位移模型对2015年4月25日尼泊尔Ms 8.1级地震诱发的滑坡危险性的空间分布状况进行了快速评估,通过典型地区的滑坡遥感解译结果验证表明评估结果具有较好的可信度,初步反映了尼泊尔地震诱发滑坡危险性分布的基本特征。然后考虑降雨作用对震后滑坡危险性的影响,对地震叠加降雨诱发滑坡危险性分布进行了快速预测。研究结果对地震应急救灾中的地质灾害防灾减灾具有重要的参考意义。

     

  • 图  1  尼泊尔及中国藏南地区地理地貌图

    F1-喜马拉雅中央主断裂; F2-喜马拉雅边界主断裂; F3-藏南滑脱拆离系断裂

    Figure  1.  Geographical landform in Nepal and southwest Tibet of China

    图  2  尼泊尔及中国藏南区域地质图

    Figure  2.  Geological map of Nepal and southwest Tibet of China

    图  3  尼泊尔地震诱发典型崩塌、滑坡和堰塞湖实例(据尼泊尔地震应急专家组)

    a-吉隆滑坡形成堰塞湖; b-吉隆滑坡; c-地震引起樟木口岸边坡发生滚石; d-地震引起樟木滑坡发生局部变形

    Figure  3.  Typical cases of Nepal earthquake-induced geo-hazards

    图  4  Newmark模型的累积位移计算过程示意图[4]

    Figure  4.  Schematic diagram of calculation process of cumulative displacement of Newmark model

    图  5  尼泊尔地震滑坡危险性快速评估过程。

    (a)工程地质岩组, (b)斜坡坡度, (c)静态安全系数, (d)临界加速度, (e)地震峰值地面加速度, (f)地震诱发斜坡位移。

    Figure  5.  Rapid assessment procedure of Nepal earthquake-induced landslide hazard

    图  6  尼泊尔地震诱发滑坡危险性分布图

    Figure  6.  Distribution map of Nepal earthquake-induced landslide hazard

    图  7  尼泊尔地震诱发滑坡危险性快速评价结果与地质灾害分布统计关系图

    Figure  7.  Statistical relationship between earthquake-induced landslide hazard distribution and field landslide case distribution resulted from post-earthquake rapid remote sensing interpretation

    图  8  尼泊尔及中国藏南地区6—9月平均降雨空间分布图(1981—2007年)(据中国国家气象局)

    Figure  8.  Average rainfall distribution from June to September (1981—2007) in Nepal and southwest Tibet of China

    图  9  尼泊尔震区震后降雨诱发滑坡危险性分布图

    Figure  9.  Hazard distribution map of post-earthquake rainfall-induced landslide in Nepal seismic area

  • [1] 熊维, 谭凯, 刘刚, 等. 2015年尼泊尔Mw7.9地震对青藏高原活动断裂同震、震后应力影响[J].地球物理学报, 2015, 58(11):4305~4316. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511036.htm

    XIONG Wei, TAN Kai, LIU Gang, et al. Coseismic and postseismic Coulomb stress changes on surrounding major faults caused by the 2015 Nepal Mw7.9 earthquake[J]. Chinese Journal of Geophysics, 2015, 58(11):4305~4316. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511036.htm
    [2] 赵根模, 刘杰, 吴中海.尼泊尔大地震及喜马拉雅造山带未来地震趋势[J].地质力学学报, 2005, 21(3):351~358. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201503005.htm

    ZHAO Gen-mo, LIU Jie, WU Zhong-hai. 2015 Nepal earthquake and the future seismictrend of Himalaya orogenic belt[J]. Journal of geomechanics, 2005, 21(3):351~358. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201503005.htm
    [3] Newmark NM. Effects of earthquakes on daMs and embankments[J]. Geotechnique, 1965, 15(2):139~160. doi: 10.1680/geot.1965.15.2.139
    [4] Jibson RW, Harp EL, Michael JA. A method for producing digital probabilistic seismic landslide hazard maps[J]. Engineering Geology, 2000, 58(3/4):271~289. http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/2006_2_529.pdf
    [5] 王涛, 吴树仁, 石菊松, 等.基于简化Newmark位移模型的区域地震滑坡危险性快速评估-以汶川Ms8.0级地震为例[J].工程地质学报, 2013, 21(1):16~24.

