留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风化壳型稀土矿床中稀土元素的活化与迁移

何宏平 王珩 李旭锐 马灵涯 朱建喜 杨武斌

何宏平,王珩,李旭锐,等,2024. 风化壳型稀土矿床中稀土元素的活化与迁移[J]. 地质力学学报,30(5):707−722 doi: 10.12090/j.issn.1006-6616.2024070
引用本文: 何宏平,王珩,李旭锐,等,2024. 风化壳型稀土矿床中稀土元素的活化与迁移[J]. 地质力学学报,30(5):707−722 doi: 10.12090/j.issn.1006-6616.2024070
HE H P,WANG H,LI X R,et al.,2024. Remobilization and transferring of rare earth elements in the formation of regolith-hosted REE deposits[J]. Journal of Geomechanics,30(5):707−722 doi: 10.12090/j.issn.1006-6616.2024070
Citation: HE H P,WANG H,LI X R,et al.,2024. Remobilization and transferring of rare earth elements in the formation of regolith-hosted REE deposits[J]. Journal of Geomechanics,30(5):707−722 doi: 10.12090/j.issn.1006-6616.2024070

风化壳型稀土矿床中稀土元素的活化与迁移

doi: 10.12090/j.issn.1006-6616.2024070
基金项目: 国家自然科学基金项目(41921003,41773113,42022012);广东省基础与应用基础研究重大项目(2019B030302013);国家重点研发计划项目(2021YFC2901701)
详细信息
    作者简介:

    何宏平(1967—),男,研究员,主要从事黏土矿物学、矿物表面物理化学、表生成矿等研究。Email:hehp@gig.ac.cn

  • 中图分类号: P57;P61

Remobilization and transferring of rare earth elements in the formation of regolith-hosted REE deposits

Funds: This research is financially supported by the National Natural Science Foundation of China (Grants No. 41921003, 41773113, and 42022012), the Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2019B030302013), and National Key R&D Program of China (Grant No. 2021YFC2901701).
More Information
    Author Bio:

    何宏平,中国科学院院士,研究员,博士生导师。2023年获第十八次李四光地质科学奖科研奖。现任中国科学院广州地球化学研究所所长。曾在法国国家应用科学学院(INSA-Lyon)从事博士后研究工作,并以访问学者身份访学于澳大利亚等国的知名研究机构;任Clays Clay Miner.、Clay Miner.、GSA Bulletin等国际主流期刊副主编。主要研究领域为黏土矿物学、矿物晶体化学、表生成矿、矿物资源利用;已发表SCI论文300多篇,SCI他引15000余次(H-index为70),获国家发明专利51件,出版专著2部,入选科睿唯安地学领域全球高被引学者。曾获国际黏土学会杰出成就奖(AIPEA Medal)、美国黏土学会Jackson奖、中–法科学与应用基金会首届Gilles Kahn奖、广东省自然科学一等奖2项、南粤百杰、金锤奖等荣誉和奖励。任中国矿物岩石地球化学学会副理事长,国际黏土学会矿物命名委员会委员,美国黏土学会奖励委员会委员和矿物命名委员会委员,美国矿物学会会士

  • 摘要: 稀土元素(REE)广泛应用于新能源、国防军工等高科技产业中,是一类战略性关键矿产资源。风化壳型稀土矿床是中国最具竞争优势的稀土资源,其供应了全球90%以上的重稀土。阐明这类稀土矿床的成矿机制,可为寻找和高效开采利用该类稀土资源提供理论支持。文章以稀土元素的活化和迁移这两个关键过程为切入点,总结近年来取得的最新研究成果,并对未来的研究方向提出展望。该类矿床主要发育于富稀土花岗岩类的风化壳中,其中稀土配分模式主要受基岩控制。花岗岩类风化壳的形成以化学风化和生物风化作用为主。长石、云母和角闪石等主要造岩矿物风化形成的黏土矿物和铁锰氧化物是该类矿床中离子态稀土的主要赋存载体。而离子态稀土则来源于基岩中易风化和中等抗风化(含)稀土副矿物的风化和分解。此外,微生物分泌的有机酸等代谢产物可以促进难风化的独居石和磷钇矿等副矿物的风化和分解,加速稀土元素活化−迁移。与此同时,微生物作用还会导致轻稀土和重稀土的显著分异,其中革兰氏阳性细菌对重稀土的选择性显著高于轻稀土。在风化淋积过程中,稀土元素的络合离子可能是风化壳中稀土迁移的主要形式,主要受pH值、次生矿物形成和络合环境影响。值得注意的是,除了F和${\mathrm{CO}}_3^{2-} $等无机配体,有机质也可以直接与稀土离子络合或螯合,充当有机配体促进稀土的运移。因此,风化壳型稀土矿床中稀土元素的活化和迁移机制主要受化学风化和生物风化过程控制,是无机和有机共同作用的结果,但其对该类矿床形成的贡献尚待定量评估。

