Processing math: 100%

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国伴生稀土元素资源类型及资源潜力

谢玉玲 秦绪岩 代作文 耿子岩

谢玉玲,秦绪岩,代作文,等,2024. 中国伴生稀土元素资源类型及资源潜力[J]. 地质力学学报,30(5):723−746 doi: 10.12090/j.issn.1006-6616.2024081
引用本文: 谢玉玲,秦绪岩,代作文,等,2024. 中国伴生稀土元素资源类型及资源潜力[J]. 地质力学学报,30(5):723−746 doi: 10.12090/j.issn.1006-6616.2024081
XIE Y L,QIN X Y,DAI Z W,et al.,2024. By-product rare earth elements deposits in China and their resource potential[J]. Journal of Geomechanics,30(5):723−746 doi: 10.12090/j.issn.1006-6616.2024081
Citation: XIE Y L,QIN X Y,DAI Z W,et al.,2024. By-product rare earth elements deposits in China and their resource potential[J]. Journal of Geomechanics,30(5):723−746 doi: 10.12090/j.issn.1006-6616.2024081

中国伴生稀土元素资源类型及资源潜力

doi: 10.12090/j.issn.1006-6616.2024081
基金项目: 国家重点研发计划项目(2021YFC2901703)
详细信息
    作者简介:

    谢玉玲(1963—),女,教授,博士生导师,主要从事矿床学和矿床地质化学方面的研究。Email:yulinxie@ces.ustb.edu.cn

  • 中图分类号: P619.21+3

By-product rare earth elements deposits in China and their resource potential

Funds: This research is financially supported by the National Key Research and Development Program (Grant No. 2021YFC2901703).
More Information
    Author Bio:

    谢玉玲,北京科技大学教授、博士生导师。2023年获得第十八次李四光地质科学奖教师奖。现为北京科技大学地质学科负责人、国际经济地质学会会士、俄罗斯自然科学院院士、中国矿物岩石地球化学学会理事、《矿床地质》《岩石矿物学杂志》副主编。先后主讲了多门本科生和研究生核心课程,获北京市精品课程(R1)、北京市高等教育教学成果一等奖(R2)、北京科技大学师德先锋等多项教学奖励。近年来承担了多项国家自然科学基金重点项目和国家重点研发计划项目,在碳酸岩及稀土成矿作用、斑岩型钼(钨)−热液型铅锌成矿系统等方面取得一系列创新认识,相关成果以第一或通讯作者身份发表在GeologyReviews in Economic GeologySociety of Economic Geology special publicationGondwana ResearchPrecambrian Geology、《科学通报》《地学前缘》《地球科学》《地质学报》《矿床地质》等国内外重要刊物上

  • 摘要: 中国的稀土元素(REE)资源丰富,矿床类型多样,其中轻稀土元素(LREE)绝大多数来自于碱性岩−碳酸岩有关的REE矿床,而重稀土(HREE)主要来自离子吸附型(或称风化壳型)REE矿床,其他稀土矿床类型还包括REE砂矿和伴生的REE矿床等。目前,中国的REE资源开发主要是针对碳酸岩−碱性岩型LREE矿床和离子吸附型HREE矿床,REE砂矿和其他矿床中伴生的REE资源尚未得到有效利用。文章在综合已有研究成果的基础上,对中国伴生的REE矿床的类型、资源潜力进行评述。结果表明,中国伴生的REE资源类型包括海相沉积磷矿床、煤矿床、铝土矿床、岩浆型磷−铁磷矿床等,其潜在的REE资源巨大,特别是海相沉积磷矿床和铝土矿床中伴生的REE资源。铝土矿床中伴生的REE以LREE为主,且其中的Sc具有重要的资源意义。沉积磷矿床中伴生的HREE(含Y)占比高,特别是产于四川德阳地区的什邡式磷矿上部层位的富硫磷铝锶型矿石,其中的REE含量明显高于磷块岩型矿石,且中、重REE占50%以上,还伴生有多种关键金属,具有重要的资源意义和经济价值。另外,岩浆型(铁)磷矿床、煤矿床、油页岩矿床、金矿床中伴生的REE资源也值得重视。但由于缺少详细的勘查数据,目前对中国伴生的REE资源家底不清,资源综合利用水平及REE回收和提取技术也有待提高。而加强中国伴生REE资源的评价和综合利用水平,充分利用生产矿山中伴生的REE资源,特别是磷矿床和铝土矿床,不仅可以有效缓解中国HREE资源供应压力,还是贯彻中国节约资源和保护环境基本国策的重要举措。

     

  • 中国是世界第一大稀土元素(REE)资源国和生产国,供应了全球约69%以上的REE(U.S. Geological Survey, 2024)。截至2018年底,中国已探明的稀土氧化物(REO)资源量(不含钇Y和钪Sc,下同)约为2.08×108 t(谢玉玲等, 2019)。中国的REE以LREE(轻稀土元素)为主,主要来自碱性岩−碳酸岩有关的LREE矿床,其贡献了中国REE资源的98%左右(Xie et al.,2016, 2019),HREE(重稀土元素)主要来自华南的离子吸附型(亦称风化壳型)REE矿床,尽管其资源总量不高(Xie et al., 20162019),但供应了全球90%以上的HREE(García et al.,2017;Li et al.,2019a)。中国目前正在开采的REE矿床主要为碱性岩−碳酸岩型LREE矿床和离子吸附型HREE矿床,LREE资源量丰富,但HREE资源(含Sc和Y)仍存在较大的供应风险。根据美国地质调查局2024年矿产年报数据,2023年全球REE产量3.5×105 t,全球REE的需求量正以每年7%~8%的速度增长,预计到2030年全球REE需求量可能达到6×105 t以上(Kingsnorth, 2016Batapola et al., 2020何宏平和杨武斌,2022U.S. Geological Survey, 2024),因此,开发和利用伴生REE矿床中的REE资源,特别是HREE资源可以有效缓解中国HREE资源短缺,也是应对日益增长的REE需求的重要途径。

    近年研究发现,海相沉积磷块岩矿床(胡瑞忠等,2020)、煤矿床(代世峰等,2020)、铝土矿床(Wang et al.,2024)、岩浆型(铁)磷矿床(程春, 2001)中伴生较高的REE和多种关键金属元素。通过对这些伴生REE资源的开发和利用可为巩固中国REE资源的优势地位,为缓解HREE资源不足问题提供解决方案。文章系统总结了中国伴生REE的资源类型、资源潜力和开发利用现状,认为中国海相沉积型磷矿床、铝土矿床、煤矿床中伴生的REE资源潜力巨大,另外,岩浆型磷−磷铁矿床、岩浆型铁矿床、热液脉型金矿床、高岭石矿床等也伴生较高的REE,具有潜在的资源意义。目前中国已查明的伴生REE资源量有限,伴生REE资源的综合利用技术水平仍有待提高,伴生REE矿床中的REE资源大多未实现有效利用。加强伴生REE资源的勘查力度,提高伴生REE资源的综合利用水平是保持中国REE资源优势地位,缓解HREE资源供需矛盾的重要途径之一。

    已有研究发现,全球海相沉积磷块岩矿床中REE,特别是HREE含量较高,通过对磷块岩中REE的回收几乎可满足全球全部的REE需求(Emsbo et al.,2015)。中国沉积型磷矿资源丰富,且部分磷块岩矿床中REE含量高,其中HREE(含Y)占REE总量的30%以上,开发和利用磷块岩中的REE资源可为解决中国HREE资源短缺问题提供新的途径,富REE磷块岩矿床有望成为继中国南方离子吸附型HREE矿床之外的又一重要的HREE后备资源。

    中国的沉积型磷矿床主要分布于贵州、云南、四川、湖北,另外在陕西、河南、河北等地也有分布。贵州织金磷矿床是目前已知的REE规模最大的磷块岩矿床,其REE平均品位(REO,含Y)为0.11%,查明的REE资源量约大于3×106 t,其中Y(Y2O3)约1×106 t,占REE资源总量的30%以上(刘建中等,2015)。另外,云南羊场的磷块岩中也发现了较高的REE含量,磷块岩的全岩岩石化学结果显示其REE总量(ΣREY,镧系金属+钇)为382×10−6~1182×10−6秦欢等,2022)。由于早期的磷矿勘查中未对其中REE含量进行分析,因此大多磷块岩矿床中伴生的REE资源量不明。根据中国部分已知沉积磷矿床中磷块岩的全岩REE含量统计结果(表1)可以看出,不同矿区的磷矿石中REE的含量差异较大,介于10×10−6~5616×10−6 ,主要分布于<1000×10−6 范围内(图1),但不同矿区的磷块岩都显示了相似的REE配分特征(图2)。磷块岩中不仅富REE,且HREE(含Y)占比高,平均占REE总量的26.97%~57.93%(表1)。

    表  1  海相沉积磷矿床磷矿石的全岩REE含量(×10−6 )统计结果
    Table  1.  Statistical results of rare earth content in the whole rock of phosphate ores in marine sedimentary phosphate deposits
    矿床名称地理位置ΣREY范围ΣREY平均值HREE总量
    (Gd-Y)范围
    HREE总量
    (Gd-Y)平均值
    HREE含
    量占比
    数据来源
    铜仁磷矿床贵州省铜仁市237.8~2496.31116.7125.7~1359.8646.957.93%汪宇航,2023
    杨旭, 2019
    卢正浩, 2022
    张兰, 2021
    开阳磷矿床贵州省贵阳市28.3~507.6204.614.6~244.395.746.77%Yang et al.,2019a
    瓮福磷矿区贵州省瓮安县10.2~400.3116.05.0~225.654.647.07%Zhang et al.,2022
    Yang et al.,2019a
    Wang and Qiao,2024
    任海利, 2017
    梁坤萍, 2022
    杨海英等,2020
    织金磷矿床贵州省毕节市508.3~2041.01198.7181.7~862.7494.441.24%Zhang et al.,2022
    Gong et al.,2021
    Li et al.,2019b
    He et al.,2022
    Xing et al.,2021
    Wang and Qiao,2024
    汪宇航, 2023
    曹金鑫, 2022
    蒋权等, 2023
    大坪剖面湖南省张家界781.7~1004.1905.1339.9~438.8400.544.25%王文全, 2016
    大浒剖面湖南省张家界470.6~2203.61344.9275.7~1029.7651.448.43%王文全,2016
    黄家坪磷矿床四川省乐山市85.6~113.299.536.8~60.850.650.85%李佐强等, 2023
    什邡磷矿区四川省什邡市184.7~5615.61921.791.6~853.3518.326.97%张跃跃,2015
    白龙潭磷矿床云南省昆明市95.0~379.8199.555.1~181.599.649.92%曹金鑫等,2022
    会泽磷矿床云南省曲靖市217.8~313.1265.4121.4~177.9149.756.41%徐凯等, 2023
    昆阳磷矿床云南省昆明市161.5~440.8304.990.2~242.4154.650.71%杨帆,2011Zhang et al.,2022
    羊场磷矿床云南省昭通市382.1~1181.5619.5136.4~474.0241.839.03%秦欢等,2022
    遵义磷矿床贵州省遵义市142.7~1401.0605.249.4~682.1294.148.60%王文全,2016
    下载: 导出CSV 
    | 显示表格
    图  1  中国主要沉积磷矿床中磷块岩的REE含量统计图和配分曲线 (数据来源见表1,PAAS数据引自McLennan,1989)
    a—ΣREY含量频数分布图;b—PAAS标准化稀土配分曲线
    Figure  1.  Rare earth elements content and partition pattern of phosphorite for major sedimentary phosphate deposits in China (data from references listed in Table 1; REE data for PAAS from McLennan, 1989)
    (a) Frequency histogram of ΣREY content; (b) PAAS normalized REE partition pattern
    图  2  中国主要铝土矿床中铝土矿石的中REE含量统计图(数据来源见表3
    a—镧系金属元素总量分布直方图;b—Sc含量分布直方图
    Figure  2.  Statisrical chart of rare earth elements content and their partition pattern of bauxite ore from major bauxite deposits in China (data from references listed in table 3)
    (a) Frequency histogram of total lanthanide elements content; (b) Frequency histogram of Sc content

    据《中国矿产资源报告 2023》(中华人民共和国自然资源部,2023),中国磷矿储量为3.69×109 t,其中沉积型磷矿床是中国磷的最主要来源,约占全国磷矿资源的75%左右(夏学惠等,2011b; 王莹等,2022),据此计算的中国磷块岩的储量约为2.77×109 t,按其中REO平均含量为0.05%~0.1%计算,其中蕴含的REO资源量约1.38×106~2.77×106 t,若HREE按40%计算,则约为0.55×106~1.1×106 t,是中国离子吸附型REO资源总量(0.22×105 t ;Xie et al., 2019)的2~5倍。

    产于中国四川奥陶纪地层中的什邡式磷矿床是中国重要的磷矿类型,以矿床规模大、矿石磷品位高和富含REE为特征,主要分布于四川的什邡、绵竹地区。除磷块岩型矿石外,什邡式磷矿的磷块岩上部层位普遍发育一套富硫、铝、锶的磷矿层,称为硫磷铝锶层(以往资料多称为硫磷铝锶矿,因其名称易与矿物名称混淆,故文章中称为硫磷铝锶层、硫磷铝锶型矿石、硫磷铝锶型矿化)。硫磷铝锶型矿化常呈层状产出,产于磷块岩的上部层位,包括红色和灰色−灰黑色两种类型。灰−灰黑色的硫酸铝锶层产于磷块岩之上,构成磷块岩的直接顶板,其矿物组成以富含黄铁矿为特征。红色硫磷铝锶层产于灰−灰黑色硫磷铝锶层的上部,其矿物组成中以富含赤铁矿为特征。代作文等(2024)通过对四川清平磷矿床中磷块岩及硫磷铝锶型矿石的全岩REE分析发现,该矿床的磷块岩中ΣREY(镧系金属+Y)为107.2×10−6~690.9×10−6 ,平均为280.0×10−6 (约合REO 0.03%),而顶板硫磷铝锶型矿石的ΣREY为1060.2×10−6~3257.2×10−6 ,平均为2053.9×10−6 (约合REO 0.24%),远高于该矿床的磷块岩型矿石。无论是红色还是灰−灰黑色硫磷铝锶层均富REE,且MREE(中稀土元素)、HREE(含Y)占REE总量的52.6%(代作文等,2024)。除清平磷矿外,四川的其他什邡式磷矿床也都发现有硫磷铝锶层的存在,且均显示了富REE的特征。如清平龙王庙磷矿区的硫磷铝锶型矿石中ΣREY含量最高达3287×10−6 (约合REO 0.39%),其中HREE占约56%;马槽滩磷矿区的硫磷铝锶型矿石中REO含量(含Y)为0.22%~0.33%(欧洋,2015)。据国家地质资料馆数据统计,中国已查明的什邡式磷矿床主要分布在四川省德阳市,包括清平、王家坪、长河坝、英雄崖、青棚子、板棚子、马槽滩、岳家山、金河等磷矿,已查明的硫磷铝锶型矿石潜在资源量大于1×108 t。按照已发表的硫磷铝锶层中伴生ΣREY平均含量2259.4×10−6 (折合REO约为0.27%)估算(代作文等,2024),潜在的REO资源量约2.7×105 t,其中的MREE、HREE约1.5×105 t,包括Y2O3约1.1×105 t。按2023年全球的Y2O3资源消耗量(1×104~1.5×104 t;U.S. Geological Survey, 2024)计算,其中的Y资源量可满足全球7~11年以上的用量。

    目前,中国沉积磷矿床中伴生的REE尚未得到有效利用,造成了资源的浪费。除REE外,磷块岩中还伴生有F、I和多种关键金属元素。2023年12月份,工业和信息化部、国家发展改革委、科技部、自然资源部、生态环境部、农业农村部、应急管理部、中国科学院联合发布了《推进磷资源高效高值利用实施方案》,对磷石膏的无害化处理、资源综合利用率提出了新的要求,并强调要突破一批磷资源高效开发、清洁生产、综合利用等关键技术。磷酸生产工艺分为热法(火法)和湿法两类,火法磷酸加工工艺能耗高、成本高,且生产过程会产生粉尘和有毒气体,因此磷酸工艺目前应用最为广泛的是湿法。湿法磷酸工艺又分为盐酸法、硝酸法和硫酸法。由于在硫酸法磷酸产生过程中,REE主要进入磷石膏中,因此从磷石膏中回收REE是目前国际上主要的REE回收方式(Emsbo et al., 2015)。硫酸法磷酸工艺会产生大量的磷石膏,其经无害化处理后可用于建筑材料,但目前中国的磷石膏利用率不高,磷石膏堆积已成为磷化工面临的主要环境问题之一。近几十年来,硝酸法磷酸工艺得到较大的发展。硝酸法磷酸工艺不产生磷石膏,不受硫资源的限制,对磷矿品位要求较低,且可以有效减轻硫酸法带来的环境问题(李朝荣等,2020)。另外,硝酸法可以利用硝酸中氢根分解磷矿,而硝酸根可作为氮肥保留在产品中,实现了对硝酸的双重利用,表现出较好的经济技术优势(匡敬忠等,2012)。同时硝酸法磷酸工艺过程中REE主要进入硝酸分解液,其REE的浸出率高达95%(匡敬忠等, 2012)。汪胜东等(2011)和冯林永等(2016)分别对硝酸法生产磷酸过程中REE和HREE的浸出进行了研究,探讨了温度、硝酸浓度、时间、粒度、液固比等因素对磷精矿中REE浸出率的影响,在最优的实验条件下,其REE浸出率在98%以上。崔文鹏等(2014)采用硝酸法对贵州织金磷矿中伴生的REE进行了提取实验,发现磷矿粒度与硝酸浓度对磷矿分解影响最大,冷却除钙以及二次除钙对REE沉淀的效果影响显著。在最优实验条件下,可从含REE0.1%的原矿中制得REE含量21.8%的富集物(崔文鹏等,2014)。盐酸法磷酸生产工艺对环境污染相对较小,但分解过程大量的氯化钙废液难以有效利用(杨文娟等, 2022)是盐酸法目前面临的主要问题,另外,对盐酸法磷酸工艺中REE的浸出效果、回收和利用技术目前仍处于探索阶段,还有待进一步的研究。

    对于更富REE的硫磷铝锶型矿石,由于其磷品位低、杂质含量高、加工利用难度更大。目前对该类矿石大多未开采或作为废石处理,其中磷和REE均未得到有效利用。现有研究在硫磷铝锶型矿石的加工和利用方面取得了一定的进展,但重点在针对磷的利用方面,如王励生和金作美(1995)提出,硫磷铝锶型矿石经过简单加工可制得含枸溶磷20%的磷酸铝型肥料,达到国家热法磷肥优级品等级。硫磷铝锶型矿石中的REE含量很高,特别是HREE(含Y),同时伴生有Sr、S、F、Ga、Zr、Ti等,急需加强对硫磷铝锶型矿石中REE和其他关键金属的资源评价和综合利用技术的研发。

    铝土矿不仅是世界铝的最主要来源,其中还伴生有多种关键金属,如镧系金属元素、Sc、Y、Ga、Li、Rb、V等(Panda et al., 2021),因此铝土矿也是REE的重要来源,特别是Ce和Sc(Barnett et al.,2020Mishra et al.,2022)。多米尼加共和国的Las Mercedes铝土矿床中的REE的平均含量为1530×10−6 ,是世界上最富REE的铝土矿床之一(Torró et al.,2017)。铝土矿中伴生的Sc是世界Sc的主要来源,全球有58.3%的Sc赋存于铝土矿中(张玉学等, 1999)。Wang et al.(2011)认为,铝土矿和镍红土矿是最有前景的Sc来源。由于铝土矿中丰富的REE和多种关键金属,在欧盟新的关键金属名录中,铝土矿也被列入其中(Blengini et al.,2020)。在氧化铝生产过程中,REE主要在残渣(赤泥)中富集,因此从铝土矿残渣中回收REE,特别是Sc的潜力很大,较从炼油废物中回收Sc更加经济和安全(Wagh and Pinnock, 1987Panda et al., 2021)。