    WANG Tao, WU Shu-ren, SHI Ju-song, et al. Case study on rapid assessment of regional seismic landslide hazard based on simplified Newmark displacement model:WenchuanMs 8.0 earthquake[J]. Journal of Engineering Geology, 2013, 21(1):16~24.
    [6] CHEN Jianping, LI Jianfeng, QIN Xuwen, et al. RS and GIS-based statistical analysis of secondary geological disasters after the 2008 Wenchuan earthquake[J]. ActaGeologicaSinica (English Edition), 2009, 83(4):776~785. doi: 10.1111/j.1755-6724.2009.00101.x/full?scrollTo=references
    [7] ZHANG Yongshuang, DONG Shuwen, HOU Chuntang, et al. Geohazards induced by the Lushan Ms7.0 earthquake in Sichuan Province, Southwest China:typical examples, types and distributional characteristics[J]. ActaGeologicaSinica (English Edition), 2013, 87(3):646~657. doi: 10.1007/978-3-319-09057-3_2/fulltext.html
    [8] 张永双, 雷伟志, 石菊松, 等.四川5.12地震次生地质灾害的基本特征初析[J].地质力学学报, 2008, 14(2):109~116. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20080211&flag=1

    ZHANG Yong-shuang, LEI Wei-zhi, SHI Ju-song, et al. General characteristics of 5.12earthquake-induced geohazards in Sichuan[J]. Journal of Geomechanics, 2008, 14(2):109~116. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20080211&flag=1
    [9] YANG Zhihua, LAN Hengxing, GAO Xing, et al. Urgent Landslide Susceptibility Assessment in the 2013 Lushan Earthquake-impacted Area, Sichuan Province, China[J]. Natural Hazards, 2015, 75(3):2467~2487. doi: 10.1007/s11069-014-1441-8
    [10] GUO Changbao, Montgomery DR, ZHANG Yongshuang, et al. Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China[J]. Geomorphology, 2015, 248:93~110. doi: 10.1016/j.geomorph.2015.07.012
    [11] Ayalew L, Yamagishi H, Ugawa N. Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan[J]. Landslides, 2004, 1:73~81. doi: 10.1007/s10346-003-0006-9
    [12] Ozdemir A, Altural T. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping:Sultan Mountains, SW Turkey[J]. Journal of Asian Earth Sciences, 2013, 64:180~197. doi: 10.1016/j.jseaes.2012.12.014
    [13] YAO Xin, Tham LG, DAI Fuchu. Landslide susceptibility mapping based on Support Vector Machine:A case study on natural slopes of Hong Kong, China[J]. Geomorphology, 2008, 101:572~582. doi: 10.1016/j.geomorph.2008.02.011
    [14] SONG Yiquan, GONG Jianhua, GAO Sheng, et al. Susceptibility assessment of earthquake-induced landslides using Bayesian network:A case study in Beichuan, China[J]. Computers and Geosciences, 2012, 42:189~199. doi: 10.1016/j.cageo.2011.09.011
    [15] XU Chong, XU Xiwei, DAI Fuchu, et al. Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China[J]. Natural Hazards, 2013, 68(2):883~900. doi: 10.1007/s11069-013-0661-7
    [16] Guzzetti F, CarraraA, Cardinali M, et al. Landslide hazard evaluation:a review of current techniques and their application in a multi-scale study, Central Italy[J]. Geomorphology, 1999, 31:181~216. doi: 10.1016/S0169-555X(99)00078-1
    [17] 兰恒星, 伍法权, 周成虎, 等. GIS支持下的降雨型滑坡危险性空间分析预测[J].科学通报, 2003, 48(5):507~512. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200305020.htm

    LAN Hen-xing, WU Fa-quan, ZHOU Cheng-hu, et al. Spatial hazard analysis and prediction on rainfall-induced landslide using GIS[J]. Chinese Science Bulletin, 2003, 48(5):507~512. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200305020.htm
    [18] 刘凤民, 张立海, 刘海青, 等.中国地震次生地质灾害危险性评价[J].地质力学学报, 2006, 12(2):127~131. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20060220&flag=1

    LIU Feng-min, ZHANG Li-hai, LIU Hai-qing, et al. Danger assessment of earthquake-induced geological disasters in China[J]. Journal of Geomechanics, 2006, 12(2):127~131. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20060220&flag=1
    [19] 张铎, 吴中海, 李家存, 等.国内外地震滑坡研究综述[J].地质力学学报, 2013, 19(3):225~241. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20130301&flag=1

    ZHANG Duo, WU Zhong-hai, LI Jia-cun, et al. An overview on earthquake-induced landslide research[J]. Journal of Geomechanics, 2013, 19(3):225~241. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20130301&flag=1
    [20] Wilson RC, Keefer DK. Dynamic analysis of a slope failure from the 6 August 1979 Coyote lake, California, earthquake[J]. Bulletin of Engineering Geology and the Environment, 1983, 73(3):863~877. doi: 10.1007/BF02587759
    [21] Jibson RW. Regression models for estimating coseismic landslide displacement[J]. Engineering Geology, 2007, 91(2~3), 209~218.
    [22] 常士骠, 张苏民, 项勃, 等.工程地质手册(第四版)[M].北京:中国建筑工业出版社, 2007.

    CHANG Shi-biao, ZHANG Su-min, XIANG Bo, et al. Engineering geology manual of China (fourth edition)[M]. Beijing:China architecture and Building Press, 2007.
    [23] Gallo F, Lave J. Evolution of a large landslide in the High Himalaya of central Nepal during the last half-century[J]. Geomorphology, 2014, 223:20~32. doi: 10.1016/j.geomorph.2014.06.021
  • 加载中
图(9)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  126
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-23
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回