     

  • 图  1  华南地区风化壳型稀土矿床分布图(据Li et al., 2019修改)

    Figure  1.  The distribution of regolith-hosted rare earth element (REE) deposits in South China (modified from Li et al., 2019)

    图  2  华南风化壳剖面及其REE分布特征(据王登红等,2013修改)

    A—表土层;B—全风化层;C—半风化层;P—基岩

    Figure  2.  Profile and rare earth element (REE) distribution of the weathering crusts in South China (modified from Wang et al., 2013)

    (a) Aopsoil; (b) Completely weathered horizon; (c) Semi-weathered horizon; (d) Bedrock

    图  3  江西大埠弱风化花岗岩中造岩矿物风化的背散射电子(BSE)图像

    a—钠长石局部风化形成高岭石;b—风化残余的钠长石;c—黑云母风化形成高岭石;d—白云母局部风化形成高岭石

    Figure  3.  Backscattered electron (BSE) images of the weathering of rock-forming minerals in the Dabu weakly weathered granites, Jiangxi Province

    (a) Albite is partly weathered to kaolinite; (b) Residual albite after weathering; (c) Biotite is weathered to kaolinite; (d) Muscovite is partly weathered to kaolinite

    图  4  广东仁居风化壳型轻稀土矿床中不同层位的褐帘石、榍石和磷灰石风化的BSE图像

    a—弱风化基岩中褐帘石溶蚀洞及其填充的氟碳铈矿;b—半风化层下部的褐帘石风化碎片;c—半风化层下部的榍石风化裂隙和溶蚀坑;d—半风化层上部的榍石风化崩解;e—半风化层上部的磷灰石溶蚀坑;f—全风化层下部磷灰石密集的溶蚀坑

    Figure  4.  Backscattered electronic (BSE) images of the weathering of allanite, titanite and apatite in the profiles of the Renju regolith-hosted light rare earth element (LREE) deposit, Guangdong Province

    (a) The etch holes filled by bastnaesite in allanite in weakly weathered bedrock; (b) Fragments of allanite weathering in the lower part of the semi-weathered horizon; (c) Weathering fractures and etch pits of titanite in the lower part of the semi-weathered horizon; (d) The disintegration of titanite in the upper part of the semi-weathered horizon; (e) The etch pits of apatite in the upper part of the semi-weathered horizon; (f) Massive etch pits of apatite in the lower part of the completely weathered horizon

    图  5  江西大埠风化壳型重稀土矿床中石榴子石风化的BSE图像

    a—弱风化基岩中石榴子石沿着边界和裂隙风化形成高岭石;b—弱风化基岩中石榴子石沿着裂隙风化形成高岭石;c—全风化层下部石榴子石风化形成溶蚀洞;d—全风化层上部石榴子石风化形成大量小溶蚀洞

    Figure  5.  Backscattered electronic (BSE) images of the weathering of garnet in the Dabu regolith-hosted heavy rare earth element (HREE) deposit, Jiangxi Province

    (a) Garnet weathering along the grain boundaries and fractures to form kaolinite in weakly weathered bedrock; (b) Garnet weathering at the fractures to form kaolinite in weakly weathered bedrock; (c) Weathering etch holes in garnet from the lower part of the completely weathered horizon; (d) Massive etch holes in garnet from the upper part of the completely weathered horizon

    图  6  不同细菌在30天内对稀土元素的浸出量(据He et al., 2023修改)

    Figure  6.  The contents of rare earth element (REE) leached by different bacteria in 30 days (modified from He et al., 2023)

    图  7  微生物附着在矿物表面并留下溶蚀痕迹

    a—矿物裂隙中的真菌菌丝;b—真菌菌丝在矿物表面造成溶蚀痕迹;c—黏附在矿物表面的细菌;d—细菌在矿物表面分泌的胞外分泌物;a—d均为二次电子图像

    Figure  7.  Microbial adhesion to mineral surfaces forms dissolution traces

    (a) Fungal hypha in mineral fractures; (b) Dissolution traces caused by fungal hyphae on mineral surfaces; (c) Bacteria adhering to mineral surfaces; (d) Extracellular secretions secreted by bacteria on mineral surfaces. (a–d) are secondary electron images.