    目前,国际上应用最广泛的铝土矿床分类是根据基岩类型不同将铝土矿分为喀斯特型和红土型两类。喀斯特型铝土矿床产于碳酸盐岩古喀斯特面之上,红土型产于铝硅酸盐岩之上(Bárdossy and Aleva, 1990D’Argenio and Mindszenty, 1995),其中喀斯特铝土矿相对富含REE(Mordberg, 1999Mordberg et al., 20002001Mameli et al., 2007Eliopoulos et al, 2014Liu et al., 2016)。中国目前实施的铝土矿勘查规范(中华人民共和国自然资源部,2020)将铝土矿划分为红土型、堆积型、沉积型三类,其中以沉积型最为重要,占已查明的铝土矿储量的92.25%(祖树正,1999),主要分布在山西、河南、贵州等地。近年来,铝土矿中伴生的REE等关键金属受到越来越多学者的关注,对其中关键金属的来源(如Long et al., 2017)、富集机理(如Wang et al., 2013, 2024Ling et al., 2018)、REE赋存状态(杨军臣等,2004庹必阳等,2007)和回收利用技术(Zhang et al., 2019a)等进行了大量的工作,取得了重要的进展。但由于大多矿床缺少系统的REE勘查数据,对铝土矿中伴生的REE资源量仍难以准确估算。据国家地质资料馆公布数据的不完全统计,目前有REE资源量数据的铝土矿床有21处(表2),其中REE的潜在资源量总计约6.19×105 t。

    表  2  中国部分铝土矿床中伴生的REE品位和资源量
    Table  2.  Associated rare earth grade and resources in some bauxite deposits in China
    编号 矿床名称 位置/行政区划代码 REE平均品位(REO,wt%) REE资源总量(t)
    (除特别注明外均指C级以上或333以上)
    1 相王铝土矿床 山西省孝义市相王 / 37339.70
    2 西红河矿床区铝土矿床 山西省忻州市宁武县薛家洼乡 / 6716.72
    3 湍水头铝土矿床 山西省吕梁市临县湍水头镇 / 19248.00
    4 后塔上铝土矿床 山西省吕梁市离石区 / 7192.60
    5 铁金村铝土矿床 山西省交口县铁金村 / 36281.49
    6 蒲依铝土矿床 山西省吕梁市交口县蒲依村 / 35500.00
    7 石且河铝土矿床 山西省保德县 0.079 89091.00
    8 曹窑煤矿床深部铝土矿床 河南渑池县 / 32500.00(未注明储量级别)
    9 交口−汾西铝土矿床 山西交口−汾西地区 / 178103.00(未注明储量级别)
    10 前文猛铝土矿床 山西静乐县 / 23500.20(未注明储量级别)
    11 墕则村铝土矿床 山西保德县 / 16931.00(334)
    12 下反里铝土矿床 山西汾西县 0.100 9370.00(334)
    13 沙墕铝土矿床 山西交口县 / 19710.00(未注明储量级别)
    14 桃花铝土矿床 山西交口县 / 4973.00(未注明储量级别)
    15 石槽铝土矿床 山西娄烦县 / 4533.76(未注明储量级别)
    16 西窑铝土矿床 山西平陆县 / 7921.20(334)
    17 旋风窝铝土矿床 山西沁源县 / 16110.00(334)
    18 苗家岭铝土矿床 山西襄垣县 / 8523.00(334)
    19 奥家湾铝土矿床 山西兴县 0.110 21411.80(未注明储量级别)
    20 范家疃铝土矿床 山西兴县 / 21191.40(334)
    21 井沟铝土矿床 山西曲阳县 / 12295.00(未注明储量级别)
    数据来源:全国地质资料馆“http://www.ngac.org.cn/”;“/”表示无数据或网上未提供
    下载: 导出CSV 
    | 显示表格

    尽管大多铝土矿床缺少REE的品位资料,但从已发表的铝土矿岩石化学资料(表3)看,REE含量普遍较高,且有些显示了Sc的明显富集,在PAAS标准化REE配分曲线(图3)中多显示了较为平缓的配分特征。贵州修文−清镇铝土矿区的铝土岩中ΣREE最高为2040×10−6 ,其中Sc含量最高达91.6×10−6杜蔺等,2023),是地壳平均值(Hans Wedepohl, 1995)的10倍以上。目前已发表的国内主要铝土矿床矿石的全岩REE含量统计结果见表3。从表中可以看出,中国铝土矿床中伴生的REE含量差异很大,ΣREY从16.1×10−6 到10711×10−6 ,Sc的含量从小于10×10−6 到大于100×10−6 。已知REE含量最高的是山西兴县的铝土矿床和黔北的新民铝土矿床,其ΣREY最高分别为1.07%(折合为REO约为1.26%,张尚清等,2018)和1.04%(折合为REO为1.18%,龙克树等,2019),已超过了原生REE矿床的边界品位要求。另外,河北、河南、广西、云南等地的铝土矿床也显示了较高的REE含量,如滇西北鹤庆县松桂铝土矿床的REE含量最高达2301×10−6王行军等, 2017),中国西南永江盆地铝土矿床平均REE含量为763×10−6Chen et al.,2018)。真允庆和王振玉(1991)报导了华北某铝土矿床中的REE总量为441×10−6~1007×10−6 ,且HREE占13-27%。从图2看,铝土矿的ΣREYS(镧系金属元素+Y+Sc)主要分布于100×10−6~600×10−6 ,部分大于2000×10−6图2a),Sc多小于50×10−6 ,但也有铝土矿的Sc含量在100×10−6 以上(图2b),不同类型的铝土矿石或铝土矿不同层位的REE含量有一定的差异。戴塔根等(2003)以平果原生铝土矿床典型剖面、靖西原生铝土矿床及堆积型铝土矿床为代表,对桂西地区铝土矿床中REE的地球化学特征进行了详细的研究,提出土状铝土矿床中ΣREY含量最高(1001.7×10−6),紫红色角砾状铝土岩中ΣREY含量最低(13.92×10−6 )。刘平(1999)对黔中—川南的铝土矿床中REE平均含量进行分析,ΣREY平均为395×10−6 ,其中早石炭世的铝土矿床(429×10−6 )明显高于晚石炭世的铝土矿床(300×10−6 ),且HREE占比较大。Wang et al.(2024)对华北克拉通上石炭统铝土矿的研究表明,铁质黏土岩相对富集HREE元素,而黏土质铝土矿床相对富集LREE元素,铝矾土黏土相对富集B和Li。

    表  3  中国部分铝土矿床的矿石全岩REE含量(×10−6 )统计结果
    Table  3.  Statistical results of rare earth element content in the whole rock of some bauxite deposits in China
    矿床名称 地理位置 REE总量范围 REE总量
    平均值
    HREE总量
    范围
    HREE总量
    平均值
    HREE含量
    占比
    数据来源
    务正道矿区 贵州省遵义市 61.0~1815.2 419.2 16.9~143.8 44.1 10.51% Wang et al.,2013
    三合铝土矿床 广西省白色市 226.0~1460.0 626.3 41.7~172.2 74.3 11.86% 李普涛和张起钻,2008
    比例坝铝土矿床 贵州省贵阳市 401.0~1495.8 851.5 34.8~152.5 85.3 10.02% 张明等,2018
    新民铝土矿床 贵州省遵义市 17.8~2329.8 320.3 6.1~166.2 34.3 10.70% 龙克树等,2019
    高家山铝土矿床 山西省长治市 350.1~1262.6 828.5 29.6~91.9 56.5 6.82% 叶枫等,2015b
    王润-西崖底铝土矿床 山西省吕梁市 286.5~1205.5 765.8 29.1~81.9 53.0 6.92% 叶枫等,2015a
    小山坝铝土矿床 贵州省贵阳市 16.1~411.2* 213.7* 8.1~63.0* 35.5* 16.63%* Ling et al.,2018
    林歹铝土矿床 贵州省清镇市 228.7~286.1* 257.4* 56.6~88.7* 72.7* 28.23%* Ling et al.,2017
    松桂铝土矿床 云南省大理白族自治州 671.0~2300.7* 1148.6* 56.1~161.4* 97.8* 8.52%* 王行军等,2017
    金龙铝土矿床 广西省崇左市 163.5~427.5* 302.7* 31.5~165.1* 91.6* 30.26%* 王岩等,2015
    兴县铝土矿床 山西省吕梁市 2963.0~10711.5* 4645.8* 300.1~1154.3* 609.4* 13.12%* 董挨管等,2017
    张尚清等,2018
    平果矿区 广西省百色市 303.9~1001.0* 697.6* 111.4~348.0* 209.2* 29.98%* 戴塔根等,2003
    靖西矿区 广西省百色市 161.3~420.8* 291.0* 94.4~139.2* 116.8* 40.13%* 戴塔根等,2003
    山西某铝土矿区 山西省 441.4~1006.8* 724.1* 120.3~131.8* 126.0* 17.41%* 真允庆和王振玉,1991
    黔中-川南矿区 黔中-川南地区 299.9~429.0* 374.8* 95.4~106.2* 101.7* 27.13%* 刘平,1999
    贯沟铝土矿床 河南省三门峡市 107.4~1524.2** 679.6** 43.1~165.5** 74.3** 10.93%** Liu et al.,2013
    袁爱国,2010
    边庄铝土矿床 河南省平顶山市 197.2~2789.0** 797.6** 42.8~158.0** 89.5** 11.22%** 康微,2013
    袁爱国,2010
    夹沟铝土矿床 河南省偃师市 94.7~2011.0** 536.8** 27.9~135.7** 67.6** 12.59%** 袁爱国,2010
    坡池村铝土矿床 河南省汝州市 222.7~807.7** 449.3** 56.0~101.5** 70.1** 15.60%** 袁爱国,2010
    石寺铝土矿床 河南省洛阳市 211.9~963.9** 531.8** 46.9~91.0** 65.9** 12.38%** 冯跃文,2013
    关岭铝土矿床 河南平顶山市 272.5~1432.2*** 652.3*** 137.0~233.4*** 165.2*** 25.32%*** Yang et al.,2019b
    边庄铝土矿床 河南省平顶山市 191.7~2873.8*** 625.5*** 105.6~242.8*** 129.4*** 20.69%*** Yang et al.,2019b
    小山坝铝土矿床 贵州省贵阳市 32.5~778.8*** 296.2*** 9.9~234.1*** 72.5**** 24.47%*** Ling et al.,2018
    林歹铝土矿床 贵州省清镇市 308.6~424.6*** 353.9*** 117.1~188.9*** 144.1*** 40.71%*** Ling et al.,2013
    扶绥铝土矿床 广西省崇左市 105.3~1612.1*** 608.4*** 40.4~229.4*** 119.4*** 19.63%*** Yu et al.,2014
    新圩铝土矿床 广西省百色市 27.4~76.7*** 52.2*** 9.5~22.4*** 16.9*** 32.38%*** 刘枝刚,2005
    高洞铝土矿床 贵州省福泉市 133.1~267.2*** 209.4*** 51.4~101.6*** 69.3*** 33.12%*** 金中国等,2018
    教美铝土矿床 广西省百色市 352.7~1090.1*** 680.2*** 111.4~287.6*** 191.6*** 28.16%*** 章颖等,2015
    渑池铝土矿床 河南省三门峡市 121.5~1732.5*** 676.3*** 52.7~291.5*** 153.0*** 22.62%*** 王燕茹等,2012
    务正道矿区 贵州省遵义市 107.7~201.6*** 163.0*** 85.8~152.4*** 114.3*** 70.14%*** 张莹华等,2013
    庞家庄铝土矿床 山西省吕梁市 373.0~1407.2*** 874.6*** 106.3~211.1*** 150.4*** 17.19%*** 孟健寅等,2011
    宽草坪铝土矿床 山西省忻州市 146.3~1298.0*** 797.8*** 73.1~581.1*** 203.6*** 25.52%*** 孙思磊,2011
    上务头村铝土矿床 山西省长治市沁源县 96.7~1714.4*** 423.7*** 49.8~267.8*** 109.1*** 25.75%*** 杨中华,2011
    石墙区铝土矿床 山西省原平市 576.9~1314.5*** 987.1*** 102.5~330.5*** 196.7*** 19.93%*** 孙思磊等,2012
    东门-柳桥矿区 广西省崇左市 121.4~1093.0*** 322.9*** 15.2~158.9*** 55.5*** 17.19%*** 乔龙,2016
    古美矿区 广西省崇左市 333.8~1156.0*** 821.5*** 138.0~420.1*** 244.1*** 29.71%*** 乔龙,2016
    太平矿区 广西省崇左市 24.7~279.5*** 142.9*** 14.2~125.8*** 62.6*** 43.78%*** 乔龙,2016
    天生桥铝土矿床 云南省文山县 170.3~529.5*** 332.5*** 103.2~334.9*** 170.6*** 51.31%*** 田茂军,2013
    南川-武隆铝土矿床洪官渡矿区 重庆市南川区 42.6~251.2*** 150.8*** 28.6~172.4*** 104.7*** 69.43%*** 李再会等,2012
    南川-武隆铝土矿床大佛岩矿区 重庆市南川区 60.9~110.3*** 85.6*** 35.3~63.3*** 49.3*** 57.60%*** 李再会等,2012
    南川-武隆铝土矿床申基坪矿区 重庆市武隆区 90.7~179.2*** 134.9*** 64.6~68.6*** 66.6*** 49.37%*** 李再会等,2012
    蔡家坝铝土矿床 贵州省清镇市 425.4~907.7*** 611.0*** 88.6~152.5*** 125.9*** 20.60%*** 陈晓甫等,2022
    注:***表示REE总量数据为ΣREE+Y+Sc,HREE 总量数据为Gd-Lu+Y+Sc;**表示REE总量数据为ΣREE+Sc,HREE总量数据为Gd-Lu+Sc;*表示REE总量数据为ΣREY,HREE总量数据为Gd-Lu+Y;其余无*标表示REE总量数据为ΣREE,HREE总量数据为Gd-Lu
    下载: 导出CSV 
    | 显示表格
    图  3  中国主要铝土矿床中铝土矿石的PAAS标准化REE配分曲线(Taylor and McLennan,1985;数据来源见表3)
    Figure  3.  PAAS normalized rare earth elements partition pattern of bauxite ore from major bauxite deposits in China (Taylor and McLennan, 1985;data from references listed in Table 3)

    铝土矿是生产氧化铝的原料,在氧化铝生产过程中REE等关键金属主要进入残渣(赤泥)中(杨世杰等,1996)。赤泥作为氧化铝工业生产过程中排出的固体废物,国内外尚没有很好的处理方法,大多采用筑坝堆存的方法存贮。由于赤泥中含有放射性元素和大量的碱,形成对人体健康有害的污染源。中国作为氧化铝生产大国,2023年全国累计生产氧化铝达8.24×107 t。由于铝土矿石质量的不同,平均每生产1t氧化铝要产生大约0.8~1.5t的残渣(Zhang et al., 2011),因此中国每年产生的残渣量约为0.8×106~1.2×106 t。按每t残渣含REE(含Sc)约5×10−4~17×10−4 t(Liu and Naidu,2014)计算,其中的潜在REE资源量约为4×104~6×104 t。若能对铝生产过程产生的赤泥中REE进行回收利用,不仅可以产生较好的经济效益,同时有利于赤泥的资源化利用,减少环境污染。

    近年来,不同学者对赤泥中REE的回收利用技术进行了大量的工作,取得了一系列重要进展,显示出了技术上的可行性(Deady et al., 2014)。目前,从赤泥中浸出REE的方法主要分为湿法浸出工艺和火法−湿法联合工艺。由于其所选用的试剂以及操作工艺的不同,湿法浸出工艺可分为盐酸浸出法、硫酸浸出法、硝酸浸出法、生物浸出法等;火法−湿法联合工艺可分为高温焙烧−浸出法和硫酸化焙烧−浸出法等,经浸出处理后,使用溶剂萃取法和离子交换法等从浸出液中提取REE(杨佩东等, 2024)。目前对于赤泥中REE的浸出分离工艺已经较为成熟,但距离实现赤泥资源化利用还需进一步开展工作,降低回收成本、提高环境效益是未来赤泥资源化研究的主要方向。另外,近年来利用微生物技术回收铝土矿或赤泥中REE方面取得了重要进展,如利用微藻进行赤泥中REE的回收。将生物技术应用于铝土矿或赤泥中REE的回收具有更加高效和环保的优势,在未来具有重要的应用潜力(Panda et al.,2021Tezyapar Kara et al., 2023)。

    岩浆型磷矿床、磷铁矿床或铁磷矿床是中国铁和磷的重要来源,其对中国磷资源的贡献仅次于沉积型磷矿床,其中与碳酸岩、基性−超基性岩有关的岩浆型磷、磷铁、铁磷矿床最为常见。岩浆型磷(铁)矿床主要产于河北、甘肃、四川等地,如河北的矾山磷铁矿床(侯增谦, 1990程春, 2001)、招兵沟铁磷矿床(王亿等, 2024)、大庙铁−钛−磷矿床(陈伟等, 2008)、甘肃的罗家峡磷矿床(杨合群,2020)、新疆的大西沟铁磷矿床等(夏学惠等,2010)。在以往的研究中,对岩浆型磷−铁磷矿床中伴生的REE重视不够,因此大多矿床并未进行详细的REE资源勘查和评价,其伴生的REE资源量不明。从矿石的全岩地球化学结果看,该类矿床中REE含量总体较高。如河北矾山磷铁矿床的磷灰岩型矿石中REE含量(ΣREY)高达3118×10−6牟保磊等,1998),而磷灰石单矿物中的REE含量更高,达3990×10−6~4128×10−6程春,2001)。青海上庄杂岩体含磷灰石单斜辉石岩的ΣREY为655×10−6~1495×10−6张海云等, 2024),赤峰大西沟磷铁矿床中磷灰石的ΣREY 为2183×10−6~3004×10−6杜美艳,2012)。河北大庙铁钛磷灰岩中的ΣREY介于362×10−6~1166×10−6陈伟等,2008),这些数据均表明,岩浆型磷矿床或磷铁、铁磷矿床中也富含REE,是一种潜在的REE资源。

    据中国已知岩浆型磷−磷铁矿床已有的矿石全岩岩石化学资料统计(表4),磷矿石和磷铁矿石中伴生的REE含量主要分布在200×10−6~300×10−6图4a),且均显示了LREE富集和Y富集的配分特征(图4b)。岩浆型磷矿石中REE相对更高,而一些富铁的磷铁矿床的矿石中REE含量可能并不高。王亿等(2024)对冀北招兵铁磷矿床铁磷矿石的分析结果表明,其全铁含量介于23%~47%,其ΣREY介于244.9×10−6~546.0×10−6 ,REE含量明显低于矾山磷矿的磷灰岩型矿石。矿石中的REE含量可能与其中的磷灰石含量有关,随着矿石中磁铁矿、钛铁矿或铁镁硅酸盐矿的含量升高,其REE含量明显降低,因此全岩的∑REY与P2O5呈正相关(图5a),而与TFe2O3+MgO+MnO呈现出一定的负相关(图5b)。

