留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

苏州—无锡—常州地区地面沉降及地裂缝防控研究

朱锦旗 龚绪龙 于军 张云 张岩 叶淑君 王彩会 许书刚 武健强 王光亚 刘明遥 顾春生 闵望 龚亚兵

朱锦旗,龚绪龙,于军,等,2024. 苏州—无锡—常州地区地面沉降及地裂缝防控研究[J]. 地质力学学报,30(5):811−833 doi: 10.12090/j.issn.1006-6616.2024051
引用本文: 朱锦旗,龚绪龙,于军,等,2024. 苏州—无锡—常州地区地面沉降及地裂缝防控研究[J]. 地质力学学报,30(5):811−833 doi: 10.12090/j.issn.1006-6616.2024051
ZHU J Q,GONG X L,YU J,et al.,2024. Prevention and control of land subsidence and earth fissures in Suzhou–Wuxi–Changzhou region[J]. Journal of Geomechanics,30(5):811−833 doi: 10.12090/j.issn.1006-6616.2024051
Citation: ZHU J Q,GONG X L,YU J,et al.,2024. Prevention and control of land subsidence and earth fissures in Suzhou–Wuxi–Changzhou region[J]. Journal of Geomechanics,30(5):811−833 doi: 10.12090/j.issn.1006-6616.2024051

苏州—无锡—常州地区地面沉降及地裂缝防控研究

doi: 10.12090/j.issn.1006-6616.2024051
基金项目: 国家自然科学基金项目(42230710)
详细信息
    作者简介:

    朱锦旗(1965—),男,博士,研究员级高级工程师,主要从事环境地质研究。Email:njzhujinqi@126.com

  • 中图分类号: P641;P642

Prevention and control of land subsidence and earth fissures in Suzhou–Wuxi–Changzhou region

Funds: This research is financially supported by the National Natural Science Foundation of China (Grant No. 42230710).
More Information
    Author Bio:

    朱锦旗,江苏省地质调查研究院院长、研究员级高级工程师。2023年获得第十八次李四光地质科学奖野外奖。先后荣获“江苏省有突出贡献的中青年专家”“江苏省五一劳动奖章”“江苏省先进工作者”等荣誉称号,享受国务院政府特殊津贴。长期从事水文地质环境地质工作,围绕破解制约经济社会发展的重大资源环境问题,先后组织开展了服务城镇化进程的安全守护战、服务国家重大区域发展规划的战略攻坚战、服务生态文明建设的绿色保卫战等三大战役。主持实施的苏锡常地区地面沉降(地裂缝)防控研究,推动苏锡常地面沉降问题在全国率先得到有效遏制;牵头实施的国家重大战略区“综合地质调查”,首次发现连云港地区具备建设地下水封洞库的地质条件,支撑徐圩建设江苏首个地下大型能源储备库;负责和指导十个设区市的城市地质调查,推动江苏在全国率先实现设区市城市地质调查全覆盖,夯实了城市高质量发展的底盘;推动江苏干热岩等地热清洁能源勘查重大突破、助力江苏省国家“山水林田湖草沙一体化保护和修复工程”零的突破,为美丽江苏建设贡献地质智慧;探索以矿地融合为特色的地质工作新模式,为地勘单位转型发展提供示范。出版专著6部,发表论文17篇。荣获省部级一等奖2项、二等奖6项

  • 摘要: 苏州—无锡—常州(苏锡常)地区曾是中国地面沉降灾害最严重的地区之一,从20世纪70年代开始发生地面沉降,随之因差异沉降诱发地裂缝灾害,21世纪以来沉降速率逐年趋缓,部分地区出现区域性的地面回弹,独特的地面沉降发展历程为全面解读地面沉降提供了理想的窗口。为揭示苏锡常地区地面沉降生命周期过程及其驱动机制,利用长时间序列、大区域尺度的三维渗流、应力、应变多场监测数据以及物理试验模型、数值模拟等技术对区域地面沉降与地裂缝宏观演变规律、成因机理进行综合分析。研究结果显示:苏锡常地区地面沉降经历了发生、快速发展、趋缓、滞后和反弹5个阶段;地面沉降与地下水开采密切相关,其地层变形主要来自于地下水开采导致的含水层和弱透水层的压密释水,主采含水砂层及相邻隔水层为沉降主要贡献层,并识别了地层压缩、回弹的时空演变特征及其对地面沉降的贡献;地裂缝是地面沉降发展到一定阶段后所产生的次生地质灾害,其空间展布及成灾时间与地下水水位、地面沉降、基岩起伏变化以及土层结构差异等因素密切相关,提出了驱动地裂缝演化的压—拉—剪—弹物理过程,识别出了地裂缝发生的触发机制和临界条件。同时建立了以地质钻孔全断面光纤监测为特色、多种技术方法融合的“天−空−地”立体化、地下水−地面沉降−地裂缝协同的监测体系,为地面沉降防控提供科学、详细的数据支撑;并创新区域−场地双尺度有限元耦合界面元法,成功实现了三维复杂地质环境条件下地层形变特征及地裂缝生成和扩展的力学机制模拟,为地面沉降、地裂缝易发区精准圈定与防控提供了解决路径;通过总结基于技术创新支撑政府实施的地下水限采、禁采等地面沉降防控实践及其成效,为中国其他省/市地面沉降防控与地下水资源管理起到示范作用。

     

  • 图  1  苏锡常地区地面沉降发展变化

    Figure  1.  Evolution of land subsidence in Suzhou–Wuxi–Changzhou region

    图  2  苏锡常地区不同年份地面沉降速率对比

    a—2002年;b—2010年;c—2015年;d—2022年

    Figure  2.  Comparison map of land subsidence rates in Suzhou–Wuxi–Changzhou region by year