    图  8  风化过程中微生物活化−富集稀土元素机理图

    Figure  8.  Mechanism diagram of microbial rare earth element (REE) activation and enrichment during weathering

    图  9  广东仁居风化壳型轻稀土矿床中次生矿物的BSE图像

    a—表土层中方铈矿与高岭石紧密接触;b—表土层中方铈矿集合体;c—全风化层中水磷铈矿;d—全风化层中铁锰氧化物

    Figure  9.  BSE images of the secondary minerals in the Renju regolith-hosted light rare earth element (LREE) deposit, Guangdong Province

    (a) Cerianite associated with kaolinite in topsoil; (b) Cerianite aggregates in topsoil; (c) Churchite in the completely weathered horizon; (d) Fe−Mn (hydr) oxides in the completely weathered horizon

  • [1] BAIDYA A S, PAL D C, UPADHYAY D, 2019. Chemical weathering of garnet in Banded Iron Formation: implications for the mechanism and sequence of secondary mineral formation and mobility of elements[J]. Geochimica et Cosmochimica Acta, 265: 198-220. doi: 10.1016/j.gca.2019.08.037
    [2] BANFIELD J F, 1985. The mineralogy and chemistry of granite weathering[D]. Canberra: The Australian National University.
    [3] BAO Z W, 1992. A geochemical study of the granitoid weathering crust in Southeast China[J]. Geochimica, 21(2): 166-174. (in Chinese with English abstract
    [4] BAO Z W, ZHAO Z H, 2008. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China[J]. Ore Geology Reviews, 33(3-4): 519-535. doi: 10.1016/j.oregeorev.2007.03.005
    [5] BECKER S, BULLMANN M, DIETZE H J, et al., 1986. Mass spectrographic analysis of selected chemical elements by microbial leaching of zircon[J]. Fresenius’ Zeitschrift für Analytische Chemie, 324(1): 37-42.
    [6] BERGER A, JANOTS E, GNOS E, et al., 2014. Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar[J]. Applied Geochemistry, 41: 218-228. doi: 10.1016/j.apgeochem.2013.12.013
    [7] BERN C R, YESAVAGE T, FOLEY N K, 2017. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: an effect of hydrothermal alteration[J]. Journal of Geochemical Exploration, 172: 29-40. doi: 10.1016/j.gexplo.2016.09.009
    [8] BIDDAU R, CIDU R, FRAU F, 2002. Rare earth elements in waters from the albitite-bearing granodiorites of Central Sardinia, Italy[J]. Chemical Geology, 182(1): 1-14. doi: 10.1016/S0009-2541(01)00272-8
    [9] BORST A M, SMITH M P, FINCH A A, et al., 2020. Adsorption of rare earth elements in regolith-hosted clay deposits[J]. Nature Communications, 11(1): 4386. doi: 10.1038/s41467-020-17801-5
    [10] BRISSON V L, ZHUANG W Q, ALVAREZ-COHEN L, 2016. Bioleaching of rare earth elements from monazite sand[J]. Biotechnology and Bioengineering, 113(2): 339-348. doi: 10.1002/bit.25823
    [11] CHAÏRAT C, SCHOTT J, OELKERS E H, et al., 2007. Kinetics and mechanism of natural fluorapatite dissolution at 25 °C and pH from 3 to 12[J]. Geochimica et Cosmochimica Acta, 71(24): 5901-5912. doi: 10.1016/j.gca.2007.08.031
    [12] CHEN B F, ZOU X Y, PENG L L, et al., 2019. Geological characteristics and prospecting direction of the metamorphic rock ion-adsorption REE ore deposit in South Jiangxi[J]. East China Geology, 40(2): 143-151. (in Chinese with English abstract
    [13] CHEN Z C, YU S Y, FU Q C, et al., 1997. Study on the organic metallogenic mechanism of weathering crust REE deposits[J]. Journal of the Chinese Rare Earth Society, 15(3): 244-250. (in Chinese with English abstract
    [14] CUADROS J, 2017. Clay minerals interaction with microorganisms: A review[J]. Clay Minerals, 52(2): 235-261. doi: 10.1180/claymin.2017.052.2.05
    [15] DB36/T 1158-2019, 2019. Specifications for weathered crust ion-absorbed rare earth mineral geological exploration[S]. Nanchang: Department of Natural Resources of Jiangxi Province. (in Chinese)