    表  4  岩浆型磷-铁磷矿床矿石的全岩REE含量(×10−6 )统计结果
    Table  4.  Statistical results of rare earth content in the whole rock ores of magmatic phosphate-iron phosphate deposits
    矿床名称 地理位置 REE总量范围 REE总量平均值 HREE总量范围 HREE总量平均值 HREE含量占比 数据来源
    枣庄沙沟杂岩体 山东省枣庄市 1790.0~2900.0 2345.0 / / / 夏学惠和刘昌涛, 1986
    天山成矿带 新疆 808.7~1365.4 1087.0 / / / 夏学惠等, 2012
    矾山磷铁矿床 河北省张家口市 3202.8~4182.6* 3638.4* 186.2~322.0* 273.1* 7.51%* 程春, 2001
    Hou, et al., 2015
    上庄磷铁矿床 青海省西宁市 329.0~1160.1* 725.8* 41.9~176.4* 87.4* 12.04%* Wang et al., 2017b
    大庙杂岩体 河北省承德市 92.5~888.2* 358.0* 26.3~226.0* 83.9* 23.44%* He, et al., 2016
    Wang et al., 2017a
    路智等,2022
    Li, et al., 2015
    大西沟磷铁矿床 新疆和静县 183.1~226.5* 203.4* 26.7~33.2* 31.1* 15.28%* 夏学惠等, 2009
    夏学惠等, 2010
    卡乌留克塔格铁磷矿床 新疆尉犁县 254.1~381.7* 317.9* 31.4~62.7* 47.1* 14.81%* 夏学惠等,2011a
    瓦吉尔塔格磷铁矿床 新疆巴楚县 1167.3~1993.3* 1600.8* 113.3~191.6* 157.9* 9.86%* 夏学惠等,2009
    奥尔塘铁磷矿床 新疆尉犁县 470.1~325.7* 397.9* 51.8~70.3* 61.1* 15.34%* 袁家忠等, 2010
    招兵沟铁磷矿床 河北省丰宁县 156.1~372.2* 261.6* 51.2~114.2* 84.8* 32.42%* 王亿等,2024
    注:*表示REE总量数据为ΣREY,HREE总量数据为Gd-Lu+Y;无*标表示REE总量数据为ΣREE,HREE总量数据为Gd-Lu
    下载: 导出CSV 
    | 显示表格
    图  4  中国主要岩浆型磷−铁磷矿床矿石中REE含量统计图和配分曲线(数据来源于表4)
    a—ΣREE含量频数分布图;b—球粒陨石标准化配分曲线(球粒陨石标准化值引自 McDonough and Sun,1995)
    Figure  4.  Rare earth elements content and partition pattern for phosphate ores from major magmatic phosphate-iron phosphate deposits in China (data from references listed in Table 4)
    (a) Frequency histogram of ΣREEcontent; (b) Chondrite normalized REE partition pattern (REE content for chondrite from McDonough and Sun, 1995)
    图  5  岩浆型磷−铁磷矿石全岩P2O5−∑REY和(TFe2O3+MnO+MgO) −∑REY 的相关图解(数据来源见表4)
    a—P2O5−∑REY相关图解;b—(TFe2O3+MnO+MgO) −∑REY 相关图解
    Figure  5.  Correlation diagram of P2O5−∑REY and (TFe2O3+MnO+MgO) −∑REY for magmatic phosphate-iron phosphate ores (data from references listed in table 4)
    (a) P2O5 − ∑REY diagram;(b) (TFe2O3+MnO+MgO) − ∑REY diagram

    中国华北、扬子地区均发育大量的岩浆型磷−磷铁矿床,但由于早期的勘查未对其中的REE进行详细的工作,伴生的REE资源量不清,制约了其资源开发和综合利用,建议在未来对该类型的矿床勘查中应加强对其中REE资源的评估,并加强其中的REE综合利用的技术研发。

    煤作为一种有机矿产,是重要的化石能源,当其中关键金属(如REE、Ga、V、Ti等)富集达到一定程度则可以形成“煤型关键金属矿床”、“煤系中关键金属矿床”或“与煤共伴生的关键金属矿床”(Dai et al.,2014Dai and Finkelman,2018)。有学者将煤中某些金属元素含量超出世界煤中相应元素含量均值10倍以上的煤称为“mineralized coal”(矿化煤)或“metalliferous coal”(金属煤)(Seredin and Finkelman,2008)。

    煤−REE矿床是煤型关键金属矿床中重要的一类,但原煤中的ΣREY(镧系元素和Y)总量一般并不高,且变化较大,一般在10×10−6~1000×10−6。据Ketris and Yudovich(2009)报道,世界煤中的REE含量平均为68.4×10−6 ,而中国煤中REE的含量均值为138×10−6Dai et al.,20082012),是世界煤中REE含量的两倍,但总体仍然不高。然而也有一些煤矿或矿层局部出现REE相对富集,如河北唐山吕家沱煤矿床的部分煤中ΣREY最高含量为877×10−6,平均374×10−6张华等,2024)。从中国主要煤矿样品的岩石化学分析结果(表5)可知,ΣREY大多小于200×10−6图6),大于500×10−6 的相对较少。尽管如此,但由于煤在燃烧过程中REE主要进入粉灰中,可造成了煤灰中REE的进一步富集(Kronberg et al., 1981Seredin, 1996)。煤灰中的ΣREY可达到1000×10−6 以上,甚至更高,如美国肯塔基州中东部夹矸底部烟煤的煤灰中REE含量高达1965×10−6~4198×10−6Hower et al.,1999)。世界煤灰中的平均REE含量是原煤的3~6倍(黄文辉等, 2019)。

    表  5  中国主要煤矿的全岩REE含量(×10−6 )统计结果
    Table  5.  Statistical results of rare earth element content in the whole rock of major coal deposits in China
    矿床名称 地理位置 ΣREY(La-Lu+Y)
    范围
    ΣREY(La-Lu+Y)
    平均值
    HREE(Gd-Lu+Y)
    含量范围
    HREE(Gd-Lu+Y)
    含量平均值
    HREE含量
    占比
    数据来源
    渭北煤田 陕西省渭南市 32.2~412.6 141.1 8.3~70.8 29.3 20.73% 车青松,2021
    刘贝等,2015
    吕家坨煤矿床 河北省唐山市 48.6~876.8 374.1 3.3~34.5 15.3 4.09% 张华等,2024
    大同煤田 山西省 73.8~596.9 165.8 18.6~216.9 65.8 39.70% 刘东娜等,2015
    鄂尔多斯盆地西缘煤田 鄂尔多斯盆地 5.6~314.5 115.2 1.3~74.3 23.1 20.01% 秦国红等,2016
    万福煤矿床 广西省南宁市 88.7~1028.3 362.1 23.2~382.6 146.5 40.46% 朱士飞等,2020
    峰峰矿区 河北省邯郸市 22.7~454.1 99.9 11.0~110.3 25.7 25.77% 魏迎春等,2020
    北皂煤矿床 山东省烟台市 14.8~42.5 32.8 3.7~13.2 7.4 22.60% 马小敏,2019
    梁家煤矿床 山东省烟台市 37.9~222.8 114.4 5.5~33.8 18.9 16.50% 马小敏,2019
    洼里煤矿床 山东省烟台市 48.7~62.4 55.6 12.7~12.1 12.4 22.32% 马小敏,2019
    鱼洞煤矿床 云南省凯里市 388.3~1378.8 961.0 149.4~373.5 273.6 28.47% 吴艳艳等,2010
    聚乎更矿区 青海省天峻县 5.2~55.8 21.9 1.9~14.3 5.2 23.48% 霍婷等,2020
    陈家山煤矿床 陕西省铜川市 12.8~517.0 112.4 3.3~93.2 25.1 22.35% 杨磊等,2008
    芦塘煤矿床 重庆市彭水县 120.7~320.5 194.2 35.3~151.3 66.1 34.02% 邹建华等,2022
    黑岱沟煤矿床 内蒙古鄂尔多斯市 63.7~604.3 267.8 12.3~78.3 41.6 15.52% 刘大锐等,2018
    下载: 导出CSV 
    | 显示表格
    图  6  中国煤中伴生的ΣREY含量频数分布直方图(数据来源于表5)
    Figure  6.  Frequency histogram of rare earth elements content of coal in China (data from references listed in table 5)

    中国作为煤炭生产和使用大国,每年约产生的煤灰在4×108~16×108 t,从煤和粉煤灰中提取REE具有天然的优势(曹泊等, 2022)。对煤灰中关键金属的回收利用,不仅可以产生附加的经济价值,同时可以降低煤灰中重金属的含量,为这些固体废弃物的贮存或资源化利用创造有利条件。

    按煤中REE的配分特征,Seredin and Dai(2012)将煤系REE矿床的类型分为LREE富集型(LaN/LuN>1)、MREE富集型(LaN/SmN<1并且GdN/LuN>1)、HREE富集型(LaN/LuN<1)(Dai et al.,2012),还包括一种比较少见的较为平缓的类型,即轻重稀土的富集差异不明显。煤型REE矿床一般以某个富集类型为主,也存在两种富集类型共同出现在同一个煤层中的现象(Seredin and Dai,2012)。

    对煤和煤灰中伴生REE的品位要求,Seredin and Dai(2012)提出了煤或煤灰中REE利用的工业品位(即煤灰中REE氧化物为1000×10−6 ),只要煤灰中REE氧化物超出世界煤灰均值的两倍以上,就可以考虑煤中REE开发利用的可能性。Dai et al.(2017)在Seredin and Dai(2012)的基础上进一步对煤中REE开发利用评价方法和标准进行了补充和修订。由于不同REE的价格和需求的急迫程度不同,Dai et al.(2012)将煤中伴生的REE从经济利用价值的角度进一步分为紧要的(包括Nd、Eu、Tb、Dy、Y和Er)、非紧要的(包括La、Pr、Sm和Gd)和过剩的(包括Ce、Ho、Tm、Yb和Lu)3组,并提出了前景系数(Coutl)的概念,即“紧要的”REE含量之和占所有REE含量的比例,并将前景系数作为煤中伴生REE是否可利用的评价指标之一。Dai et al.(2017)提出,在满足REE氧化物含量大于1000×10−6 的条件下,还要考虑前景系数,当前景系数>2.4时,表明该煤中的稀土元素非常具有开发前景,而当前景系数介于0.7~2.4时,该煤中的稀土元素也具有一定的开发前景,但当前景系数<0.7时,即使其中的稀土氧化物含量大于1000×10−6 ,该煤中的稀土元素仍没有开发前景。

    中国是煤炭资源和消耗大国,截止到2021年末,全国煤炭储量达到2078.8×108 t(中华人民共和国自然资源部, 2022)。据国家统计局资料,在过去的十年中,中国年消耗煤炭约4×109 t左右(图7a),在全部能源消耗中的占比呈逐渐下降的趋势,但仍占能源消耗的一半以上(图7b)。按全球平均灰煤比值10%~40%,中国每年约产生的煤灰4×108~16×108 t,其中蕴含的ΣREO约2×105~8×105 t(按世界煤灰中稀土平均含量485×10−6 估算)。随着煤灰处理技术水平、稀土提取技术的进步和对污染治理要求的进一步提高,对煤灰中稀土和其他关键金属的回收利用有望产生较好的经济价值和社会效益。

    图  7  2014-2023年中国年煤炭消耗量统计图(数据来源于国家统计局官网)
    a—年煤炭消耗总量;b—煤炭在能源消耗中占比
    Figure  7.  Statisrical chart of coal consumption of China from 2014 to 2023 (data from https://data.stats.gov.cn)
    (a) Annual coal consumption; (b) Percentage of coal in energy consumption.

    除上述的伴生REE矿床类型外,铁矿床、金矿床、油页岩矿床、大洋锰结核、斑岩钼矿床等也伴生较高的REE。

    白云鄂博是世界最大的REE矿床,但其目前主要开采的对象是铁,也表明铁与REE的密切关系。除白云鄂博外,中国云南、河北、山东等地的内生铁矿床中也伴生有REE。根据矿床成因,中国的铁矿床可分为内生铁矿床和外生铁矿床,其中内生铁矿床包括岩浆型铁矿床、接触交代−热液型(矽卡岩型)铁矿床、铁氧化物−磷灰石矿床(IOA)、铁氧化物−铜−金矿床(IOCG)以及火山型铁矿床。外生铁矿床又包括沉积型铁矿床、沉积变质型铁矿床和风化淋滤型铁矿床。从不同成因类型铁矿床的资源量看,沉积变质型铁矿床资源储量占比48%,其次为岩浆型铁矿床,占比约为16%,其他类型占比分别为接触交代−热液型(矽卡岩型)15%、沉积型13%、火山型8%(李厚民等,2012)。

    中国内生铁矿床的矿石中REE含量差异较大,从1×106到1000×10−6 不等,但大多铁矿石中的REE含量并不高,一般在100×10−6~200×10−6 ,如陕西洛南地区木龙沟铁矿床平均REE含量约为221×10−6柯昌辉等,2013李六权等, 2019),庐枞地区铁矿床中REE含量约为227.9×10−6车英丹等, 2017),宁芜地区铁矿床REE含量约为126.7×10−6余金杰等, 2002张乐骏等, 2011)。但也有些铁矿床显示了较高的REE含量。刘锋等(2009)发现,新疆阿尔泰阿巴宫铁矿床的矿石中伴生REE(ΣREY)含量大约在1353×10−6~6986×10−6 (约合REO 0.16%~0.81%),其最高值已接近原生REE矿床的边界品位要求。四川的拉拉铁铜矿床的矿石中伴生REE含量大约为2500×10−6Chen et al.,2012),新疆阿勒泰南缘的乔夏哈拉铁矿床矿石中REE含量最高可达2022×10−6杨富全等,2011),均显示了伴生REE资源的潜力。四川攀枝花是中国最大的钒钛磁铁矿床,虽然其矿石中REE的含量并不算高,最高仅为325.5×10−6Zhou et al.,2008宋谢炎等,2024),但由于该矿床的规模巨大,其中伴生REE资源量仍非常可观。另外,川西的攀枝花、红格、白马、太和等钒钛磁铁矿床的矿石中含有较高的Sc,平均20×10−6~60×10−6 ,占伴生REE资源量的20%(佘宇伟等,2014杨志爽等, 2024),若能对其中的Sc进行回收利用将产生很大的经济效益,但目前技术上仍不可行。

    与内生铁矿床相比,外生铁矿床无论是沉积型还是沉积变质型铁矿床,其矿石中的REE大多不高,一般在10×10−6~200×10−6 之间,但也有少数外生铁矿床显示了REE富集的特征,如新疆且日克其沉积型铁矿床矿石的REE含量为740×10−6~820×10−6李金虎等,2011)。

    胶东是中国重要的金成矿省,总探明金资源量超过5000t,发现金矿床150余处。杨立强等(2020)发现胶东的一些金矿床中有REE的超常富集现象,如新立和望儿山金矿床出现个别高值异常,新立金矿床中Ce最高值达到481.9×10−6 ,ΣREY达1087×10−6 ,望儿山金矿床显示了HREE的富集,Y最高达586×10−6 ,ΣREY为1091×10−6 。同时,在金矿石及其蚀变围岩中发现了多种富REE矿物,如独居石、磷钇矿、锆石等。杨立强等(2020)认为,胶东金矿省内蕴藏的矿石量巨大、已有矿业基础设施和选矿设备完善、选矿工艺先进,有利于对其中伴生组分的回收利用。

    大洋沉积物和大洋铁锰结核、结壳中的REE资源近年来受到越来越多的关注,已提出了一种新的REE矿床类型。‌东北太平洋Clarion-Clipperton锰结核带和中太平洋铁锰结壳带中的REE含量可达800×10−6~2500×10−6 ,表明‌深海铁锰结核也是未来REE资源的重要来源之一(毛景文等, 2022)。另外,Kato et al.(2011)系统分析了西太平深海沉积物中的REE含量,其不仅REE富集,且HREE占比高,具有重要的资源意义。

    中国的油页岩资源丰富,但大多REE含量并不高,主要集中在200×10−6 以下(图8a),如西藏北部伦坡拉盆地的油页岩矿床中REE平均含量为154×10−6Fu et al.,2012)。内蒙古鄂尔多斯盆地三叠系延长组长7油层组油页岩矿床REE总量(ΣREY)为126.77×10−6~205.59×10−6 ,平均值为169.80×10−6马中豪等, 2016)。新疆准噶尔盆地吉木萨尔石厂沟矿区油页岩矿床中REE总量(ΣREY)为95.9×10−6~361.85×10−6,平均值为166.05×10−6Liu et al., 2015a)。但部分油气盆地中的油页岩REE含量较高。如胜利河−长蛇山区域油页岩矿床的ΣREY最高可达498.6×10−6Fu et al.,20102011a2011b2015a2015b)。中国东北地区抚顺盆地的油页岩矿床中ΣREY为118×10−6~412×10−6,平均值为233×10−6 (Liu et al., 2015b)。中国已查明的油页岩资源量为7.2×1011 t(马跃等,2024),其中REE平均含量均在100×10−6 以上,因此其蕴含的潜在REE资源量是巨大的(按REE平均含量100×10−6 计算,其中伴生的REE资源量(REO)可达8×106 t以上。另外,油页岩中还含有较高的Cd等其他关键金属,如燕北华㭵盆地的油页岩矿床中∑REE为92×10−6~355×10−6 ,平均值为163×10−6;Cd的含量最高达565×10−6 ,平均值为271×10−6孟庆涛,2010),而其Cd含量是地壳平均值(2.8×10−6Wedepohl, 1995)的近100倍。油页岩是一种高灰分的固体可燃有机矿产,可以直接燃烧,也可以经低温干馏生产页岩油。油页岩工业会产生大量的页岩渣和页岩灰,造成严重的环境污染。但页岩灰和页岩渣中REE和Cd等可能进一步富集,为其资源利用提供了有利条件,若能对页岩灰中的REE和Cd等关键金属进行有效利用将会产生附加的经济价值,并可减少其储存过程中的重金属污染,提升以页岩灰渣为原料的建筑材料环保指标。

    图  8  中国主要油页岩矿床中油页岩的REE含量和配分特征(数据来源见表6
    a—ΣREY含量频数分布直方图; b—PAAS标准化稀土配分曲线
    Figure  8.  Rare earth elements content and patition pattern of oil shale for major oil shale deposits in China (data from references listed in Table 6)
    (a) Frequency histogram of ΣREY content; (b) PAAS normalized REE partition pattern

    另外,一些高岭石矿床也有伴生REE的报导,如广东的寨背项高岭土矿床预测了C+D级REO资源量7957t、坑尾高岭土矿床伴生REO资源量为175t(林钦亮,1987),广东省惠阳县沙尾矿区高岭土矿床不仅伴生有REE还有Nb和Ta,其中伴生的磷钇矿有1674t,独居石有487t,Nb2O3+Ta2O3 达1012 t(黄于新和何润洲,2010)。贵州毕节、威宁地区的高岭石质黏土岩中的REE含量也很高,被认为是一种新类型REE资源(周灵洁等,2011),威宁地区的高岭石黏土岩、碎屑状黏土岩、碎屑状黏土质铝质岩中REE含量达4000×10−6 以上(杨忠琴等,2022)。

    表  6  中国主要油页岩中REE含量(×10−6 )统计结果
    Table  6.  Statistical results of rare earth element content in the whole rock of major oil shale deposits in China
    矿床名称 地理位置 ΣREY范围 ΣREY平均值 HREE(Gd-Lu+Y)
    总量范围
    HREE(Gd-Lu+Y)
    总量平均值
    HREE含量
    占比
    数据来源
    银额盆地油页岩矿区 内蒙古乌拉特后旗 94.8~178.1 126.2 27.3~54.5 34.6 27.44% Liu et al.,2015a
    黄县盆地油页岩矿区 山东省烟台市 17.1~163.3 100.1 4.2~34.2 19.8 19.82% Zheng et al.,2020
    胜利河−长蛇山油页岩带 西藏羌塘盆地 10.3~498.6 63.9 3.6~34.1 14.5 22.71% Fu et al.,2010
    Fu et al.,2011a
    Fu et al.,2011b
    Fu et al.,2015a
    Fu et al.,2015b
    大黄山油页岩矿区 新疆准噶尔盆地 39.7~132.3 93.7 13.2~40.1 26.3 28.06% Tao et al.,2013
    吉木萨尔凹陷和石树沟凹陷油页岩带 新疆准噶尔盆地 95.9~361.9 166.1 28.4~106.5 52.6 31.67% Zhao et al.,2023
    抚顺盆地油页岩矿区 辽宁省抚顺市 118.3~412.4 233.0 23.5~57.0 37.9 16.26% Liu et al.,2015b
    伦坡拉盆地油页岩矿区 西藏班戈县 125.1~176.4 154.0 26.4~37.8 32.7 21.24% Fu et al.,2012
    石长沟油页岩矿区 新疆准噶尔盆地 107.7~163.4 129.7 30.4~51.6 41.4 31.92% Tao et al.,2016
    鄂尔多斯盆地油页岩矿区 山西省彬州市-铜川市 126.8~205.6 169.8 34.3~56.0 40.7 23.98% 马中豪等,2016
    桦甸盆地 吉林省吉林市桦甸市 91.5~356.0 162.6 9.7~40.5 15.5 9.53% 孟庆涛,2010
    下载: 导出CSV 
    | 显示表格