    [16] DOU J Z, WANG C Y, XING Y L, et al., 2023. Redistribution of REE in granitic bedrocks during incipient weathering: insights into the role of groundwater in the formation of regolith-hosted REE deposit[J]. Contributions to Mineralogy and Petrology, 178(10): 69. doi: 10.1007/s00410-023-02054-4
    [17] EHRLICH H L, 1998. Geomicrobiology: its significance for geology[J]. Earth-Science Reviews, 45(1-2): 45-60. doi: 10.1016/S0012-8252(98)00034-8
    [18] FAN C X, XU C, SHI A G, et al., 2023. Origin of heavy rare earth elements in highly fractionated peraluminous granites[J]. Geochimica et Cosmochimica Acta, 343: 371-383. doi: 10.1016/j.gca.2022.12.019
    [19] FARRAH H, PICKERING W F, 1979. pH effects in the adsorption of heavy metal ions by clays[J]. Chemical Geology, 25(4): 317-326. doi: 10.1016/0009-2541(79)90063-9
    [20] FATHOLLAHZADEH H, HACKETT M J, KHALEQUE H N, et al., 2018. Better together: potential of co-culture microorganisms to enhance bioleaching of rare earth elements from monazite[J]. Bioresource Technology Reports, 3: 109-118. doi: 10.1016/j.biteb.2018.07.003
    [21] FINLAY R D, MAHMOOD S, ROSENSTOCK N, et al., 2020. Reviews and syntheses: biological weathering and its consequences at different spatial levels - from nanoscale to global scale[J]. Biogeosciences, 17(6): 1507-1533. doi: 10.5194/bg-17-1507-2020
    [22] FU W, LUO P, HU Z Y, et al., 2019. Enrichment of ion-exchangeable rare earth elements by felsic volcanic rock weathering in South China: genetic mechanism and formation preference[J]. Ore Geology Reviews, 114: 103120. doi: 10.1016/j.oregeorev.2019.103120
    [23] Gangnan Geological Brigade of Jiangxi Bureau of Geology and Mineral Resource, 1985. Exploration report of ion adosrption type REE resources survey in Jiangxi Province [R]. Nanchang: Gangnan Geological Brigade of Jiangxi Bureau of Geology and Mineral Resource. (in Chinese)
    [24] GARCÍA M V R, KRZEMIEŃ A, DEL CAMPO M Á M, et al., 2017. Rare earth elements mining investment: it is not all about China[J]. Resources Policy, 53: 66-76. doi: 10.1016/j.resourpol.2017.05.004
    [25] GIERÉ R, SORENSEN S S, 2004. Allanite and other REE-rich epidote-group minerals[J]. Reviews in Mineralogy and Geochemistry, 56(1): 431-493. doi: 10.2138/gsrmg.56.1.431
    [26] HARLAVAN Y, EREL Y, 2002. The release of Pb and REE from granitoids by the dissolution of accessory phases[J]. Geochimica et Cosmochimica Acta, 66(5): 837-848. doi: 10.1016/S0016-7037(01)00806-7
    [27] HE H P, YANG W B, 2022. REE mineral resources in China: review and perspective[J]. Geotectonica et Metallogenia, 46(5): 829-841. (in Chinese with English abstract
    [28] HE L Y, WANG S N, 1989. The ion adsorption type rare earth deposits in South China[J]. Chinese Rare Earths, 10(1): 39-44. (in Chinese)
    [29] HE Y, CHENG L, LI Y, et al., 2015. The mineralization mechanism of the ion adsorption type rare earths ore and prospecting marks[J]. Chinese Rare Earths, 36(4): 98-103. (in Chinese with English abstract
    [30] HE Y L, MA L Y, LI X R, et al., 2023. Mobilization and fractionation of rare earth elements during experimental bio-weathering of granites[J]. Geochimica et Cosmochimica Acta, 343: 384-395. doi: 10.1016/j.gca.2022.12.027
    [31] HE Y L, MA L Y, LIANG X L, et al., 2024. Resistant rare earth phosphates as possible sources of environmental dissolved rare earth elements: insights from experimental bio-weathering of xenotime and monazite[J]. Chemical Geology, 661: 122186. doi: 10.1016/j.chemgeo.2024.122186
    [32] HU C S, 1986. Study on mineralization regularity of ion-adsorption type REE deposits in southern Jiangxi Province[R]. Nanchang: Gangnan Geological Brigade of Jiangxi Bureau of Geology and Mineral Resource. (in Chinese)
    [33] HUANG D H, WU C Y, HAN J Z, 1988. REE Geochemistry and mineralization characteristics of the Zudong and Guanxi granites, Jiangxi Province[J]. Acta Geologica Sinica, 62(4): 311-328. (in Chinese with English abstract
    [34] HUANG J, TAN W, LIANG X L, et al., 2021a. REE fractionation controlled by REE speciation during formation of the Renju regolith-hosted REE deposits in Guangdong Province, South China[J]. Ore Geology Reviews, 134: 104172. doi: 10.1016/j.oregeorev.2021.104172
    [35] HUANG J, TAN W, LIANG X L, et al., 2022. Weathering characters of REE-bearing accessory minerals and their effects on REE mineralization in Renju regolith-hosted REE deposits in Guangdong Province[J]. Geochimica, 51(6): 684-695. (in Chinese with English abstract
    [36] HUANG Y F, HE H P, LIANG X L, et al., 2021b. Characteristics and genesis of ion adsorption type REE deposits in the weathering crusts of metamorphic rocks in Ningdu, Ganzhou, China[J]. Ore Geology Reviews, 135: 104173. doi: 10.1016/j.oregeorev.2021.104173
    [37] HUTCHENS E, VALSAMI-JONES E, HAROUIYA N, et al., 2006. An experimental investigation of the effect of Bacillus megaterium on apatite dissolution[J]. Geomicrobiology Journal, 23(3-4): 177-182. doi: 10.1080/01490450600599239
    [38] LEE J H, BYRNE R H, 1992. Examination of comparative rare earth element complexation behavior using linear free-energy relationships[J]. Geochimica et Cosmochimica Acta, 56(3): 1127-1137. doi: 10.1016/0016-7037(92)90050-S
    [39] LEE J H, BYRNE R H, 1993. Complexation of trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions[J]. Geochimica et Cosmochimica Acta, 57(2): 295-302. doi: 10.1016/0016-7037(93)90432-V
    [40] LI M Y H, ZHAO W W, ZHOU M F, 2017. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: an integrated genetic model[J]. Journal of Asian Earth Sciences, 148: 65-95. doi: 10.1016/j.jseaes.2017.08.004
    [41] LI M Y H, ZHOU M F, WILLIAMS-JONES A E, 2019. The genesis of regolith-hosted heavy rare earth element deposits: insights from the world-class Zudong deposit in Jiangxi Province, South China[J]. Economic Geology, 114(3): 541-568. doi: 10.5382/econgeo.4642
    [42] LI M Y H, ZHOU M F, WILLIAMS-JONES A E, 2020. Controls on the dynamics of rare earth elements during subtropical hillslope processes and formation of regolith-hosted deposits[J]. Economic Geology, 115(5): 1097-1118. doi: 10.5382/econgeo.4727
    [43] LI M Y H, KWONG H T, WILLIAMS-JONES A E, et al., 2022a. The thermodynamics of rare earth element liberation, mobilization and supergene enrichment during groundwater-regolith interaction[J]. Geochimica et Cosmochimica Acta, 330: 258-277. doi: 10.1016/j.gca.2021.05.002
    [44] LI S Y, HE H P, LIANG X L, et al., 2022b. Transformation of ordered albite into kaolinite: implication for the “Booklet” morphology[J]. ACS Earth and Space Chemistry, 6(4): 1133-1142. doi: 10.1021/acsearthspacechem.2c00030
    [45] LI X R, LIANG X L, HE H P, et al., 2022c. Microorganisms accelerate REE mineralization in supergene environments[J]. Applied and Environmental Microbiology, 88(13): e00632-22.
    [46] LI X R, TAN W, LIANG X L, et al., 2024. Adsorption behavior and mechanism of REEs by Bacillus pumilus isolated from ion adsorption REE deposit in South China[J]. Geochimica, 53(1): 77-86. (in Chinese with English abstract
    [47] LIANG X L, TAN W, MA L Y, et al., 2022. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits[J]. Earth Science Frontiers, 29(1): 29-41. (in Chinese with English abstract