    (1)中国的伴生型REE矿床类型多样,REE资源非常丰富,主要的伴生REE矿床类型包括铝土矿床、海相沉积磷矿床、岩浆型磷−铁磷矿床、煤矿床等,另外部分油页岩矿床、热液型金矿床、高岭石矿床中也伴生较高的REE。在众多的伴生型稀土矿床类型中,铝土矿床、海相沉积磷矿床由于其规模大、REE含量高,最具资源意义。开发和利用沉积型磷矿石和铝土矿中的REE资源不仅可为解决中国HREE资源短缺问题提供新的途径,也是践行节约资源和保护环境基本国策的重要举措。

    (2)四川绵阳地区什邡式磷矿的富硫磷铝锶型矿石中REE含量高、HREE占比大,已查明的潜在矿石量在1×108 t以上,且分布相对集中,具有重要的HREE资源意义。目前对中国硫磷铝锶型矿石的勘查评价还欠详细,REE资源量不清。另外,由于矿石加工难度大,其中P和REE的资源利用技术仍欠成熟,资源未得到有效利用,造成了资源的浪费。通过对中国硫磷铝锶型矿石中的HREE资源评价和资源利用技术的攻关有望使其成为中国继离子吸附型HREE矿床之后的又一重要的重稀土资源类型。

    (3)中国的铝土矿床资源丰富,且普遍具有较高的REE含量。铝土矿最为丰富的省份是山西省,且以山西兴县的铝土矿REE含量最高,REO品位高达1%以上,已超过原生稀土矿床的边界品位要求,潜在的REE资源量巨大。由于在氧化铝生产过程中REE主要富集于残渣(赤泥)中,通过对赤泥中REE的回收不仅可以产生附加的经济效益,也可减少赤泥堆存和资源化利用中的重金属、碱超标等环境问题,具有重要的经济和社会效益。目前,从铝土矿残渣(红泥)中回收REE技术上是可行的,但仍存在一些问题,未得到广泛的应用,急需加强其中REE和其他关键金属回收利用技术的研发,特别是生物选矿技术的应用等。

    (4)煤和油页岩均为能源矿产,尽管其中的REE含量不高,但资源量巨大。另外,中国煤中的REE含量明显高于全球的平均值,且煤炭消耗量大,从REE富集的煤灰中的回收REE等关键金属具有一定的经济和社会意义。另外,中国的油页岩资源量大,也有可能成为未来潜在的REE来源。

    (5)岩浆型磷−铁磷矿床中伴生的REE值得重视,这些磷和铁磷矿床中的REE主要与磷灰石有关,但目前伴生的REE资源量不清,急待加强此类矿床中REE的资源评价,提高矿石综合利用水平。

  • 图  1  中国主要沉积磷矿床中磷块岩的REE含量统计图和配分曲线 (数据来源见表1,PAAS数据引自McLennan,1989)

    a—ΣREY含量频数分布图;b—PAAS标准化稀土配分曲线

    Figure  1.  Rare earth elements content and partition pattern of phosphorite for major sedimentary phosphate deposits in China (data from references listed in Table 1; REE data for PAAS from McLennan, 1989)

    (a) Frequency histogram of ΣREY content; (b) PAAS normalized REE partition pattern

    图  2  中国主要铝土矿床中铝土矿石的中REE含量统计图(数据来源见表3

    a—镧系金属元素总量分布直方图;b—Sc含量分布直方图

    Figure  2.  Statisrical chart of rare earth elements content and their partition pattern of bauxite ore from major bauxite deposits in China (data from references listed in table 3)

    (a) Frequency histogram of total lanthanide elements content; (b) Frequency histogram of Sc content

    图  3  中国主要铝土矿床中铝土矿石的PAAS标准化REE配分曲线(Taylor and McLennan,1985;数据来源见表3)

    Figure  3.  PAAS normalized rare earth elements partition pattern of bauxite ore from major bauxite deposits in China (Taylor and McLennan, 1985;data from references listed in Table 3)

    图  4  中国主要岩浆型磷−铁磷矿床矿石中REE含量统计图和配分曲线(数据来源于表4)

    a—ΣREE含量频数分布图;b—球粒陨石标准化配分曲线(球粒陨石标准化值引自 McDonough and Sun,1995)

    Figure  4.  Rare earth elements content and partition pattern for phosphate ores from major magmatic phosphate-iron phosphate deposits in China (data from references listed in Table 4)

    (a) Frequency histogram of ΣREEcontent; (b) Chondrite normalized REE partition pattern (REE content for chondrite from McDonough and Sun, 1995)

    图  5  岩浆型磷−铁磷矿石全岩P2O5−∑REY和(TFe2O3+MnO+MgO) −∑REY 的相关图解(数据来源见表4)

    a—P2O5−∑REY相关图解;b—(TFe2O3+MnO+MgO) −∑REY 相关图解

    Figure  5.  Correlation diagram of P2O5−∑REY and (TFe2O3+MnO+MgO) −∑REY for magmatic phosphate-iron phosphate ores (data from references listed in table 4)

    (a) P2O5 − ∑REY diagram;(b) (TFe2O3+MnO+MgO) − ∑REY diagram

    图  6  中国煤中伴生的ΣREY含量频数分布直方图(数据来源于表5)

    Figure  6.  Frequency histogram of rare earth elements content of coal in China (data from references listed in table 5)

    图  7  2014-2023年中国年煤炭消耗量统计图(数据来源于国家统计局官网)

    a—年煤炭消耗总量;b—煤炭在能源消耗中占比

    Figure  7.  Statisrical chart of coal consumption of China from 2014 to 2023 (data from https://data.stats.gov.cn)

    (a) Annual coal consumption; (b) Percentage of coal in energy consumption.

    图  8  中国主要油页岩矿床中油页岩的REE含量和配分特征(数据来源见表6

    a—ΣREY含量频数分布直方图; b—PAAS标准化稀土配分曲线

    Figure  8.  Rare earth elements content and patition pattern of oil shale for major oil shale deposits in China (data from references listed in Table 6)

    (a) Frequency histogram of ΣREY content; (b) PAAS normalized REE partition pattern

    表  1  海相沉积磷矿床磷矿石的全岩REE含量(×10−6 )统计结果

    Table  1.   Statistical results of rare earth content in the whole rock of phosphate ores in marine sedimentary phosphate deposits

    矿床名称地理位置ΣREY范围ΣREY平均值HREE总量
    (Gd-Y)范围
    HREE总量
    (Gd-Y)平均值
    HREE含
    量占比
    数据来源
    铜仁磷矿床贵州省铜仁市237.8~2496.31116.7125.7~1359.8646.957.93%汪宇航,2023
    杨旭, 2019
    卢正浩, 2022
    张兰, 2021
    开阳磷矿床贵州省贵阳市28.3~507.6204.614.6~244.395.746.77%Yang et al.,2019a
    瓮福磷矿区贵州省瓮安县10.2~400.3116.05.0~225.654.647.07%Zhang et al.,2022
    Yang et al.,2019a
    Wang and Qiao,2024
    任海利, 2017
    梁坤萍, 2022
    杨海英等,2020
    织金磷矿床贵州省毕节市508.3~2041.01198.7181.7~862.7494.441.24%Zhang et al.,2022
    Gong et al.,2021
    Li et al.,2019b
    He et al.,2022
    Xing et al.,2021
    Wang and Qiao,2024
    汪宇航, 2023
    曹金鑫, 2022
    蒋权等, 2023
    大坪剖面湖南省张家界781.7~1004.1905.1339.9~438.8400.544.25%王文全, 2016
    大浒剖面湖南省张家界470.6~2203.61344.9275.7~1029.7651.448.43%王文全,2016
    黄家坪磷矿床四川省乐山市85.6~113.299.536.8~60.850.650.85%李佐强等, 2023
    什邡磷矿区四川省什邡市184.7~5615.61921.791.6~853.3518.326.97%张跃跃,2015
    白龙潭磷矿床云南省昆明市95.0~379.8199.555.1~181.599.649.92%曹金鑫等,2022
    会泽磷矿床云南省曲靖市217.8~313.1265.4121.4~177.9149.756.41%徐凯等, 2023
    昆阳磷矿床云南省昆明市161.5~440.8304.990.2~242.4154.650.71%杨帆,2011Zhang et al.,2022
    羊场磷矿床云南省昭通市382.1~1181.5619.5136.4~474.0241.839.03%秦欢等,2022
    遵义磷矿床贵州省遵义市142.7~1401.0605.249.4~682.1294.148.60%王文全,2016
    下载: 导出CSV

    表  2  中国部分铝土矿床中伴生的REE品位和资源量

    Table  2.   Associated rare earth grade and resources in some bauxite deposits in China

    编号 矿床名称 位置/行政区划代码 REE平均品位(REO,wt%) REE资源总量(t)
    (除特别注明外均指C级以上或333以上)
    1 相王铝土矿床 山西省孝义市相王 / 37339.70
    2 西红河矿床区铝土矿床 山西省忻州市宁武县薛家洼乡 / 6716.72
    3 湍水头铝土矿床 山西省吕梁市临县湍水头镇 / 19248.00
    4 后塔上铝土矿床 山西省吕梁市离石区 / 7192.60
    5 铁金村铝土矿床 山西省交口县铁金村 / 36281.49
    6 蒲依铝土矿床 山西省吕梁市交口县蒲依村 / 35500.00
    7 石且河铝土矿床 山西省保德县 0.079 89091.00
    8 曹窑煤矿床深部铝土矿床 河南渑池县 / 32500.00(未注明储量级别)
    9 交口−汾西铝土矿床 山西交口−汾西地区 / 178103.00(未注明储量级别)
    10 前文猛铝土矿床 山西静乐县 / 23500.20(未注明储量级别)
    11 墕则村铝土矿床 山西保德县 / 16931.00(334)
    12 下反里铝土矿床 山西汾西县 0.100 9370.00(334)
    13 沙墕铝土矿床 山西交口县 / 19710.00(未注明储量级别)
    14 桃花铝土矿床 山西交口县 / 4973.00(未注明储量级别)
    15 石槽铝土矿床 山西娄烦县 / 4533.76(未注明储量级别)
    16 西窑铝土矿床 山西平陆县 / 7921.20(334)
    17 旋风窝铝土矿床 山西沁源县 / 16110.00(334)
    18 苗家岭铝土矿床 山西襄垣县 / 8523.00(334)
    19 奥家湾铝土矿床 山西兴县 0.110 21411.80(未注明储量级别)
    20 范家疃铝土矿床 山西兴县 / 21191.40(334)
    21 井沟铝土矿床 山西曲阳县 / 12295.00(未注明储量级别)
    数据来源:全国地质资料馆“http://www.ngac.org.cn/”;“/”表示无数据或网上未提供
    下载: 导出CSV

    表  3  中国部分铝土矿床的矿石全岩REE含量(×10−6 )统计结果

    Table  3.   Statistical results of rare earth element content in the whole rock of some bauxite deposits in China

    矿床名称 地理位置 REE总量范围 REE总量
    平均值
    HREE总量
    范围
    HREE总量
    平均值
    HREE含量
    占比
    数据来源
    务正道矿区 贵州省遵义市 61.0~1815.2 419.2 16.9~143.8 44.1 10.51% Wang et al.,2013
    三合铝土矿床 广西省白色市 226.0~1460.0 626.3 41.7~172.2 74.3 11.86% 李普涛和张起钻,2008
    比例坝铝土矿床 贵州省贵阳市 401.0~1495.8 851.5 34.8~152.5 85.3 10.02% 张明等,2018
    新民铝土矿床 贵州省遵义市 17.8~2329.8 320.3 6.1~166.2 34.3 10.70% 龙克树等,2019
    高家山铝土矿床 山西省长治市 350.1~1262.6 828.5 29.6~91.9 56.5 6.82% 叶枫等,2015b
    王润-西崖底铝土矿床 山西省吕梁市 286.5~1205.5 765.8 29.1~81.9 53.0 6.92% 叶枫等,2015a
    小山坝铝土矿床 贵州省贵阳市 16.1~411.2* 213.7* 8.1~63.0* 35.5* 16.63%* Ling et al.,2018
    林歹铝土矿床 贵州省清镇市 228.7~286.1* 257.4* 56.6~88.7* 72.7* 28.23%* Ling et al.,2017
    松桂铝土矿床 云南省大理白族自治州 671.0~2300.7* 1148.6* 56.1~161.4* 97.8* 8.52%* 王行军等,2017
    金龙铝土矿床 广西省崇左市 163.5~427.5* 302.7* 31.5~165.1* 91.6* 30.26%* 王岩等,2015
    兴县铝土矿床 山西省吕梁市 2963.0~10711.5* 4645.8* 300.1~1154.3* 609.4* 13.12%* 董挨管等,2017
    张尚清等,2018
    平果矿区 广西省百色市 303.9~1001.0* 697.6* 111.4~348.0* 209.2* 29.98%* 戴塔根等,2003
    靖西矿区 广西省百色市 161.3~420.8* 291.0* 94.4~139.2* 116.8* 40.13%* 戴塔根等,2003
    山西某铝土矿区 山西省 441.4~1006.8* 724.1* 120.3~131.8* 126.0* 17.41%* 真允庆和王振玉,1991
    黔中-川南矿区 黔中-川南地区 299.9~429.0* 374.8* 95.4~106.2* 101.7* 27.13%* 刘平,1999
    贯沟铝土矿床 河南省三门峡市 107.4~1524.2** 679.6** 43.1~165.5** 74.3** 10.93%** Liu et al.,2013
    袁爱国,2010
    边庄铝土矿床 河南省平顶山市 197.2~2789.0** 797.6** 42.8~158.0** 89.5** 11.22%** 康微,2013
    袁爱国,2010
    夹沟铝土矿床 河南省偃师市 94.7~2011.0** 536.8** 27.9~135.7** 67.6** 12.59%** 袁爱国,2010
    坡池村铝土矿床 河南省汝州市 222.7~807.7** 449.3** 56.0~101.5** 70.1** 15.60%** 袁爱国,2010
    石寺铝土矿床 河南省洛阳市 211.9~963.9** 531.8** 46.9~91.0** 65.9** 12.38%** 冯跃文,2013
    关岭铝土矿床 河南平顶山市 272.5~1432.2*** 652.3*** 137.0~233.4*** 165.2*** 25.32%*** Yang et al.,2019b
    边庄铝土矿床 河南省平顶山市 191.7~2873.8*** 625.5*** 105.6~242.8*** 129.4*** 20.69%*** Yang et al.,2019b
    小山坝铝土矿床 贵州省贵阳市 32.5~778.8*** 296.2*** 9.9~234.1*** 72.5**** 24.47%*** Ling et al.,2018
    林歹铝土矿床 贵州省清镇市 308.6~424.6*** 353.9*** 117.1~188.9*** 144.1*** 40.71%*** Ling et al.,2013
    扶绥铝土矿床 广西省崇左市 105.3~1612.1*** 608.4*** 40.4~229.4*** 119.4*** 19.63%*** Yu et al.,2014
    新圩铝土矿床 广西省百色市 27.4~76.7*** 52.2*** 9.5~22.4*** 16.9*** 32.38%*** 刘枝刚,2005
    高洞铝土矿床 贵州省福泉市 133.1~267.2*** 209.4*** 51.4~101.6*** 69.3*** 33.12%*** 金中国等,2018
    教美铝土矿床 广西省百色市 352.7~1090.1*** 680.2*** 111.4~287.6*** 191.6*** 28.16%*** 章颖等,2015
    渑池铝土矿床 河南省三门峡市 121.5~1732.5*** 676.3*** 52.7~291.5*** 153.0*** 22.62%*** 王燕茹等,2012
    务正道矿区 贵州省遵义市 107.7~201.6*** 163.0*** 85.8~152.4*** 114.3*** 70.14%*** 张莹华等,2013
    庞家庄铝土矿床 山西省吕梁市 373.0~1407.2*** 874.6*** 106.3~211.1*** 150.4*** 17.19%*** 孟健寅等,2011
    宽草坪铝土矿床 山西省忻州市 146.3~1298.0*** 797.8*** 73.1~581.1*** 203.6*** 25.52%*** 孙思磊,2011
    上务头村铝土矿床 山西省长治市沁源县 96.7~1714.4*** 423.7*** 49.8~267.8*** 109.1*** 25.75%*** 杨中华,2011
    石墙区铝土矿床 山西省原平市 576.9~1314.5*** 987.1*** 102.5~330.5*** 196.7*** 19.93%*** 孙思磊等,2012
    东门-柳桥矿区 广西省崇左市 121.4~1093.0*** 322.9*** 15.2~158.9*** 55.5*** 17.19%*** 乔龙,2016
    古美矿区 广西省崇左市 333.8~1156.0*** 821.5*** 138.0~420.1*** 244.1*** 29.71%*** 乔龙,2016
    太平矿区 广西省崇左市 24.7~279.5*** 142.9*** 14.2~125.8*** 62.6*** 43.78%*** 乔龙,2016
    天生桥铝土矿床 云南省文山县 170.3~529.5*** 332.5*** 103.2~334.9*** 170.6*** 51.31%*** 田茂军,2013
    南川-武隆铝土矿床洪官渡矿区 重庆市南川区 42.6~251.2*** 150.8*** 28.6~172.4*** 104.7*** 69.43%*** 李再会等,2012
    南川-武隆铝土矿床大佛岩矿区 重庆市南川区 60.9~110.3*** 85.6*** 35.3~63.3*** 49.3*** 57.60%*** 李再会等,2012
    南川-武隆铝土矿床申基坪矿区 重庆市武隆区 90.7~179.2*** 134.9*** 64.6~68.6*** 66.6*** 49.37%*** 李再会等,2012
    蔡家坝铝土矿床 贵州省清镇市 425.4~907.7*** 611.0*** 88.6~152.5*** 125.9*** 20.60%*** 陈晓甫等,2022
    注:***表示REE总量数据为ΣREE+Y+Sc,HREE 总量数据为Gd-Lu+Y+Sc;**表示REE总量数据为ΣREE+Sc,HREE总量数据为Gd-Lu+Sc;*表示REE总量数据为ΣREY,HREE总量数据为Gd-Lu+Y;其余无*标表示REE总量数据为ΣREE,HREE总量数据为Gd-Lu
    下载: 导出CSV

    表  4  岩浆型磷-铁磷矿床矿石的全岩REE含量(×10−6 )统计结果

    Table  4.   Statistical results of rare earth content in the whole rock ores of magmatic phosphate-iron phosphate deposits

    矿床名称 地理位置 REE总量范围 REE总量平均值 HREE总量范围 HREE总量平均值 HREE含量占比 数据来源
    枣庄沙沟杂岩体 山东省枣庄市 1790.0~2900.0 2345.0 / / / 夏学惠和刘昌涛, 1986
    天山成矿带 新疆 808.7~1365.4 1087.0 / / / 夏学惠等, 2012
    矾山磷铁矿床 河北省张家口市 3202.8~4182.6* 3638.4* 186.2~322.0* 273.1* 7.51%* 程春, 2001
    Hou, et al., 2015
    上庄磷铁矿床 青海省西宁市 329.0~1160.1* 725.8* 41.9~176.4* 87.4* 12.04%* Wang et al., 2017b
    大庙杂岩体 河北省承德市 92.5~888.2* 358.0* 26.3~226.0* 83.9* 23.44%* He, et al., 2016
    Wang et al., 2017a
    路智等,2022
    Li, et al., 2015
    大西沟磷铁矿床 新疆和静县 183.1~226.5* 203.4* 26.7~33.2* 31.1* 15.28%* 夏学惠等, 2009
    夏学惠等, 2010
    卡乌留克塔格铁磷矿床 新疆尉犁县 254.1~381.7* 317.9* 31.4~62.7* 47.1* 14.81%* 夏学惠等,2011a
    瓦吉尔塔格磷铁矿床 新疆巴楚县 1167.3~1993.3* 1600.8* 113.3~191.6* 157.9* 9.86%* 夏学惠等,2009
    奥尔塘铁磷矿床 新疆尉犁县 470.1~325.7* 397.9* 51.8~70.3* 61.1* 15.34%* 袁家忠等, 2010
    招兵沟铁磷矿床 河北省丰宁县 156.1~372.2* 261.6* 51.2~114.2* 84.8* 32.42%* 王亿等,2024
    注:*表示REE总量数据为ΣREY,HREE总量数据为Gd-Lu+Y;无*标表示REE总量数据为ΣREE,HREE总量数据为Gd-Lu
    下载: 导出CSV

    表  5  中国主要煤矿的全岩REE含量(×10−6 )统计结果

    Table  5.   Statistical results of rare earth element content in the whole rock of major coal deposits in China

    矿床名称 地理位置 ΣREY(La-Lu+Y)
    范围
    ΣREY(La-Lu+Y)
    平均值
    HREE(Gd-Lu+Y)
    含量范围
    HREE(Gd-Lu+Y)
    含量平均值
    HREE含量
    占比
    数据来源
    渭北煤田 陕西省渭南市 32.2~412.6 141.1 8.3~70.8 29.3 20.73% 车青松,2021
    刘贝等,2015
    吕家坨煤矿床 河北省唐山市 48.6~876.8 374.1 3.3~34.5 15.3 4.09% 张华等,2024
    大同煤田 山西省 73.8~596.9 165.8 18.6~216.9 65.8 39.70% 刘东娜等,2015
    鄂尔多斯盆地西缘煤田 鄂尔多斯盆地 5.6~314.5 115.2 1.3~74.3 23.1 20.01% 秦国红等,2016
    万福煤矿床 广西省南宁市 88.7~1028.3 362.1 23.2~382.6 146.5 40.46% 朱士飞等,2020
    峰峰矿区 河北省邯郸市 22.7~454.1 99.9 11.0~110.3 25.7 25.77% 魏迎春等,2020
    北皂煤矿床 山东省烟台市 14.8~42.5 32.8 3.7~13.2 7.4 22.60% 马小敏,2019
    梁家煤矿床 山东省烟台市 37.9~222.8 114.4 5.5~33.8 18.9 16.50% 马小敏,2019
    洼里煤矿床 山东省烟台市 48.7~62.4 55.6 12.7~12.1 12.4 22.32% 马小敏,2019
    鱼洞煤矿床 云南省凯里市 388.3~1378.8 961.0 149.4~373.5 273.6 28.47% 吴艳艳等,2010
    聚乎更矿区 青海省天峻县 5.2~55.8 21.9 1.9~14.3 5.2 23.48% 霍婷等,2020
    陈家山煤矿床 陕西省铜川市 12.8~517.0 112.4 3.3~93.2 25.1 22.35% 杨磊等,2008
    芦塘煤矿床 重庆市彭水县 120.7~320.5 194.2 35.3~151.3 66.1 34.02% 邹建华等,2022
    黑岱沟煤矿床 内蒙古鄂尔多斯市 63.7~604.3 267.8 12.3~78.3 41.6 15.52% 刘大锐等,2018
    下载: 导出CSV

    表  6  中国主要油页岩中REE含量(×10−6 )统计结果

    Table  6.   Statistical results of rare earth element content in the whole rock of major oil shale deposits in China