    [48] LU L, WANG D H, WANG C H, et al., 2019. Mineralization regularity of ion-adsorption type REE deposits on Lincang granite in Yunnan Province[J]. Acta Geologica Sinica, 93(6): 1466-1478. (in Chinese with English abstract
    [49] MA Y J, HUO R K, XU Z F, et al., 2004. REE behavior and influence factors during chemical weathering[J]. Advance in Earth Sciences, 19(1): 87-94. (in Chinese with English abstract
    [50] NESBITT H W, 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite[J]. Nature, 279(5710): 206-210. doi: 10.1038/279206a0
    [51] OHTA A, KAWABE I, 2001. REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2[J]. Geochimica et Cosmochimica Acta, 65(5): 695-703. doi: 10.1016/S0016-7037(00)00578-0
    [52] OWUSU-FORDJOUR E Y, YANG X B, 2023. Bioleaching of rare earth elements challenges and opportunities: a critical review[J]. Journal of Environmental Chemical Engineering, 11(5): 110413. doi: 10.1016/j.jece.2023.110413
    [53] PRICE J R, VELBEL M A, PATINO L C, 2005. Allanite and epidote weathering at the Coweeta Hydrologic Laboratory, western North Carolina, U. S. A.[J]. American Mineralogist, 90(1): 101-114. doi: 10.2138/am.2005.1444
    [54] PRICE J R, BRYAN-RICKETTS D S, ANDERSON D, et al., 2013. Weathering of almandine garnet: influence of secondary minerals on the rate-determining step, and implications for regolith-scale Al mobilization[J]. Clays and Clay Minerals, 61(1): 34-56. doi: 10.1346/CCMN.2013.0610104
    [55] QIN F, TAN J, ZHOU Y Q, et al., 2019. Characteristics and genesis of ion-adsorbed rare-earth deposits in volcanic weathering crust in Chongzuo area of Guangxi[J]. Mineral Resources and Geology, 33(2): 234-241. (in Chinese with English abstract
    [56] QUINN K A, BYRNE R H, SCHIJF J, 2006. Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of pH and ionic strength[J]. Marine Chemistry, 99(1-4): 128-150. doi: 10.1016/j.marchem.2005.05.011
    [57] SANEMATSU K, KON Y, IMAI A, et al., 2013. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand[J]. Mineralium Deposita, 48(4): 437-451. doi: 10.1007/s00126-011-0380-5
    [58] SANEMATSU K, WATANABE Y, 2016. Characteristics and genesis of ion adsorption-type rare earth element deposits[M]//VERPLANCK P L, HITZMAN M W. Rare earth and critical elements in ore deposits. Littleton: Society of Economic Geologists, Inc. : 55-79.
    [59] SOLDEN L, LLOYD K, WRIGHTON K, 2016. The bright side of microbial dark matter: lessons learned from the uncultivated majority[J]. Current Opinion in Microbiology, 31: 217-226. doi: 10.1016/j.mib.2016.04.020
    [60] SUN Q B, LIAN B, 2019. The different roles of Aspergillus nidulans carbonic anhydrases in wollastonite weathering accompanied by carbonation[J]. Geochimica et Cosmochimica Acta, 244: 437-450. doi: 10.1016/j.gca.2018.10.022
    [61] TAUNTON A E, WELCH S A, BANFIELD J F, 2000. Microbial controls on phosphate and lanthanide distributions during granite weathering and soil formation[J]. Chemical Geology, 169(3-4): 371-382. doi: 10.1016/S0009-2541(00)00215-1
    [62] VAN SCHÖLL L, KUYPER T W, SMITS M M, et al., 2008. Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles[J]. Plant and Soil, 303(1-2): 35-47. doi: 10.1007/s11104-007-9513-0
    [63] VELBEL M A, 1993. Formation of protective surface layers during silicate-mineral weathering under well-leached, oxidizing conditions[J]. American Mineralogist, 78(3-4): 405-414.
    [64] VELBEL M A, 2009. Dissolution of olivine during natural weathering[J]. Geochimica et Cosmochimica Acta, 73(20): 6098-6113. doi: 10.1016/j.gca.2009.07.024