    矿床名称 地理位置 ΣREY范围 ΣREY平均值 HREE(Gd-Lu+Y)
    总量范围
    HREE(Gd-Lu+Y)
    总量平均值
    HREE含量
    占比
    数据来源
    银额盆地油页岩矿区 内蒙古乌拉特后旗 94.8~178.1 126.2 27.3~54.5 34.6 27.44% Liu et al.,2015a
    黄县盆地油页岩矿区 山东省烟台市 17.1~163.3 100.1 4.2~34.2 19.8 19.82% Zheng et al.,2020
    胜利河−长蛇山油页岩带 西藏羌塘盆地 10.3~498.6 63.9 3.6~34.1 14.5 22.71% Fu et al.,2010
    Fu et al.,2011a
    Fu et al.,2011b
    Fu et al.,2015a
    Fu et al.,2015b
    大黄山油页岩矿区 新疆准噶尔盆地 39.7~132.3 93.7 13.2~40.1 26.3 28.06% Tao et al.,2013
    吉木萨尔凹陷和石树沟凹陷油页岩带 新疆准噶尔盆地 95.9~361.9 166.1 28.4~106.5 52.6 31.67% Zhao et al.,2023
    抚顺盆地油页岩矿区 辽宁省抚顺市 118.3~412.4 233.0 23.5~57.0 37.9 16.26% Liu et al.,2015b
    伦坡拉盆地油页岩矿区 西藏班戈县 125.1~176.4 154.0 26.4~37.8 32.7 21.24% Fu et al.,2012
    石长沟油页岩矿区 新疆准噶尔盆地 107.7~163.4 129.7 30.4~51.6 41.4 31.92% Tao et al.,2016
    鄂尔多斯盆地油页岩矿区 山西省彬州市-铜川市 126.8~205.6 169.8 34.3~56.0 40.7 23.98% 马中豪等,2016
    桦甸盆地 吉林省吉林市桦甸市 91.5~356.0 162.6 9.7~40.5 15.5 9.53% 孟庆涛,2010
    下载: 导出CSV
  • [1] BÁRDOSSY G, ALEVA G J J, 1990. Lateritic bauxites: developments in economic geology[M]. Amsterdam: Elsevier: 1-624.
    [2] BARNETT M J, PALUMBO-ROE B, DEADY E A, et al., 2020. Comparison of three approaches for bioleaching of rare earth elements from bauxite[J]. Minerals, 10(8): 649. doi: 10.3390/min10080649
    [3] BATAPOLA N M, DUSHYANTHA N P, PREMASIR H M R, et al., 2020. A comparison of global rare earth element (REE) resources and their mineralogy with REE prospects in Sri Lanka[J]. Journal of Asian Earth Sciences, 200: 104475. doi: 10.1016/j.jseaes.2020.104475
    [4] BLENGINI G A, EL LATUNUSSA C, EYNARD U, et al. , 2020. Study on the EU's list of critical raw materials[R]. Luxembourg: Publications Office of the European Union.
    [5] CAO B, ZHU S F, QIN Y H, et al., 2022. Research status and prospect of rare earth elements in coal[J]. Coal Science and Technology, 50(4): 181-194. (in Chinese with English abstract
    [6] CAO J X, 2022. Occurrence state of Y element in Zhijin Rare earth phosphate deposit, Guizhou province[D]. Guiyang: Guizhou University. (in Chinese with English abstract
    [7] CAO J X, CHEN J Y, ZHAO W, et al., 2022. Elemental geochemical characteristics of phosphorite and its indicative significance in Bailongtan of Yunnan[J]. Journal of Guilin University of Technology, 42(2): 320-332. (in Chinese with English abstract
    [8] CHE Q S, 2021. Geochemical characteristics of rare earth elements in coal in Weibei coalfield and Qinshui basin[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract
    [9] CHE Y D, WU M A, ZHANG S, et al. , 2017. Geochemical features of the Huangtun diorite porphyrite in the Lu-Zong basin, Anhui and the geological implications[J]. Geology of Anhui, 27(4): 241-246, 262. (in Chinese with English abstract
    [10] CHEN J H, WANG Q F, ZHANG Q Z, et al., 2018. Mineralogical and geochemical investigations on the iron-rich gibbsitic bauxite in Yongjiang basin, SW China[J]. Journal of Geochemical Exploration, 188: 413-426. doi: 10.1016/j.gexplo.2018.02.007
    [11] CHEN W, ZHAO T P, WEI Q G, er al., 2008. Genesis of nelsonite from the Damiao Fe-Ti-P deposit, Hebei province, China: evidence from apatite[J]. Acta Petrologica Sinica, 24(10): 2301-2312. (in Chinese with English abstract
    [12] CHEN W T, ZHOU M F, 2012. Paragenesis, stable isotopes, and molybdenite re-os isotope age of the lala iron-copper deposit, Southwest China[J]. Economic Geology, 107(3): 459-480. doi: 10.2113/econgeo.107.3.459
    [13] CHEN X F, WU P, LIU J, et al., 2022. Geochemical characteristics and significance of trace elements in Caijiaba bauxite deposit, Guizhou province[J]. Chinese Journal of Geology, 57(3): 879-896. (in Chinese with English abstract
    [14] CHENG C, 2001. Geochemical characteristics of rare earth elements of Fanshan barringerite deposit[J]. Geology of Chemical Minerals, 23(2): 104-108. (in Chinese with English abstract
    [15] CUI W P, SUN Z D, ZHOU J H, et al., 2014. Study on extraction of rare earths from phosphorite of Zhijin[J]. Chinese Rare Earths, 35(4): 42-46. (in Chinese with English abstract
    [16] D’ARGENIO B, MINDSZENTY A, 1995. Bauxites and related paleokarst: tectonic and climatic event markers at regional unconformities[J]. Eclogae Geologicae Helvetiae, 88(3): 453-499.
    [17] DAI S F, LI D, CHOU C L, et al., 2008. Mineralogy and geochemistry of boehmite-rich coals: new insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China[J]. International Journal of Coal Geology, 74(3-4): 185-202. doi: 10.1016/j.coal.2008.01.001
    [18] DAI S F, REN D Y, CHOU C L, et al., 2012. Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology, 94: 3-21. doi: 10.1016/j.coal.2011.02.003
    [19] DAI S F, LUO Y B, SEREDIN V V, et al., 2014. Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: enrichment and occurrence modes of minerals and trace elements[J]. International Journal of Coal Geology, 122: 110-128. doi: 10.1016/j.coal.2013.12.016
    [20] DAI S F, XIE P P, JIA S H, et al., 2017. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: genetic implications from geochemical and mineralogical data[J]. Ore Geology Reviews, 80: 1-17. doi: 10.1016/j.oregeorev.2016.06.015
    [21] DAI S F, FINKELMAN R B, 2018. Coal as a promising source of critical elements: progress and future prospects[J]. International Journal of Coal Geology, 186: 155-164. doi: 10.1016/j.coal.2017.06.005
    [22] DAI S F, ZHAO L, WEI Q, et al., 2020. Resources of critical metals in coal-bearing sequences in China: enrichment types and distribution[J]. Chinese Science Bulletin, 65(33): 3715-3729. (in Chinese with English abstract doi: 10.1360/TB-2020-0112
    [23] DAI T G, LONG Y Z, ZHANG, Q Z, et al., 2003. REE geochemistry of some bauxite deposits in the western Guangxi district[J]. Geology and Exploration, 39(4): 1-5. (in Chinese with English abstract
    [24] DAI Z W, XIE Y L, XU H H, et al., 2024. Enrichment regularity and resource potential of medium and heavy rareearth elements in Shifang-type phosphorite deposits, Sichuan: a casestudy of Qingping phosphorite deposit in Mianzhu[J]. Acta Petrologica et Mineralogica, 43(5): 1175-1187. (in Chinese with English abstract
    [25] DEADY É, MOUCHOS E, GOODENOUGH K, et al. , 2014. Rare earth elements in karst-bauxites: a novel untapped european resource?[C]// Proceedings of the ERES 2014: 1st European rare earth resources conference. Milos, Greece: 364-375.
    [26] DONG A G, ZHANG S Q, ZHONG Z H, et al., 2017. The Palaoclimate and metallogenic environment research during sedimentary bauxite layer in Xing County district in northwest of Shanxi province[J]. Journal of Hebei GEO University, 40(5): 1-6. (in Chinese with English abstract
    [27] DU L, TANG Y Y, ZHANG S F, et al., 2023. Critical metal enrichments in the aluminiferous rock series in the bauxite deposits of Guizhou province, and their resource potential[J]. Acta Sedimentologica Sinica, 41(5): 1512-1529. (in Chinese with English abstract
    [28] DU M Y, 2012. Geochemical characteristics and genesis of Daxigou magnetite-apatite deposit in Southeast Chifeng[D]. Changchun: Jilin University. (in Chinese with English abstract
    [29] ELIOPOULOS D, ECONOMOU G, TZIFAS I, et al. , 2014. The potential of rare earth elements in Greece[C]// Proceedings of the ERES 2014: 1st European rare earth resources conference. Milos, Greece: 308-316.
    [30] EMSBO P, MCLAUGHLIN P I, BREIT G N, et al., 2015. Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis?[J]. Gondwana Research, 27(2): 776-785. doi: 10.1016/j.gr.2014.10.008
    [31] FENG L Y, JIANG X X, WANG S D, et al. , 2016. Study on kinetics model of leaching of REEs with phosphoric acid[J]. Nonferrous Metals (Extractive Metallurgy)(1): 18-21. (in Chinese with English abstract
    [32] FENG Y W, 2013. Geological and geochemical studies of bauxite metallogenic belt of Sanmenxia, Henan[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract
    [33] FU X G, WANG J, ZENG Y H, et al., 2010. REE geochemistry of marine oil shale from the Changshe Mountain area, northern Tibet, China[J]. International Journal of Coal Geology, 81(3): 191-199. doi: 10.1016/j.coal.2009.12.006
    [34] FU X G, WANG J, ZENG Y H, et al., 2011a. Geochemistry and origin of rare earth elements (REEs) in the Shengli River oil shale, northern Tibet, China[J]. Geochemistry, 71(1): 21-30. doi: 10.1016/j.chemer.2010.07.003
    [35] FU X G, WANG J, ZENG Y H, et al., 2011b. Origin and mode of occurrence of trace elements in marine oil shale from the Shengli River Area, Northern Tibet, China[J]. Oil Shale, 28(4): 487-506. doi: 10.3176/oil.2011.4.03
    [36] FU X G, WANG J, TAN F W, et al., 2012. Geochemistry of terrestrial oil shale from the Lunpola area, northern Tibet, China[J]. International Journal of Coal Geology, 102: 1-11. doi: 10.1016/j.coal.2012.08.005
    [37] FU X G, JIAN W, FENG X L, et al., 2015a. Mineralogy and geochemical anomalies of Lower Cretaceous marine oil shale from Changshe Mountain West, northern Tibet, China[J]. Journal of Geochemical Exploration, 155: 62-75. doi: 10.1016/j.gexplo.2015.04.006
    [38] FU X G, WANG J, TAN F W, et al., 2015b. Occurrence and enrichment of trace elements in marine oil shale (China) and their behaviour during combustion[J]. Oil Shale, 32(1): 42-65. doi: 10.3176/oil.2015.1.04
    [39] GARCÍA M, KRZEMIEŃ A, CAMPO M, et al.,2017. Rare earth elements mining investment: It is not all about China[J]. Resources Policy,53:66-76
    [40] GONG X X, WU S W, XIA Y, et al., 2021. Enrichment characteristics and sources of the critical metal yttrium in Zhijin rare earth-containing phosphorites, Guizhou province, China[J]. Acta Geochimica, 40(3): 441-465. doi: 10.1007/s11631-021-00460-8
    [41] HANS WEDEPOHL K, 1995. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. doi: 10.1016/0016-7037(95)00038-2
    [42] HE H L, YU S Y, SONG X Y, et al., 2016. Origin of nelsonite and Fe−Ti oxides ore of the Damiao anorthosite complex, NE China: evidence from trace element geochemistry of apatite, plagioclase, magnetite and ilmenite[J]. Ore Geology Reviews, 79: 367-381. doi: 10.1016/j.oregeorev.2016.05.028
    [43] HE H P, YANG W B, 2022. REE mineral resources in China: review and perspective[J]. Geotectonica et Metallogenia, 46(5): 829-841. (in Chinese with English abstract
    [44] HE S, XIA Y, XIAO J F, et al., 2022. Geochemistry of REY-Enriched phosphorites in Zhijin Region, Guizhou province, SW China: insight into the origin of REY[J]. Minerals, 12(4): 408. doi: 10.3390/min12040408
    [45] HOU T, ZHANG Z C, KEIDING J K, et al., 2015. Petrogenesis of the ultrapotassic Fanshan intrusion in the North China Craton: implications for lithospheric mantle metasomatism and the origin of apatite ores[J]. Journal of Petrology, 56(5): 893-918. doi: 10.1093/petrology/egv021
    [46] HOU Z Q, 1990. Silicate liquid immiscibility of the Yangyuan-Fanshan complex in Hebei province and the origin of the Fanshan type phosphorus deposits[J]. Mineral Deposits, 9(2): 119-128. (in Chinese with English abstract
    [47] HOWER J C, RATHBONE R F, ROBERTSON J D, et al., 1999. Petrology, mineralogy, and chemistry of magnetically-separated sized fly ash[J]. Fuel, 78(2): 197-203. doi: 10.1016/S0016-2361(98)00132-X
    [48] HU R Z, WEN H J, YE L, et al., 2020. Metallogeny of critical metals in the Southwestern Yangtze Block[J]. Chinese Science Bulletin, 65(33): 3700-3714. (in Chinese with English abstract doi: 10.1360/TB-2020-0274
    [49] HUANG W H, JIU B, LI Y, 2019. Distribution characteristics of rare earth elements in coal and its prospects on development and exploitation[J]. Journal of China Coal Society, 44(1): 287-294. (in Chinese with English abstract
    [50] HUANG Y X, 2010. Resource reserves verification report of Shawei Phosphoyttrium mine verification area, Huiyang City, Guangdong province[R]. Shenzhen: Shenzhen Geological Bureau. (in Chinese)
    [51] HUO T, LIU S M, QI W Q, et al., 2020. Geochemistry characteristics and indicative significance of rare earth elements in coal from Juhugeng coal district, the Muli coalfield in Qinghai province[J]. Geological Bulletin of China, 39(7): 995-1005. (in Chinese with English abstract
    [52] JIANG Q, YANG Y, TANG Y, et al., 2023. A study on process mineralogy of interbedded REE-rich phosphorite rocks in the Zhijin deposit, Guizhou province, China[J]. Acta Mineralogica Sinica, 43(3): 358-370. (in Chinese with English abstract
    [53] JIN Z G, ZHENG M H, LIU L, et al., 2018. Geological and geochemical characteristics of mineralization in the Gaodong Bauxite deposit, Fuquan, Guizhou province[J]. Geology and Exploration, 54(3): 522-534. (in Chinese with English abstract
    [54] KANG W, 2013. Geologoical characteristics and metallogenic environment of Baofeng bauxite field, Henan province, China[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract
    [55] KATO Y, FUJINAGA K, NAKAMURA K, et al., 2011. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 4(8): 535-539. doi: 10.1038/ngeo1185
    [56] KE C H, WANG X X, LI J B, et al., 2013. Zircon U-Pb age, geochemistry and Sr-Nd-Hf isotopic geochemistry of the intermediate-acid rocks from the Heishan-Mulonggou area in the southern margin of North China Block[J]. Acta Petrologica Sinica, 29(3): 781-800. (in Chinese with English abstract
    [57] KETRIS M P, YUDOVICH Y E, 2009. Estimations of Clarkes for Carbonaceous biolithes: world averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 78(2): 135-148. doi: 10.1016/j.coal.2009.01.002
    [58] KINGSNORTH D J, 2016. Rare earths: the China conundrum[C]// Proceedings of the 12th international rare earths conference. Hong Kong, China: 8-10.
    [59] KRONBERG B I, BROWN J R, FYFE W S, et al., 1981. Distributions of trace elements in Western Canadian coal ashes[J]. Fuel, 60(1): 59-63. doi: 10.1016/0016-2361(81)90032-6
    [60] KUANG J Z, XIAO K M, ZENG J L, 2012. Progress in research on rare earth recovery fron bauxite, phosphorite and Nb-Ta minerals[J]. Chinese Rare Earths, 33(1): 81-85. (in Chinese with English abstract
    [61] LI H M, WANG D H, LI L X, et al., 2012. Metallogeny of iron deposits and resource potential of major iron minerogenetic units in China[J]. Geology in China, 39(3): 559-580. (in Chinese with English abstract
    [62] LI J H, ZHANG Z H, QIN M, et al., 2011. Geochemical characteristics of rare earth elements in Qierikeqi siderite deposit of Xinjiang[J]. Mineral Resources and Geology, 25(1): 69-73. (in Chinese with English abstract
    [63] LI L Q, CUI J R, CHEN H, 2019. General situation of molybdenum, rhenium and rare earth resources and occurrence characteristics of rhenium and rare earth in Mulonggou-Huanglongpu area of Luonan County[J]. Geology of Shaanxi, 37(1): 1-7. (in Chinese with English abstract
    [64] LI L X, LI H M, LI Y Z, et al., 2015. Origin of rhythmic anorthositic−pyroxenitic layering in the Damiao anorthosite complex, China: implications for late-stage fractional crystallization and genesis of Fe-Ti oxide ores[J]. Journal of Asian Earth Sciences, 113: 1035-1055. doi: 10.1016/j.jseaes.2015.01.023
    [65] LI M Y H, ZHOU M F, WILLIAMS-JONES A E, 2019a. The genesis of regolith-hosted heavy rare earth element deposits: insights from the world-class Zudong deposit in Jiangxi province, South China[J]. Economic Geology, 114(3): 541-568. doi: 10.5382/econgeo.4642
    [66] LI P T, ZHANG Q Z, 2008. Research on geochemistry of REE in the Sanhe bauxite deposit in Jingxi County, Guangxi[J]. Mineral Resources and Geology, 22(6): 536-540. (in Chinese with English abstract
    [67] LI S, ZHANG J, WANG H F, et al., 2019b. Geochemical characteristics of dolomitic phosphorite containing rare earth elements and its weathered ore[J]. Minerals, 9(7): 416. doi: 10.3390/min9070416
    [68] LI Z H, YAN W, LIAO C G, et al., 2012. Mineralogical and geochemical characteristics of the Nanchuan-Wulong bauxite deposit in Chongqing[J]. Sedimentary Geology and Tethyan Geology, 32(3): 87-100. (in Chinese with English abstract
    [69] LI Z Q, CHEN M, LU J Y, et al. , 2023. Geochemical characteristics and formation Mechanism of phosphorite of lower Cambrian Maidiping formation in Huangjiaping area of Mabian County, Southern Sichuan[J]. Multipurpose Utilization of Mineral Resources(1): 75-87. (in Chinese with English abstract
    [70] LI Z R, SU S, YANG X S, et al. , 2020. Research progress of wet phosphoric acid process by nitric acid method[C]//Proceedings of the annual science and technology conference of the Chinese Society of Environmental Sciences (volume 1). Nanjing: Chinese Society of Environmental Sciences: 557-561. (in Chinese)
    [71] LIANG K P, 2022. Geological characteristics and geochemistry of phosphate deposits in Baiyan mining area of Wengfu Phosphate Mine in Guizhou provinve[D]. Guiyang: Guizhou University. (in Chinese with English abstract
    [72] LIN Q L, 1987. Preliminary geological survey report of Kengwei kaolin mining area in Yangshan, Guangdong province[R]. Qingyuan: Guangdong Provincial Bureau of Geology and Mineral Resources 706 team. (in Chinese)
    [73] LING K Y, ZHU X Q, WANG Z G, et al., 2013. Metallogenic model of bauxite in central Guizhou province: an example of Lindai deposit[J]. Acta Geologica Sinica, 87(6): 1630-1642. doi: 10.1111/1755-6724.12164
    [74] LING K Y, ZHU X Q, TANG H S, et al., 2017. Importance of hydrogeological conditions during formation of the karstic bauxite deposits, Central Guizhou province, Southwest China: a case study at Lindai deposit[J]. Ore Geology Reviews, 82: 198-216. doi: 10.1016/j.oregeorev.2016.11.033
    [75] LING K Y, ZHU X Q, TANG H S, et al., 2018. Geology and geochemistry of the Xiaoshanba bauxite deposit, Central Guizhou province, SW China: implications for the behavior of trace and rare earth elements[J]. Journal of Geochemical Exploration, 190: 170-186. doi: 10.1016/j.gexplo.2018.03.007
    [76] LIU B, HUANG W H, AO W H, et al., 2015. Geochemistry characteristics of rare earth elements in the late Paleozoic coal from Qinshui Basin[J]. Journal of China Coal Society, 40(12): 2916-2926. (in Chinese with English abstract
    [77] LIU D N, ZHOU A C, CHANG Z G, 2015. Geochemistry characteristics of major and rare earth elements in No. 8 raw and weathered coal from Taiyuan Formation of Datong coalfield[J]. Journal of China Coal Society, 40(2): 422-430. (in Chinese with English abstract
    [78] LIU D R, GAO G M, CHI J Z, et al., 2018. Distribution rule of rare earth and trace elements in the Heidaigou openpit coal mine in the Junggar coal field[J]. Acta Geologica Sinica, 92(11): 2368-2375. (in Chinese with English abstract
    [79] LIU F, YANG F Q, LI Y H, et al., 2009. Trace element and rare earth element characteristics of apatite from Abagong iron deposit in Altay City, Xinjiang[J]. Mineral Deposits, 28(3): 251-264. (in Chinese with English abstract
    [80] LIU J Z, FU Z K, WAN D X, et al. , 2015. Report of integrated exploration of phosphate rock in Kaiyang area, Guizhou province[R]. Guiyang: Geological Brigade 105 of Guizhou Geological and Mineral Exploration and Development Bureau. (in Chinese)
    [81] LIU P, 1999. Geochemical characteristics of Carboniferous bauxite deposits in central Guizhou-southern Sichuan[J]. Geological Bulletin of China, 18(2): 210-217. (in Chinese with English abstract