    [65] VELBEL M A, 2014. Etch-pit size, dissolution rate, and time in the experimental dissolution of olivine: implications for estimating olivine lifetime at the surface of Mars[J]. American Mineralogist, 99(11-12): 2227-2233. doi: 10.2138/am-2014-4654
    [66] WANG D H, ZHAO Z, YU Y, et al., 2013. Progress, problems and research orientation of ion-adsorption type rare earth resources[J]. Rock and Mineral Analysis, 32(5): 796-802. (in Chinese with English abstract
    [67] WANG G F, XU J, RAN L Y, et al., 2023a. A green and efficient technology to recover rare earth elements from weathering crusts[J]. Nature Sustainability, 6(1): 81-92.
    [68] WANG H, HE H P, YANG W B, et al., 2023b. Zircon texture and composition fingerprint HREE enrichment in muscovite granite bedrock of the Dabu ion-adsorption REE deposit, South China[J]. Chemical Geology, 616: 121231. doi: 10.1016/j.chemgeo.2022.121231
    [69] WANGER G, SOUTHAM G, ONSTOTT T C, 2006. Structural and chemical characterization of a natural fracture surface from 2.8 kilometers below land surface: biofilms in the deep subsurface[J]. Geomicrobiology Journal, 23(6): 443-452. doi: 10.1080/01490450600875746
    [70] WEI L L, LI Y, NOGUERA D R, et al., 2017. Adsorption of Cu2+ and Zn2+ by extracellular polymeric substances (EPS) in different sludges: effect of EPS fractional polarity on binding mechanism[J]. Journal of Hazardous Materials, 321: 473-483. doi: 10.1016/j.jhazmat.2016.05.016
    [71] WEI Z W, 2019. Study on the bacterial diversity in the restoration area of rare earth mine tailings of Gannan[D]. Wuxi: Jiangnan University. (in Chinese with English abstract
    [72] WOOD S A, 1990. The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters[J]. Chemical Geology, 82: 159-186. doi: 10.1016/0009-2541(90)90080-Q
    [73] WU C Y, HUANG D H, GUO Z X, 1989. REE geochemistry in the weathering process of granites in Longnan County, Jiangxi Province[J]. Acta Geologica Sinica, 63(4): 349-362. (in Chinese with English abstract
    [74] WU C Y, BAI G, HUANG D H, et al. , 1992. Characteristics and significance of HREE-rich granitoids of the Nanling Mountain area[J]. Bulletin of the Chinese Academy of Geological Sciences(13): 43-58. (in Chinese with English abstract
    [75] WU L L, JACOBSON A D, HAUSNER M, 2008. Characterization of elemental release during microbe–granite interactions at T = 28 oC[J]. Geochimica et Cosmochimica Acta, 72(4): 1076-1095. doi: 10.1016/j.gca.2007.11.025
    [76] WU Q F, HU H B, ZHANG X, 2018. Effect of Aspergillus niger and its metabolites on weathering of granite[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 42(1): 81-88. (in Chinese with English abstract
    [77] XU C, KYNICKÝ J, SMITH M P, et al., 2017. Origin of heavy rare earth mineralization in South China[J]. Nature Communications, 8: 14598. doi: 10.1038/ncomms14598
    [78] YANG C S, GU Z F, WANG B, et al., 2015. Content and mineralization of Xunwu rare earth ore[J]. Bulletin of the Chinese Ceramic Society, 34(S1): 231-233. (in Chinese with English abstract
    [79] YANG M J, LIANG X L, MA L Y, et al., 2019. Adsorption of REEs on kaolinite and halloysite: a link to the REE distribution on clays in the weathering crust of granite[J]. Chemical Geology, 525: 210-217. doi: 10.1016/j.chemgeo.2019.07.024
    [80] YANG X M, ZHANG P S, 1992. Study on the occurrence state and mass balance of REE in granites[J]. Chinese Rare Earths, 13(5): 6-11. (in Chinese)
    [81] ZHANG B, ZHU X P, ZHANG B H, et al., 2019. Geochemical characteristics of Tuguanzhai ion-adsorption type REE deposit in Tengchong, Yunnan[J]. Journal of the Chinese Society of Rare Earths, 37(4): 491-506. (in Chinese with English abstract