    [82] LIU R, LIU Z J, GUO W, et al., 2015a. Characteristics and comprehensive utilization potential of oil shale of the Yin’E Basin, Inner Mongolia, China[J]. Oil Shale, 32(4): 293-312. doi: 10.3176/oil.2015.4.02
    [83] LIU R, LIU Z J, SUN P C, et al., 2015b. Geochemistry of the Eocene Jijuntun Formation oil shale in the Fushun Basin, northeast China: implications for source-area weathering, provenance and tectonic setting[J]. Geochemistry, 75(1): 105-116. doi: 10.1016/j.chemer.2014.08.004
    [84] LIU X F, WANG Q F, FENG Y W, et al., 2013. Genesis of the Guangou karstic bauxite deposit in western Henan, China[J]. Ore Geology Reviews, 55: 162-175. doi: 10.1016/j.oregeorev.2013.06.002
    [85] LIU X F, WANG Q F, ZHANG Q Z, et al., 2016. Genesis of REE minerals in the karstic bauxite in western Guangxi, China, and its constraints on the deposit formation conditions[J]. Ore Geology Reviews, 75: 100-115. doi: 10.1016/j.oregeorev.2015.12.015
    [86] LIU Y J, NAIDU R, 2014. Hidden values in bauxite residue (red mud): recovery of metals[J]. Waste Management, 34(12): 2662-2673. doi: 10.1016/j.wasman.2014.09.003
    [87] LIU Z G, 2005. Study on mineral composition of Xinwei Bauxite ore in Jingxi County, Guangxi[J]. Southern Natural Resources(11): 30-32. (in Chinese)
    [88] LONG K S, FU Y, CHEN R, et al., 2019. The REE enrichment mechanism of bauxite deposits in the Northern Guizhou: a case study of the Xinmin bauxite deposit[J]. Acta Mineralogica Sinica, 39(4): 443-454. (in Chinese with English abstract
    [89] LONG Y Z, CHI G X, LIU J P, et al., 2017. Trace and rare earth elements constraints on the sources of the Yunfeng paleo-karstic bauxite deposit in the Xiuwen-Qingzhen area, Guizhou, China[J]. Ore Geology Reviews, 91: 404-418. doi: 10.1016/j.oregeorev.2017.09.014
    [90] LU Z, LIU Y S, NIE B F, et al., 2022. Petrological characteristics and genesis of Late Proterozoic gabbro-norite in Damiao area, Chengde, Hebei province[J]. Chinese Journal of Geology, 57(1): 243-261. (in Chinese with English abstract
    [91] LU Z H, 2022. Study on sedimentary environment of black rock series of Ediacaran-Cambrian slope facies in eastern Guizhou[D]. Guiyang: Guizhou University. (in Chinese with English abstract
    [92] MA X M, 2019. Geochemistry characteristics and sedimentary environment indicating significances of elements in paleogene coal from Huangxian Basin[J]. Science Technology and Engineering, 19(24): 46-55. (in Chinese with English abstract
    [93] MA Y, XIANG Q Y, DING K L, 2024. Development of oil shale at home and abroad[J]. World Petroleum Industry, 31(1): 16-25. (in Chinese with English abstract
    [94] MA Z H, CHEN Q S, SHI Z W, et al., 2016. Geochemistry of oil shale from Chang 7 reservoir of Yanchang Formation in south Ordos Basin and its geological significance[J]. Geological Bulletin of China, 35(9): 1550-1558. (in Chinese with English abstract
    [95] MAMELI P, MONGELLI G, OGGIANO G, et al., 2007. Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (Western Sardinia, Italy): insights on conditions of formation and parental affinity[J]. International Journal of Earth Sciences, 96(5): 887-902. doi: 10.1007/s00531-006-0142-2
    [96] MAO J W, SONG S W, LIU M, et al., 2022. REE deposits: basic characteristics and global metallogeny[J]. Acta Geologica Sinica, 96(11): 3675-3697. (in Chinese with English abstract
    [97] MCDONOUGH W F, SUN S S, 1995. The composition of the Earth[J]. Chemical Geology, 120(3-4): 223-253. doi: 10.1016/0009-2541(94)00140-4
    [98] MCLENNAN S M, 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes[M]//LIPIN B R, MCKAY G A. Geochemistry and mineralogy of rare earth elements. Washington: De Gruyter: 169-200.
    [99] MENG J Y, WANG Q F, LIU X F, et al., 2011. Mineralogy and geochemistry of the Pangjiazhuang bauxite deposit in Jiaokou county, Shanxi province[J]. Geology and Exploration, 47(4): 593-604. (in Chinese with English abstract
    [100] MENG Q T, 2010. Research on petrologic and geochemical characteristics of eocene oil shale and its enrichment regularity, Huadian Basin[D]. Changchun: Jilin University. (in Chinese with English abstract
    [101] Ministry of Natural Resources, PRC, 2020. Specifications for bauxite mineral exploration: DZ/T 0202-2020[S]. Beijing: Ministry of Natural Resources, PRC: 1-48. (in Chinese)
    [102] Ministry of Natural Resources, PRC, 2022. China mineral resources[R]. Beijing: Geology Press, PRC: 5-6. (in Chinese)
    [103] Ministry of Natural Resources, PRC, 2023. China mineral resources[R]. Beijing: Geology Press, PRC: 1-17. (in Chinese)
    [104] MISHRA B, BORA D K, GAJERA P, et al., 2022. Exploratory study for the utilization of low-grade kachchh bauxite and its prospects for rare-earth elements[J]. Journal of Sustainable Metallurgy, 8(1): 321-332. doi: 10.1007/s40831-021-00478-5
    [105] MORDBERG L E, 1999. Geochemical evolution of a Devonian diaspore-crandallite-svanbergite-bearing weathering profile in the Middle Timan, Russia[J]. Journal of Geochemical Exploration, 66(1-2): 353-361. doi: 10.1016/S0375-6742(99)00021-7
    [106] MORDBERG L E, STANLEY C J, GERMANN K, 2000. Rare earth element anomalies in crandallite group minerals from the Schugorsk bauxite deposit, Timan, Russia[J]. European Journal of Mineralogy, 12(6): 1229-1243. doi: 10.1127/ejm/12/6/1229
    [107] MORDBERG L E, STANLEY C J, GERMANN K, 2001. Mineralogy and geochemistry of trace elements in bauxites: the Devonian Schugorsk deposit, Russia[J]. Mineralogical Magazine, 65(1): 81-101. doi: 10.1180/002646101550145
    [108] MU B L, CAI J J, BIAN Z H, 1998. Gold geochemistry of the Fanshan alkaline igneous complex and Apatite-Magnetite deposit in Hebei province[J]. Acta Petrologica et Mineralogica, 17(4): 359-370. (in Chinese with English abstract
    [109] OU Y, 2015. The research of occurrence state of rare-earth element in typical western Szechuan phosphate ore deposit[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract
    [110] PANDA S, COSTA R B, SHAH S S, et al., 2021. Biotechnological trends and market impact on the recovery of rare earth elements from bauxite residue (red mud)-A review[J]. Resources, Conservation and Recycling, 171: 105645. doi: 10.1016/j.resconrec.2021.105645
    [111] QIAO L, 2016. Tectonic evolution and bauxite metallogenesis in the Youjiang Basin and Adjacent Area[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract
    [112] QIN G H, DENG L J, LIU K, et al., 2016. Characteristic of rare earth elements in coal in western margin of Ordos basin[J]. Coal Geology & Exploration, 44(6): 8-14. (in Chinese with English abstract
    [113] QIN H, ZHOU Q, HONG T, et al., 2022. Geochemical characteristics and sedimentary environment of Yangchang phosphorite deposit in Zhenxiong county, Yunnan province[J]. Contributions to Geology and Mineral Resources Research, 37(3): 259-269. (in Chinese with English abstract
    [114] REN H L, 2017. Palaeo-sedimentary environment and enrichment mechanism of iodine for Late Sinian phosphorite from Weng’an-Fuquan of Guizhou, China[D]. Guiyang: Guizhou University. (in Chinese with English abstract
    [115] RIESGO GARCÍA M V, KRZEMIEŃ A, MANZANEDO DEL CAMPO M Á, et al., 2017. Rare earth elements mining investment: it is not all about China[J]. Resources Policy, 53: 66-76. doi: 10.1016/j.resourpol.2017.05.004
    [116] SEREDIN V V, 1996. Rare earth element-bearing coals from the Russian Far East deposits[J]. International Journal of Coal Geology, 30(1-2): 101-129. doi: 10.1016/0166-5162(95)00039-9
    [117] SEREDIN V V, FINKELMAN R B, 2008. Metalliferous coals: a review of the main genetic and geochemical types[J]. International Journal of Coal Geology, 76(4): 253-289. doi: 10.1016/j.coal.2008.07.016
    [118] SEREDIN V V, DAI S F, 2012. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. International Journal of Coal Geology, 94: 67-93. doi: 10.1016/j.coal.2011.11.001
    [119] SHE Y W, SONG X Y, YU S Y, et al., 2014. The compositions of magnetite and ilmenite of the Taihe layered intrusion, Sichuan province: constraints on the formation of the P-rich Fe-Ti oxide ores[J]. Acta Petrologica Sinica, 30(5): 1443-1456. (in Chinese with English abstract
    [120] SONG X Y, SHE Y W, LUAN Y, et al., 2024. Resources of Co, Ga and Sc of V-Ti magnetite deposits in the Panxi area within the Emeishan Large Igneous provence and their integrated utilization potentials[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 43(1): 218-231. (in Chinese with English abstract
    [121] SUN S L, 2011. Geologoical and geochemical characteristics of Kuancaoping bauxite deposit in Ningwu County, Shanxi province[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract
    [122] SUN S L, WANG Q F, LIU X F, et al., 2012. Geologoical and geochemical characteristics of the Shiqiang bauxite deposit in Shanxi province[J]. Geology and Exploration, 48(3): 487-501. (in Chinese with English abstract
    [123] TAO S, TANG D Z, XU H, et al., 2013. Organic geochemistry and elements distribution in Dahuangshan oil shale, southern Junggar Basin: origin of organic matter and depositional environment[J]. International Journal of Coal Geology, 115: 41-51. doi: 10.1016/j.coal.2013.05.004
    [124] TAO S, SHAN Y S, TANG D Z, et al., 2016. Mineralogy, major and trace element geochemistry of Shichanggou oil shales, Jimusaer, Southern Junggar Basin, China: implications for provenance, palaeoenvironment and tectonic setting[J]. Journal of Petroleum Science and Engineering, 146: 432-445. doi: 10.1016/j.petrol.2016.06.014
    [125] TAYLOR S R, MCLENNAN S M, 1985. The continental crust: its composition and evolution[M]. Oxford: Blackwell Scientific Publications.
    [126] TEZYAPAR KARA I, KREMSER K, WAGLAND S T, et al., 2023. Bioleaching metal-bearing wastes and by-products for resource recovery: a review[J]. Environmental Chemistry Letters, 21(6): 3329-3350. doi: 10.1007/s10311-023-01611-4
    [127] TIAN M J, 2013. Research on geological characteristics and genesis of bauxite deposit in Wenshan -Tianshengqiao, Yunnan province[D]. Kunming: Kunming University of Science and Technology. (in Chinese with English abstract
    [128] TORRÓ L, PROENZA J A, AIGLSPERGER T, et al., 2017. Geological, geochemical and mineralogical characteristics of REE-bearing Las Mercedes bauxite deposit, Dominican Republic[J]. Ore Geology Reviews, 89: 114-131. doi: 10.1016/j.oregeorev.2017.06.017
    [129] TUO B Y, WANG J L, ZHANG Q, 2007. Occurrence and utilization of rare earth element in bauxite[J]. Chinese Rare Earths, 28(1): 117-119. (in Chinese with English abstract
    [130] U. S. Geological Survey, 2024. Mineral commodity summaries 2024[R]. Reston: U. S. Geological Survey: 142-143.
    [131] WAGH A S, PINNOCK W R, 1987. Occurrence of scandium and rare earth elements in Jamaican bauxite waste[J]. Economic Geology, 82(3): 757-761. doi: 10.2113/gsecongeo.82.3.757
    [132] WANG J Y, QIAO Z K, 2024. Study on the material source and enrichment mechanism of REE-rich phosphorite in Zhijin, Guizhou[J]. Scientific Reports, 14(1): 6474. doi: 10.1038/s41598-024-57074-2
    [133] WANG L M, CHEN P, 2020. On the occurrence and genesis of rare earth and scandium in Jiuzigou rock mass of Fengxian county, Shaanxi province[J]. Northwestern Geology, 53(3): 86-92. (in Chinese with English abstract
    [134] WANG L S, JIN Z M, 1995. Roasting process and pyrolysis kinetics of svanbergite ore[J]. Chinese Science Bulletin, 40(19): 1767-1770. (in Chinese) doi: 10.1360/csb1995-40-19-1767
    [135] WANG M, VEKSLER I, ZHANG Z C, et al., 2017a. The origin of nelsonite constrained by melting experiment and melt inclusions in apatite: the Damiao anorthosite complex, North China Craton[J]. Gondwana Research, 42: 163-176. doi: 10.1016/j.gr.2016.10.015
    [136] WANG M X, JIANG C Y, XIA M Z, et al., 2017b. Petrogenesis of the Fe-P-REE mineralized Shangzhuang ultramafic intrusion in the Lajishan tectonic belt, South Qilian Belt: implications for mantle metasomatism and tectonic setting[J]. Geological Journal, 52(S1): 314-328. doi: 10.1002/gj.3113
    [137] WANG S D, JIANG K X, JIANG X X, et al. , 2011. Study on leaching of rare earth in preparing phosphoric acid with nitric acid[J]. Nonferrous Metals (Extractive Metallurgy)(8): 25-27. (in Chinese with English abstract
    [138] WANG W Q, 2016. Geochemical characteristics of Marine phosphorus blocks and enrichment of uranium polymetals in Hunan-Guizhou area[D]. Beijing: Beijing Research Institute of Uranium Geology. (in Chinese)
    [139] WANG W W, PRANOLO Y, CHENG C Y, 2011. Metallurgical processes for scandium recovery from various resources: a review[J]. Hydrometallurgy, 108(1-2): 100-108. doi: 10.1016/j.hydromet.2011.03.001
    [140] WANG X J, WANG Z T, WANG G H, et al., 2017. Geochemical characteristics and ore-forming environment of the Songgui Bauxite Deposit in Heqing County, Northwest Yunnan province[J]. Northwestern Geology, 50(3): 205-221. (in Chinese with English abstract
    [141] WANG X M, JIAO Y Q, DU Y S, et al., 2013. REE mobility and Ce anomaly in bauxite deposit of WZD area, Northern Guizhou, China[J]. Journal of Geochemical Exploration, 133: 103-117. doi: 10.1016/j.gexplo.2013.08.009
    [142] WANG Y, XING S W, ZHANG Y, et al., 2015. Geological and geochemical characteristics of the Jinlong bauxite deposit in Guangxi province[J]. Geology and Exploration, 51(2): 266-274. (in Chinese with English abstract
    [143] WANG Y, XIONG X X, DONGYE M X, et al., 2022. Prediction model and exploration prospect analysis of phosphate mineral resources in China[J]. Geology in China, 49(2): 435-454. (in Chinese with English abstract
    [144] WANG Y, LI L X, LI H M, et al., 2024. Geochronology and genesis of the Zhaobinggou Fe-P deposit, Northern Hebei, China[J]. Geoscience, 38(1): 46-55. (in Chinese with English abstract
    [145] WANG Y H, 2023. Study on the restrictive mechanism of the differential mineralization on the phosphorus enrichment degree in early Cambrian phosphate deposits in Guizhou[D]. Guiyang: Guizhou University. (in Chinese with English abstract
    [146] WANG Y R, WANG Q F, LIU X F, et al., 2012. Geochemical background of the Mianchi bauxite mineralization area, Henan province[J]. Geology and Exploration, 48(3): 526-532. (in Chinese with English abstract
    [147] WANG Z S, LI Y, ALGEO T J, et al., 2024. Critical metal enrichment in Upper Carboniferous karst bauxite of North China Craton[J]. Mineralium Deposita, 59(2): 237-254. doi: 10.1007/s00126-023-01207-6
    [148] WEDEPOHL K H,1995. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta,59(7):1217-1232
    [149] WEI Y C, HUA F H, HE W B, et al., 2020. Difference of trace elements characteristics of No. 2 coal in Fengfeng mining area[J]. Journal of China Coal Society, 45(4): 1473-1487. (in Chinese with English abstract
    [150] WU Y Y, QIN Y, YI T S, 2010. Enrichment of rare earth elements in high sulfur coal of Liangshan formation from Kaili, Guizhou, China and geological origin[J]. Acta Geologica Sinica, 84(2): 280-285. (in Chinese with English abstract doi: 10.1111/j.1755-6724.2010.00086.x
    [151] XIA X H, LIU C T, 1986. Relationship between rock chemistry and phosphorus content of Shagou ultrabasic complex in Zaozhuang, Shandong province[J]. Geology of Chemical Minerals(02): 62-69. (in Chinese)
    [152] XIA X H, YUAN J H, XI G Q, et al., 2009. The feasibility studay and metallogenic prediction of endogenesis phosphorite resources in the Northern Edge of Talimu Platform[J]. Geology of Chemical Minerals, 31(3): 129-158. (in Chinese with English abstract
    [153] XIA X H, YUAN J Z, XI G Q, et al., 2010. Geochemistry of complex rocks and characteristics of Daxigou Iron-Phosphorite deposits, Xinjiang[J]. Journal of Jilin University (Earth Science Edition), 40(4): 879-885. (in Chinese with English abstract
    [154] XIA X H, XI G Q, YUAN J Z, et al., 2011a. Study on geology and comprehensive utilization of magnetite and apatite deposit of Kawuliuke tag in Sinkiang[J]. Geology of Chemical Minerals, 33(4): 193-200. (in Chinese with English abstract
    [155] XIA X H, YUAN J H, DU J H, et al., 2011b. Distribution characteristics and resource potential of sedimentary phosphatite deposits in China[J]. Journal of Wuhan Institute of Technology, 33(2): 6-11. (in Chinese with English abstract
    [156] XIA X H, TAN Y J, YANG H Y, et al., 2012. Iron-phosphate deposit geology and metallogenic specialization in the Tianshan metallogenic belt, Xinjiang[J]. Geology in China, 39(2): 486-496. (in Chinese with English abstract
    [157] XIE Y L, HOU Z Q, GOLDFARB R J, et al. , 2016. Rare earth element deposits in China[J]. Economic Geology, 18, doi: https://doi.org/10.5382/Rev.18.06
    [158] XIE Y L, QU Y W, YANG Z F, et al., 2019. Giant Bayan Obo Fe-Nb-REE deposit: progresses, controversaries and new understandings[J]. Mineral Deposits, 38(5): 983-1003. (in Chinese with English abstract
    [159] XIE Y L, VERPLANCK P L, HOU Z Q, et al. , 2019. Chapter 12 Rare earth element deposits in China: A review and new understandings[J]. Economic Geology, 22, doi: https://doi.org/10.5382/SP.22
    [160] XING J Q, JIANG Y H, XIAN H Y, et al., 2021. Hydrothermal activity during the formation of REY-rich phosphorites in the early Cambrian Gezhongwu Formation, Zhijin, South China: a micro- and nano-scale mineralogical study[J]. Ore Geology Reviews, 136: 104224. doi: 10.1016/j.oregeorev.2021.104224
    [161] XU K, MA J B, CHENG Z G, et al. , 2023. Sedimentary geochemical characteristics and paleoenvironmental reconstruction of the lower Cambrian Yuhucun Formation in Huize Area, Eastern Yunnan[J]. Acta Sedimentologica Sinica, doi: 10.14027/j.issn.1000-0550.2023.017. (in Chinese with English abstract
    [162] YANG F, 2011. Sedimentary environment and geochemistry of the Kunyang phosphorite deposit in Yunnan province[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract
    [163] YANG F Q, LIU F, CHAI F M, et al., 2011. Iron deposits in Altay, Xinjiang: geological characteristics, time-space distribution and metallogenesis[J]. Mineral Deposits, 30(4): 575-598. (in Chinese with English abstract
    [164] YANG H Q, 2020. Luojiaxia magmatic phosphate rock in Gansu province[J]. Northwestern Geology, 53(3): 251. (in Chinese) doi: 10.3724/SP.J.7102812705
    [165] YANG H Y, XIAO J F, XIA Y, et al., 2019a. Origin of the Ediacaran Weng'an and Kaiyang phosphorite deposits in the Nanhua basin, SW China[J]. Journal of Asian Earth Sciences, 182: 103931. doi: 10.1016/j.jseaes.2019.103931
    [166] YANG H Y, XIAO J F, HU R Z, et al., 2020. Formation environment and metallogenic mechanism of Weng’an phosphorite in the Early Sinian, Central Guizhou province[J]. Journal of Palaeogeography (Chinese Edition), 22(5): 929-946. (in Chinese with English abstract
    [167] YANG J C, WANG F L, LI D S, et al., 2004. Investigation on occurrence and trend of rare and rare-earth elements associated in bauxite[J]. Mining and Metallurgy, 13(2): 89-92. (in Chinese with English abstract
    [168] YANG L, LIU C Y, LI H Y, 2008. Geochemistry of trace elements and rare earth elements of coal in Chenjiashan coal mine[J]. Coal Geology & Exploration, 36(2): 10-14. (in Chinese with English abstract