    [82] ZHANG L M, DONG H L, LIU Y, et al., 2018. Bioleaching of rare earth elements from bastnaesite-bearing rock by actinobacteria[J]. Chemical Geology, 483: 544-557. doi: 10.1016/j.chemgeo.2018.03.023
    [83] ZHANG P S, TAO K J, YANG Z M, et al. , 1998. Rare earth mineralogy in China[M]. Beijing: Science Press. (in Chinese)
    [84] ZHANG Z H, 1990. A study on weathering crust ion adsorption type REE deposits, South China[J]. Contributions to Geology and Mineral Resources Research, 5(1): 57-71. (in Chinese with English abstract
    [85] ZHAO Z, WANG D H, CHEN Z H, et al., 2017. Progress of research on metallogenic regularity of ion-adsorption type REE deposit in the Nanling Range[J]. Acta Geologica Sinica, 91(12): 2814-2827. (in Chinese with English abstract
    [86] ZHAO Z, CHEN Z H, ZOU X Y, et al., 2018. REE mineralization of epimetamorphic rocks from an ion-adsorption type REE deposit in southern Jiangxi Province[J]. Earth Science, 43(10): 3652-3663. (in Chinese with English abstract
    [87] ZHOU M F, LI M Y H, WANG Z C, et al., 2020. The genesis of regolith-hosted rare earth element and scandium deposits: current understanding and outlook to future prospecting[J]. Chinese Science Bulletin, 65: 3809-3824. (in Chinese with English abstract doi: 10.1360/TB-2020-0350
    [88] 包志伟,1992. 华南花岗岩风化壳稀土元素地球化学研究[J]. 地球化学,21(2):166-174.
    [89] 陈斌锋,邹新勇,彭琳琳,等,2019. 赣南地区变质岩离子吸附型稀土矿床地质特征及找矿方向[J]. 华东地质,40(2):143-151.
    [90] 陈志澄,俞受鋆,符群策,等,1997. 风化壳稀土矿有机成矿机理研究[J]. 中国稀土学报,15(3):244-250.
    [91] DB36/T 1158-2019,2019. 风化壳离子吸附型稀土矿产地质勘查规范[S]. 南昌:江西省自然资源厅.
    [92] 何宏平,杨武斌,2022. 我国稀土资源现状和评价[J]. 大地构造与成矿学,46(5):829-841.
    [93] 贺伦燕,王似男,1989. 我国南方离子吸附型稀土矿[J]. 稀土,10(1):39-44.
    [94] 何耀,程柳,李毅,等,2015. 离子吸附型稀土矿的成矿机理及找矿标志[J]. 稀土,36(4):98-103.
    [95] 胡淙声,1986. 赣南离子吸附型稀土矿成矿规律研究[R]. 南昌:江西省地质矿产局赣南地质调查大队.
    [96] 黄典豪,吴澄宇,韩久竹,1988. 江西足洞和关西花岗岩的稀土元素地球化学及矿化特征[J]. 地质学报,62(4):311-328.
    [97] 黄健,谭伟,梁晓亮,等,2022. 富稀土副矿物的风化特征及其对稀土成矿过程的影响:以广东仁居离子吸附型稀土矿床为例[J]. 地球化学,51(6):684-695.
    [98] 江西省地质矿产局赣南地质调查大队,1985. 江西省离子吸附型稀土资源勘查报告[R]. 南昌:江西省地质矿产局赣南地质调查大队.
    [99] 李旭锐,谭伟,梁晓亮,等,2024. 一株分离自华南离子吸附型稀土矿的短小芽孢杆菌对稀土元素的吸附行为及机理研究[J]. 地球化学,53(1):77-86.
    [100] 梁晓亮,谭伟,马灵涯,等,2022. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘,29(1):29-41.
    [101] 陆蕾,王登红,王成辉,等,2019. 云南临沧花岗岩中离子吸附型稀土矿床的成矿规律[J]. 地质学报,93(6):1466-1478.
    [102] 马英军,霍润科,徐志方,等,2004. 化学风化作用中的稀土元素行为及其影响因素[J]. 地球科学进展,19(1):87-94.
    [103] 覃丰,谭杰,周业泉,等,2019. 广西崇左地区火山岩风化壳离子吸附型稀土矿床地质特征及成因[J]. 矿产与地质,33(2):234-241.
    [104] 王登红,赵芝,于扬,等,2013. 离子吸附型稀土资源研究进展、存在问题及今后研究方向[J]. 岩矿测试,32(5):796-802.
    [105] 魏志文,2019. 赣南稀土尾矿修复区细菌多样性研究[D]. 无锡:江南大学.
    [106] 吴澄宇,黄典豪,郭中勋,1989. 江西龙南地区花岗岩风化壳中稀土元素的地球化学研究[J]. 地质学报,63(4):349-362.
    [107] 吴澄宇,白鸽,黄典豪,等,1992. 南岭富重稀土花岗岩类的特征和意义[J]. 中国地质科学院院报:43-58.
    [108] 吴秋芳,胡海波,张鑫,2018. 黑曲霉及其代谢产物对花岗岩风化作用的影响[J]. 南京林业大学学报(自然科学版),42(1):81-88.
    [109] 杨昌善,谷志峰,王宾,等,2015. 寻乌稀土矿的稀土含量及成矿原理研究[J]. 硅酸盐通报,34(S1):231-233.
    [110] 杨学明,张培善,1992. 花岗岩中稀土元素的赋存状态及质量平衡研究[J]. 稀土,13(5):6-11.
    [111] 张彬,祝向平,张斌辉,等,2019. 云南腾冲土官寨离子吸附型稀土矿床地球化学特征[J]. 中国稀土学报,37(4):491-506.
    [112] 张培善,陶克捷,杨主明,等,1998. 中国稀土矿物学[M]. 北京:科学出版社.
    [113] 张祖海,1990. 华南风化壳离子吸附型稀土矿床[J]. 地质找矿论丛,5(1):57-71.
    [114] 赵芝,王登红,陈郑辉,等,2017. 南岭离子吸附型稀土矿床成矿规律研究新进展[J]. 地质学报,91(12):2814-2827.
    [115] 赵芝,陈郑辉,邹新勇,等,2018. 赣南某离子吸附型稀土矿床浅变质岩的矿化特征[J]. 地球科学,43(10):3652-3663.
    [116] 周美夫,李欣禧,王振朝,等,2020. 风化壳型稀土和钪矿床成矿过程的研究进展和展望[J]. 科学通报,65(33):3809-3824.
  • 加载中
图(9)
计量
  • 文章访问数:  342
  • HTML全文浏览量:  48
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-17
  • 修回日期:  2024-08-05
  • 录用日期:  2024-08-07
  • 预出版日期:  2024-08-30
  • 刊出日期:  2024-10-28

目录

    /

    返回文章
    返回