    [169] YANG L Q, LI R H, GAO X, et al., 2020. A preliminary study of extreme enrichment of critical elements in the Jiaodong gold deposits, China[J]. Acta Petrologica Sinica, 36(5): 1285-1314. (in Chinese with English abstract doi: 10.18654/1000-0569/2020.05.01
    [170] YANG P D, HAN G H, HUANG Y F, et al., 2024. Research progress on extraction and separation technology of rare earth from red mud[J]. Industrial Minerals & Processing, 53(8): 51-61. (in Chinese with English abstract
    [171] YANG S J, YANG M, YANG Y L, et al., 1996. The study on phase indentification of red mud of Pingguo aluminium plant[J]. Journal of Central South University of Technology, 27(5): 66-69. (in Chinese with English abstract
    [172] YANG S J, WANG Q F, DENG J, et al., 2019b. Genesis of karst bauxite-bearing sequences in Baofeng, Henan (China), and the distribution of critical metals[J]. Ore Geology Reviews, 115: 103161. doi: 10.1016/j.oregeorev.2019.103161
    [173] YANG W J, HE B B, ZHU G H, et al., 2022. Review on the technology of wet-process phosphoric acid from phosphate rock[J]. Eco-industry Science & Phosphorus Fluorine Engineering, 37(8): 26-28. (in Chinese with English abstract
    [174] YANG X, 2019. Research on geochemistry characteristrics and sedimentary environments of the bahuang phosphorite deposit in Tongren, Guizhou[D]. Guiyang: Guizhou University. (in Chinese with English abstract
    [175] YANG Z H, 2011. Study on the comprehensive exploitation and utilization of bauxite (clay) deposits in Shanxi province, China[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract
    [176] YANG Z Q, WANG C W, HU C L, et al., 2022. Characteristics of the Ore-bearing rock series in rare earth of Yuba section of Weining Area, Guizhou[J]. Guizhou Geology, 39(1): 11-18. (in Chinese with English abstract
    [177] YANG Z S, HUANG X W, MENG Y M, et al., 2024. Iron deposits associated critical metals in China: basic features, distribution, and resource potential[J]. Mineral Deposits, 43(2): 319-338. (in Chinese with English abstract
    [178] YE F, DONG G C, GUO H D, et al., 2015a. The rare-earth elements features and significances of bauxite deposits in Shanxi Wangrun-Xiyadi region Shanxi province[J]. China Mining Magazine, 24(6): 76-80. (in Chinese with English abstract
    [179] YE F, DONG G C, MENG Z G, et al., 2015b. Geochemical features of rare-earth elements of the bauxite deposit in the Gaojiashan region, Shanxi province and their implications[J]. Geology and Exploration, 51(3): 486-495. (in Chinese with English abstract
    [180] YU J J, MAO J W, 2002. Rare earth elements in apatite from porphyrite iron deposits of Ningwu Area[J]. Mineral Deposits, 21(1): 65-73. (in Chinese with English abstract
    [181] YU W C, WANG R H, ZHANG Q L, et al., 2014. Mineralogical and geochemical evolution of the Fusui bauxite deposit in Guangxi, South China: from the original Permian orebody to a Quarternary Salento-type deposit[J]. Journal of Geochemical Exploration, 146: 75-88. doi: 10.1016/j.gexplo.2014.07.020
    [182] YUAN A G, 2010. Resource distribution and exploitation strategy of the bauxite deposits in the Henan province, China[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract
    [183] YUAN J Z, XIA X H, XI G Q, et al., 2010. Geological characteristics and porspecting significance of Magnetite-Apatite deposit of aertang area in sinkiang[J]. Geology of Chemical Minerals, 32(2): 105-111. (in Chinese with English abstract
    [184] ZHANG H, YU H C, ZHANG J, 2024. Characteristics of rare earth elements associated with coal in Lvjiatuo mine[J]. Coal Geology of China, 36(4): 30-37. (in Chinese with English abstract
    [185] ZHANG H J, FAN H F, WEN H J, et al., 2022. Controls of REY enrichment in the early Cambrian phosphorites[J]. Geochimica et Cosmochimica Acta, 324: 117-139. doi: 10.1016/j.gca.2022.03.003
    [186] ZHANG H Y, MA H Z, CHENG H D, et al., 2024. Geochemical characteristics and geological significance of the Shangzhuang Carbonate Complex, Qinghai[J]. Journal of Salt Lake Research, 32(2): 62-71. (in Chinese with English abstract
    [187] ZHANG L, 2021. Study on the enrichment mechanism of phosphorous in the epigenetic environment of Tongren, Guizhou[D]. Guiyang: Guizhou University. (in Chinese with English abstract
    [188] ZHANG L J, ZHOU T F, FAN Y, et al., 2011. A LA-ICP-MS study of apatite from the Taocun magnetite-apatite deposit, Ningwu Basin[J]. Acta Geologica Sinica, 85(5): 834-848. (in Chinese with English abstract
    [189] ZHANG M, WANG X Y, LIU J Z, et al., 2018. Ore forming materials source and sedimentary environment study of Biliba bauxite deposit in Xiuwen, Guizhou province[J]. Guizhou Geology, 35(2): 88-95. (in Chinese with English abstract
    [190] ZHANG N, LIU X M, SUN H H, et al., 2011. Evaluation of blends bauxite-calcination-method red mud with other industrial wastes as a cementitious material: properties and hydration characteristics[J]. Journal of Hazardous Materials, 185(1): 329-335. doi: 10.1016/j.jhazmat.2010.09.038
    [191] ZHANG S Q, ZHANG W X, ZHONG Z H, et al., 2018. REE geochemical characteristics and geological significance of bauxite from Xing County, Shanxi province[J]. Journal of the Chinese Society of Rare Earths, 36(3): 338-349. (in Chinese with English abstract
    [192] ZHANG X K, ZHOU K G, CHEN W, et al., 2019a. Recovery of iron and rare earth elements from red mud through an acid leaching-stepwise extraction approach[J]. Journal of Central South University, 26(2): 458-466. doi: 10.1007/s11771-019-4018-6
    [193] ZHANG Y, WU G C, LIU X F, et al., 2015. Mineral evolution and element migration during the formation of accumulated bauxite in Jiaomei ore deposit, Pingguo County, Western Guangxi[J]. Geoscience, 29(1): 20-31. (in Chinese with English abstract
    [194] ZHANG Y H, LING W L, WU H, et al., 2013. Geochemistry of varied type ores of Northern Guizhou bauxites and its implication for mineralization[J]. Geological Science and Technology Information, 32(1): 71-79. (in Chinese with English abstract
    [195] ZHANG Y X, HE Q G, SHAO S X, et al., 1999. Geochemical characteristics of Sc in bauxite[J]. Geology-Geochemistr, 27(2): 55-62. (in Chinese with English abstract
    [196] ZHANG Y X, SHI Q, LUO M X, et al., 2019b. Improved bauxite residue dealkalization by combination of aerated washing and electrodialysis[J]. Journal of Hazardous Materials, 364: 682-690. doi: 10.1016/j.jhazmat.2018.10.023
    [197] ZHANG Y Y, 2015. The rare earth elements characteristics and the comprehensive utilization research of devonian Shifang phosphate deposit[D]. Mianyang: Southwest University of Science and Technology. (in Chinese with English abstract
    [198] ZHAO M, LIU Y, JIAO X, et al., 2023. Major, trace and rare earth element geochemistry of the Permian Lucaogou oil shales, eastern Junggar Basin, NW China: implications for weathering, provenance and tectonic setting[J]. Australian Journal of Earth Sciences, 70(4): 585-602. doi: 10.1080/08120099.2023.2186951
    [199] ZHEN Y Q, WANG Z Y, 1991. Geochemical characteristics of the rare earth elements in North China Pattern (G Strata) alumina ores and their geological, significance[J]. Journal of Guilin College of Geology, 11(1): 49-56. (in Chinese with English abstract
    [200] ZHENG X, SPIRO B, HAN Z Z, 2020. Comparison of geochemical and mineralogical characteristics of Palaeogene oil shales and coals from the Huangxian Basin, Shandong province, East China[J]. Minerals, 10(6): 496. doi: 10.3390/min10060496
    [201] ZHOU J L, ZHANG Z W, YOU F H, 2011. Analysis of the depositional environment for the supernormal enrichment of rare earth elements in the lower part of the Upper Permian Xuanwei Formation in Western Guizhou[J]. Acta Mineralogica Sinica, 31(S1): 328-329. (in Chinese)
    [202] ZHOU M F, ARNDT N T, MALPAS J, et al., 2008. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China[J]. Lithos, 103(3-4): 352-368. doi: 10.1016/j.lithos.2007.10.006
    [203] ZHU S F, CAO B, WANG T, et al., 2020. Geochemical features of coal REE in Wanfu coalmine area, Shanglin County, Guangxi[J]. Coal Geology of China, 32(9): 64-69. (in Chinese with English abstract
    [204] ZOU J H, WANG B F, WANG H, et al., 2022. Geochemical characteristics of trace and rare earth elements in the late Permian coals from the Lutang Mine, Chongqing[J]. Journal of China Coal Society, 47(8): 3117-3127. (in Chinese with English abstract
    [205] ZU S Z, 1999. A rational exploitation for the bauxite resource[J]. Nonferrous Metals Science and Engineering, 13(2): 12-14, 19. (in Chinese)
    [206] 曹泊,朱士飞,秦云虎,等,2022. 煤中稀土元素研究现状及展望[J]. 煤炭科学技术,50(4):181-194.
    [207] 曹金鑫,2022. 贵州织金含稀土磷矿床Y元素赋存状态研究[D]. 贵阳:贵州大学.
    [208] 曹金鑫,陈吉艳,赵威,等,2022. 云南白龙潭磷块岩元素地球化学特征及其指示意义[J]. 桂林理工大学学报,42(2):320-332. doi: 10.3969/j.issn.1674-9057.2022.02.004
    [209] 车青松,2021. 渭北煤田与沁水盆地煤中稀土元素地球化学特征[D]. 北京:中国地质大学(北京).
    [210] 车英丹,吴明安,张舒,等,2017. 安徽庐枞盆地黄屯闪长玢岩地球化学特征及其地质意义[J]. 安徽地质,27(4):241-246,262. doi: 10.3969/j.issn.1005-6157.2017.04.001
    [211] 陈伟,赵太平,魏庆国,等,2008. 河北大庙Fe-Ti-P矿床中铁钛磷灰岩的成因:来自磷灰石的证据[J]. 岩石学报,24(10):2301-2312.
    [212] 陈晓甫,吴攀,刘江,等,2022. 黔中蔡家坝铝土矿床微量元素特征及地质意义[J]. 地质科学,57(3):879-896. doi: 10.12017/dzkx.2022.050
    [213] 程春,2001. 矾山磷铁矿床稀土元素地球化学特征[J]. 化工矿产地质,23(2):104-108. doi: 10.3969/j.issn.1006-5296.2001.02.007
    [214] 崔文鹏,孙泽炼,周骏宏,等,2014. 织金磷矿中伴生稀土的提取研究[J]. 稀土,35(4):42-46.
    [215] 代世峰,赵蕾,魏强,等,2020. 中国煤系中关键金属资源:富集类型与分布[J]. 科学通报,65(33):3715-3729.
    [216] 戴塔根,龙永珍,张起钻,等,2003. 桂西某些铝土矿床稀土元素地球化学研究[J]. 地质与勘探,39(4):1-5. doi: 10.3969/j.issn.0495-5331.2003.04.001
    [217] 代作文,谢玉玲,徐航航,等,2024. 四川什邡式磷矿床中、重稀土元素富集规律及资源潜力—以绵竹清平磷矿为例[J]. 岩石矿物学杂志,43(5):1175-1187.
    [218] 董挨管,张尚清,钟庄华,等,2017. 晋西北兴县地区铝土矿层准沉积期古气候及其沉积环境研究[J]. 河北地质大学学报,40(5):1-6.
    [219] 杜蔺,唐永永,张世帆,等,2023. 贵州铝土矿含铝岩系中关键金属富集特征及资源潜力[J]. 沉积学报,41(5):1512-1529.
    [220] 杜美艳,2012. 赤峰东南部大西沟磷—铁矿矿床地球化学特征及成因[D]. 长春:吉林大学.
    [221] 冯林永,蒋训雄,汪胜东,等,2016. 磷酸法中稀土溶出的动力学模型研究[J]. 有色金属(冶炼部分)(1):18-21.
    [222] 冯跃文,2013. 河南三门峡铝土矿成矿带地质与地球化学研究[D]. 北京:中国地质大学(北京).
    [223] 何宏平,杨武斌,2022. 我国稀土资源现状和评价[J]. 大地构造与成矿学,46(5):829-841.
    [224] 侯增谦,1990. 河北阳原—矾山环状杂岩体的岩浆不混溶成因及矾山式铁磷矿床成因探讨[J]. 矿床地质,9(2):119-128.
    [225] 胡瑞忠,温汉捷,叶霖,等,2020. 扬子地块西南部关键金属元素成矿作用[J]. 科学通报,65(33):3700-3714.
    [226] 黄文辉,久博,李媛,2019. 煤中稀土元素分布特征及其开发利用前景[J]. 煤炭学报,44(1):287-294.
    [227] 黄于新,何润州,2010. 广东省惠阳市沙尾磷钇矿核查区资源储量核查报告[R]. 深圳:深圳市地质局.
    [228] 霍婷,刘世明,祁文强,等,2020. 青海木里煤田聚乎更矿区煤中稀土元素地球化学特征及其对成煤环境的指示[J]. 地质通报,39(7):995-1005.
    [229] 蒋权,杨勇,唐云,等,2023. 贵州织金互层型稀土磷块岩工艺矿物学研究[J]. 矿物学报,43(3):358-370.
    [230] 金中国,郑明泓,刘玲,等,2018. 贵州福泉高洞铝土矿床成矿地质地球化学特征[J]. 地质与勘探,54(3):522-534. doi: 10.3969/j.issn.0495-5331.2018.03.008
    [231] 康微,2013. 河南宝丰铝土矿田地质特征与成矿环境[D]. 北京:中国地质大学(北京).
    [232] 柯昌辉,王晓霞,李金宝,等,2013. 华北地块南缘黑山—木龙沟地区中酸性岩的锆石U-Pb年龄、岩石化学和Sr-Nd-Hf同位素研究[J]. 岩石学报,29(3):781-800.
    [233] 匡敬忠,肖坤明,曾军龙,2012. 从铝土矿、磷矿及铌钽矿中综合回收稀土的研究进展[J]. 稀土,33(1):81-85. doi: 10.3969/j.issn.1004-0277.2012.01.017
    [234] 李厚民,王登红,李立兴,等,2012. 中国铁矿成矿规律及重点矿集区资源潜力分析[J]. 中国地质,39(3):559-580. doi: 10.3969/j.issn.1000-3657.2012.03.001
    [235] 李金虎,张智慧,秦明,等,2011. 新疆且日克其菱铁矿床稀土元素地球化学特征[J]. 矿产与地质,25(1):69-73. doi: 10.3969/j.issn.1001-5663.2011.01.012
    [236] 李六权,崔江荣,陈浩,2019. 陕西木龙沟—黄龙铺地区钼、铼、稀土资源量概况及铼、稀土赋存特征[J]. 陕西地质,37(1):1-7. doi: 10.3969/j.issn.1001-6996.2019.01.001
    [237] 李普涛,张起钻,2008. 广西靖西县三合铝土矿稀土元素地球化学研究[J]. 矿产与地质,22(6):536-540. doi: 10.3969/j.issn.1001-5663.2008.06.013
    [238] 李再会,闫武,廖朝贵,等,2012. 重庆南川-武隆铝土矿矿物学、地球化学特征[J]. 沉积与特提斯地质,32(3):87-100. doi: 10.3969/j.issn.1009-3850.2012.03.009
    [239] 李朝荣,苏殊,杨秀山,等,2020. 硝酸法湿法磷酸工艺的研究进展[C]//2020中国环境科学学会科学技术年会论文集(第一卷). 南京:中国环境科学学会:557-561.
    [240] 李佐强,陈敏,卢君勇,等,2023. 川南马边黄家坪地区下寒武统麦地坪组磷块岩稀土元素地球化学特征及成因机制[J]. 矿产综合利用(1):75-87.
    [241] 梁坤萍,2022. 贵州瓮福磷矿白岩矿区磷矿床地质特征及地球化学研究[D]. 贵阳:贵州大学.
    [242] 林钦亮,1987. 广东阳山坑尾高岭土矿区初步地质普查报告[R]. 清远:广东省地矿局706队.
    [243] 刘贝,黄文辉,敖卫华,等,2015. 沁水盆地晚古生代煤中稀土元素地球化学特征[J]. 煤炭学报,40(12):2916-2926.
    [244] 刘大锐,高桂梅,池君洲,等,2018. 准格尔煤田黑岱沟露天矿煤中稀土及微量元素的分配规律[J]. 地质学报,92(11):2368-2375. doi: 10.3969/j.issn.0001-5717.2018.11.012
    [245] 刘东娜,周安朝,常泽光,2015. 大同煤田8号原煤及风化煤中常量元素和稀土元素地球化学特征[J]. 煤炭学报,40(2):422-430.
    [246] 刘锋,杨富全,李延河,等,2009. 新疆阿勒泰市阿巴宫铁矿磷灰石微量和稀土元素特征及矿床成因探讨[J]. 矿床地质,28(3):251-264. doi: 10.3969/j.issn.0258-7106.2009.03.003
    [247] 刘建中,付芝康,万大学,等,2015. 贵州省开阳地区磷矿整装勘查报告[R]. 贵阳:贵州省地质矿产勘查开发局一〇五地质大队.
    [248] 刘平,1999. 黔中—川南石炭纪铝土矿的地球化学特征[J]. 中国区域地质,18(2):210-217.
    [249] 刘枝刚,2005. 广西靖西县新圩铝土矿矿石物质组分研究[J]. 南方国土资源(11):30-32.
    [250] 龙克树,付勇,陈蕤,等,2019. 黔北铝土矿稀土元素富集机制:以新民铝土矿为例[J]. 矿物学报,39(4):443-454.
    [251] 卢正浩,2022. 黔东埃迪卡拉系-寒武系斜坡相黑色岩系沉积环境演化研究[D]. 贵阳:贵州大学.
    [252] 路智,刘永顺,聂保锋,等,2022. 河北承德大庙地区元古代的晚期辉长—苏长岩的岩石特征及其成因[J]. 地质科学,57(1):243-261. doi: 10.12017/dzkx.2022.015
    [253] 马小敏,2019. 黄县盆地古近系煤中元素地球化学特征及其沉积环境指示意义[J]. 科学技术与工程,19(24):46-55. doi: 10.3969/j.issn.1671-1815.2019.24.007
    [254] 马跃,向卿谊,丁康乐,2024. 国内外油页岩工业发展现状[J]. 世界石油工业,31(1):16-25.
    [255] 马中豪,陈清石,史忠汪,等,2016. 鄂尔多斯盆地南缘延长组长7油页岩地球化学特征及其地质意义[J]. 地质通报,35(9):1550-1558. doi: 10.3969/j.issn.1671-2552.2016.09.022
    [256] 毛景文,宋世伟,刘敏,等,2022. 稀土矿床:基本特点与全球分布规律[J]. 地质学报,96(11):3675-3697. doi: 10.3969/j.issn.0001-5717.2022.11.001
    [257] 孟健寅,王庆飞,刘学飞,等,2011. 山西交口县庞家庄铝土矿矿物学与地球化学研究[J]. 地质与勘探,47(4):593-604.
    [258] 孟庆涛,2010. 桦甸盆地始新统油页岩岩石地球化学特征及富集规律研究[D]. 长春:吉林大学.
    [259] 牟保磊,蔡俊军,边振辉,1998. 矾山碱性岩体磷铁矿床金的地球化学[J]. 岩石矿物学杂志,17(4):359-37. doi: 10.3969/j.issn.1000-6524.1998.04.010
    [260] 欧洋,2015. 川西典型磷矿床中稀土元素的赋存状态研究 [D]. 成都:成都理工大学.
    [261] 乔龙,2016. 右江盆地及其周缘地区构造演化及铝土矿成矿作用[D]. 北京:中国地质大学(北京).
    [262] 秦国红,邓丽君,刘亢,等,2016. 鄂尔多斯盆地西缘煤中稀土元素特征[J]. 煤田地质与勘探,44(6):8-14. doi: 10.3969/j.issn.1001-1986.2016.06.002
    [263] 秦欢,周骞,洪托,等,2022. 云南省镇雄县羊场磷矿地球化学特征及其沉积环境分析[J]. 地质找矿论丛,37(3):259-269. doi: 10.6053/j.issn.1001-1412.2022.03.001
    [264] 任海利,2017. 贵州瓮安—福泉地区晚震旦世成磷期沉积环境与磷块岩中碘富集机理[D]. 贵阳:贵州大学.
    [265] 佘宇伟,宋谢炎,于宋月,等,2014. 磁铁矿和钛铁矿成分对四川太和富磷灰石钒钛磁铁矿床成因的约束[J]. 岩石学报,30(5):1443-1456.
    [266] 宋谢炎,佘宇伟,栾燕,等,2024. 峨眉大火成岩省攀西钒钛磁铁矿矿集区钴、镓、钪资源及综合利用潜力[J]. 矿物岩石地球化学通报,43(1):218-231.
    [267] 孙思磊,2011. 山西宁武县宽草坪铝土矿床地质与地球化学特征研究[D]. 北京:中国地质大学(北京).
    [268] 孙思磊,王庆飞,刘学飞,等,2012. 山西省石墙区铝土矿地质与地球化学特征研究[J]. 地质与勘探,48(3):487-501.
    [269] 田茂军,2013. 云南省文山县天生桥铝土矿矿床地质特征及成因探讨[D]. 昆明:昆明理工大学.
    [270] 庹必阳,王建丽,张覃,2007. 稀土元素在铝土矿中的赋存状态及利用现状[J]. 稀土,28(1):117-119. doi: 10.3969/j.issn.1004-0277.2007.01.031
    [271] 王励生,金作美,1995. 硫磷铝锶矿的焙烧过程和热解动力学[J]. 科学通报,40(19):1767-1770. doi: 10.3321/j.issn:0023-074X.1995.19.010
    [272] 汪胜东,蒋开喜,蒋训雄,等,2011. 硝酸法生产磷酸过程中稀土的浸出研究[J]. 有色金属(冶炼部分)(8):25-27.
    [273] 王行军,王梓桐,王根厚,等,2017. 滇西北鹤庆县松桂铝土矿床地球化学特征及成矿环境分析[J]. 西北地质,50(3):205-221. doi: 10.3969/j.issn.1009-6248.2017.03.022
    [274] 王文全,2016. 湘黔地区海相磷块岩地球化学特征及铀多金属富集作用[D]. 北京:核工业北京地质研究院.
    [275] 王岩,邢树文,张勇,等,2015. 广西金龙铝土矿地质与地球化学特征研究[J]. 地质与勘探,51(2):266-274.
    [276] 王亿,李立兴,李厚民,等,2024. 冀北招兵沟铁磷矿床成矿时代及成因研究[J]. 现代地质,38(1):46-55.
    [277] 汪宇航,2023. 差异性成矿作用对贵州早寒武世磷矿磷质富集程度的制约机理研究[D]. 贵阳:贵州大学.
    [278] 王燕茹,王庆飞,刘学飞,等,2012. 河南渑池铝土矿成矿区地球化学背景[J]. 地质与勘探,48(3):526-532.
    [279] 王莹,熊先孝,东野脉兴,等,2022. 中国磷矿资源预测模型及找矿远景分析[J]. 中国地质,49(2):435-454.
    [280] 魏迎春,华芳辉,何文博,等,2020. 峰峰矿区2号煤中微量元素富集特征差异性研究[J]. 煤炭学报,45(4):1473-1487.
    [281] 吴艳艳,秦勇,易同生,2010. 贵州凯里梁山组高硫煤中稀土元素的富集及其地质成因[J]. 地质学报,84(2):280-285.
    [282] 夏学惠,刘昌涛,1986. 山东枣庄沙沟超基性杂岩体岩石化学与含磷性的关系[J]. 化工地质,(2):62-69.
    [283] 夏学惠,袁家忠,郗国庆,等,2009. 塔里木地台北缘内生磷矿预测及资源远景评价[J]. 化工矿产地质,31(3):129-158. doi: 10.3969/j.issn.1006-5296.2009.03.001
    [284] 夏学惠,袁家忠,郗国庆,等,2010. 新疆大西沟杂岩体地球化学及铁磷矿床特征[J]. 吉林大学学报(地球科学版),40(4):879-885.
    [285] 夏学惠,郗国庆,袁家忠,等,2011a. 新疆卡乌留克塔格铁磷矿地质及地球化学研究[J]. 化工矿产地质,33(4):193-200.
    [286] 夏学惠,袁俊宏,杜家海,等,2011b. 中国沉积磷矿床分布特征及资源潜力[J]. 武汉工程大学学报,33(2):6-11.
    [287] 夏学惠,谭云基,杨辉艳,等,2012. 新疆天山成矿带铁磷矿地质及成矿专属性[J]. 中国地质,39(2):486-496. doi: 10.3969/j.issn.1000-3657.2012.02.019
    [288] 谢玉玲,曲云伟,杨占峰,等,2019. 白云鄂博铁、铌、稀土矿床:研究进展、存在问题和新认识[J]. 矿床地质,38(5):983-1003.
    [289] 徐凯,马江波,成战刚,等,2023. 滇东会泽地区下寒武统渔户村组沉积地球化学特征与古环境重建[J]. 沉积学报,doi: 10.14027/j.issn.1000-0550.2023.01.
    [290] 杨帆,2011. 昆阳磷矿沉积环境与矿床地球化学[D]. 北京:中国地质大学(北京).
    [291] 杨富全,刘锋,柴凤梅,等,2011. 新疆阿尔泰铁矿:地质特征、时空分布及成矿作用[J]. 矿床地质,30(4):575-598. doi: 10.3969/j.issn.0258-7106.2011.04.001
    [292] 杨海英,肖加飞,胡瑞忠,等,2020. 黔中瓮安早震旦世磷块岩的形成环境及成因机制[J]. 古地理学报,22(5):929-946. doi: 10.7605/gdlxb.2020.05.063
    [293] 杨合群,2020. 甘肃罗家峡岩浆型磷矿[J]. 西北地质,53(3):251.
    [294] 杨军臣,王凤玲,李德胜,等,2004. 铝土矿中伴生稀有稀土元素赋存状态及走向查定[J]. 矿冶,13(2):89-92. doi: 10.3969/j.issn.1005-7854.2004.02.024
    [295] 杨磊,刘池洋,李洪英,2008. 陈家山矿煤中微量元素和稀土元素地球化学特征[J]. 煤田地质与勘探,36(2):10-14. doi: 10.3969/j.issn.1001-1986.2008.02.003
    [296] 杨立强,李瑞红,高雪,等,2020. 胶东金矿床中关键金属超常富集特征与机理初探[J]. 岩石学报,36(5):1285-1314. doi: 10.18654/1000-0569/2020.05.01
    [297] 杨佩东,韩桂洪,黄艳芳,等,2024. 赤泥中稀土提取与分离技术研究进展[J]. 化工矿物与加工,53(8):51-6.
    [298] 杨世杰,杨明,杨元龙,等,1996. 平果铝厂赤泥的物相分析[J]. 中南工业大学学报,27(5):66-69.
    [299] 杨文娟,何宾宾,朱桂华,等,2022. 磷矿制湿法磷酸技术综述[J]. 磷肥与复肥,37(8):26-28. doi: 10.3969/j.issn.1007-6220.2022.08.008
    [300] 杨旭,2019. 铜仁坝黄磷块岩地球化学特征及沉积环境研究[D]. 贵阳:贵州大学.
    [301] 杨志爽,黄小文,孟郁苗,等,2024. 中国铁矿床伴生关键金属:基本特征、分布规律及资源潜力[J]. 矿床地质,43(2):319-338.
    [302] 杨中华,2011. 山西省铝(粘)土矿综合开发利用研究[D]. 北京:中国地质大学(北京).
    [303] 杨忠琴,王常微,胡从亮,等,2022. 贵州威宁地区鱼坝剖面稀土含矿岩系特征[J]. 贵州地质,39(1):11-18. doi: 10.3969/j.issn.1000-5943.2022.01.002
    [304] 叶枫,董国臣,郭红党,等,2015a. 山西王润-西崖底铝土矿稀土元素特征及意义[J]. 中国矿业,24(6):76-80.
    [305] 叶枫,董国臣,孟兆国,等,2015b. 山西高家山铝土矿稀土元素地球化学特征及意义[J]. 地质与勘探,51(3):486-495.
    [306] 余金杰,毛景文,2002. 宁芜玢岩铁矿磷灰石的稀土元素特征[J]. 矿床地质,21(1):65-73. doi: 10.3969/j.issn.0258-7106.2002.01.009
    [307] 袁爱国,2010. 河南省铝土矿资源分布与开发策略[D]. 北京:中国地质大学(北京).
    [308] 袁家忠,夏学惠,郗国庆,等,2010. 新疆奥尔塘铁磷矿地质特征及找矿意义[J]. 化工矿产地质,32(2):105-111. doi: 10.3969/j.issn.1006-5296.2010.02.005
    [309] 张海云,马海州,程怀德,等,2024. 青海上庄含碳酸岩杂岩体的地球化学特征及其地质意义[J]. 盐湖研究,32(2):62-71. doi: 10.12119/j.yhyj.202402009
    [310] 张华,于海成,张冀,2024. 吕家坨矿煤中伴生稀土元素地球化学特征[J]. 中国煤炭地质,36(4):30-37. doi: 10.3969/j.issn.1674-1803.2024.04.06
    [311] 张兰,2021. 铜仁磷矿区表生环境中磷的富集机理研究[D]. 贵阳:贵州大学.
    [312] 张乐骏,周涛发,范裕,等,2011. 宁芜盆地陶村铁矿床磷灰石的LA-ICP-MS研究[J]. 地质学报,85(5):834-848.
    [313] 张明,汪小勇,刘建中,等,2018. 贵州修文比例坝铝土矿成矿物质来源及沉积环境研究[J]. 贵州地质,35(2):88-95. doi: 10.3969/j.issn.1000-5943.2018.02.002
    [314] 张尚清,张文旭,钟庄华,等,2018. 山西省兴县铝土矿稀土元素地球化学特征及其地质意义[J]. 中国稀土学报,36(3):338-349.
    [315] 章颖,吴功成,刘学飞,等,2015. 桂西平果教美矿区堆积型铝土矿形成过程中矿物转化与元素迁移[J]. 现代地质,29(1):20-31. doi: 10.3969/j.issn.1000-8527.2015.01.003
    [316] 张莹华,凌文黎,吴慧,等,2013. 黔北铝土矿不同类型矿石地球化学特征及其对成矿作用的指示[J]. 地质科技情报,32(1):71-79.
    [317] 张玉学,何其光,邵树勋,等,1999. 铝土矿钪的地球化学特征[J]. 地质地球化学,27(2):55-62.
    [318] 张跃跃,2015. 泥盆纪什邡式磷矿稀土元素特征及综合利用研究[D]. 绵阳:西南科技大学.
    [319] 真允庆,王振玉,1991. 华北式(G层)铝土矿稀土元素地球化学特征及其地质意义[J]. 桂林冶金地质学院学报,11(1):49-56.
    [320] 中华人民共和国自然资源部,2020. 中华人民共和国自然资源部 矿产地质勘查规范 铝土矿:DZ/T 0202-2020[S]. 北京:中华人民共和国自然资源部:1-48.
    [321] 中华人民共和国自然资源部,2022. 中国矿产资源报告[R]. 北京:地质出版社:5-6.
    [322] 中华人民共和国自然资源部,2023. 中国矿产资源报告[R]. 北京:地质出版社:1-17.
    [323] 周灵洁,张正伟,游富华,2011. 黔西上二叠统宣威组下段超常富集稀土元素的沉积环境分析[J]. 矿物学报,31(S1):328-329.
    [324] 朱士飞,曹泊,王佟,等,2020. 广西上林县万福矿区煤中稀土元素地球化学特征[J]. 中国煤炭地质,32(9):64-69. doi: 10.3969/j.issn.1674-1803.2020.09.10
    [325] 邹建华,王冰峰,王慧,等,2022. 重庆芦塘矿晚二叠世煤中微量元素和稀土元素的地球化学特征[J]. 煤炭学报,47(8):3117-3127.
    [326] 祖树正,1999. 铝土矿资源合理开发利用的探讨[J]. 江西有色金属,13(2):12-14,19. doi: 10.3969/j.issn.1674-9669.1999.02.004
  • 期刊类型引用(2)

    1. 陈杰江,周仕娇,杨兵,童雄,芦元廷,张裕,谢贤,杜嘉澳,李蒋,孙代馨. 某稀土-萤石中矿中萤石的高效回收试验研究. 非金属矿. 2025(01): 38-42 . 百度学术
    2. 潘文辉,戴知友. 硝酸铋改性赤泥颗粒降解多氯联苯研究. 绿色科技. 2024(24): 173-178 . 百度学术

    其他类型引用(0)

  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  398
  • HTML全文浏览量:  83
  • PDF下载量:  85
  • 被引次数: 2
出版历程
  • 收稿日期:  2024-08-02
  • 修回日期:  2024-09-18
  • 录用日期:  2024-09-19
  • 预出版日期:  2024-09-22
  • 刊出日期:  2024-10-28

目录

/

返回文章
返回