    (a) 2002; (b) 2010; (c) 2015; (d) 2022

    图  3  苏锡常地区地裂缝发生频度直方图

    Figure  3.  Histogram of frequency of earth fissures occurrence in Suzhou–Wuxi–Changzhou region

    图  4  苏锡常地区基岩埋深等值线及地裂缝分布图

    Figure  4.  Contour map of bedrock buried depth and distribution of earth fissures in Suzhou–Wuxi–Changzhou region

    图  5  石塘湾地裂缝垂向差异沉降动态曲线

    Figure  5.  Evolution graph of vertical differential settlement across Shitangwan earth fissure

    图  6  常州分层标标组结构及标组主要层位沉降量

    Figure  6.  Structure of Changzhou stratified marker group and main-layer settlement of marker group

    图  7  常州地面沉降的生命过程划分示意图

    Figure  7.  Schematic diagram showing life-process division of land subsidence

    图  8  苏锡常地区地质图

    Figure  8.  Geological map of Suzhou–Wuxi–Changzhou region

    图  9  无锡—张家港水文地质剖面图(剖面位置见图10)

    Figure  9.  Hydrogeological profile from Wuxi to Zhangjiagang

    图  10  长三角地区中—更新世古河道分布图

    Figure  10.  Distribution map of ancient river channels in middle Pleistocene of Yangtze River Delta region

    图  11  常州—江阴水文地质剖面图(剖面位置见图10)

    Figure  11.  Hydrogeological profile from Changzhou to Jiangyin

    图  12  常州市地下水开采量、主采层水位埋深及地面累计沉降量关系曲线图

    Figure  12.  Curve diagram showing relationship among amount of groundwater extraction, water-level depth in main extraction layer, and cumulative land subsidence in Changzhou

    图  13  苏锡常地区主采层地下水位埋深与累计沉降量关系图

    a—1990年;b—2000年

    Figure  13.  Map of groundwater depth and cumulative land subsidence in Suzhou–Wuxi–Changzhou region

    (a) 1990; (b) 2000

    图  14  常州地面沉降及地层结构性变形(压缩/回弹)时序曲线图

    Figure  14.  Time-series curve of land subsidence and stratum structural deformation in Changzhou

    (a) Subsidence of benchmark and each layered mark; (b) Layered compression

    图  15  地裂缝的成因模式

    Figure  15.  Genesis models of earth fissure

    (a) Bedrock buried-hill type; (b) Buried terrace type ; (c) Karst collapse type; (d) Soil layer structure difference type; (e) Comprehensive groundwater exploitation type

    图  16  基岩潜山型地裂缝成因示意图

    a—拉张破坏阶段;b—剪切破坏阶段

    Figure  16.  Genesis diagram of buried hill-type earth fissures in buried bedrock

    (a) Tensile-damage stage; (b) Shear-damage stage

    图  17  大型地裂缝物理模型系统(俯视图与正面图)

    Figure  17.  Physical modeling system for large-scale earth fissures (top and front views)

    图  18  拉张应力分布与地裂缝分布

    Figure  18.  Tensile-stress distribution and earth fissures distribution

    图  19  地裂缝模拟结果(Zhang et al.,2017

    Figure  19.  Earth fissure simulation results (Zhang et al.,2017

    (a) Time step 10; (b) Time step 20; (c) Time step 30; (d) Time step 40; (e) Time step 60; (f) Time step 100

    图  20  无锡光明村地裂缝数值模型三维位移图(Ye et al.,2018

    Figure  20.  Three-dimensional displacement diagram of numerical modeling of Guangming village earth fissure, Wuxi (Ye et al.,2018

    图  21  地裂缝张开与滑动过程的模拟结果(Ye et al.,2018

    a、c、e—地裂缝张开过程(1994, 2004, 2015);b、d、f—地裂缝滑动过程(1994,2004,2015)

    Figure  21.  Simulation results of earth fissure opening and sliding processes

    (a, c, e) Earth-fissure opening processes (1994, 2004, 2015); (b, d, f) Earth-fissure sliding processes (1994, 2004, 2015)

    图  22  “天−空−地”一体化地面沉降地裂缝监测体系

    Figure  22.  Integrated “satellite–ground–subsurface” monitoring system for land subsidence and earth fissure

    图  23  地面沉降监测设施分布示意图

    Figure  23.  Schematic illustration of main land subsidence monitoring facilities in Suzhou–Wuxi–Changzhou region

    表  1  苏锡常地区地面沉降发展变化情况

    Table  1.   List of changes from development of land subsidence in Suzhou–Wuxi–Changzhou region

    时间地面沉降漏斗面积/km2
    累计沉降量介于200~600mm累计沉降量介于600~1000mm累计沉降量>1000mm
    1986年4011087
    1991年147322437
    2002年3287635401
    2022年3706708409
    下载: 导出CSV

    表  2  部分基岩标、分层标水准测量结果

    Table  2.   Leveling results of bedrock and layered extensometers

    序号 地点 2005年 2006年 2007年 2008年 2009年 2010年 2015年 2020年
    1 清凉小学 −4.1 +1.4 +4.9 +9.2 +5.3 +4.87 +8.3 +7.7
    2 前洲 −18.3 −10.5 −10.1 −5.3 −1.5 −0.13 +3.7 +7.9
    3 璜塘 −15.8 −14.0 −21.5 −14.7 −15.9 −14.1 −0.1 +5.7
    4 渭塘 +4.1 −1.4 −1.8 +0.7 −0.4 −1.06 +4.1 +2.7
    5 松陵 −6.8 −3.9 −4.0 −3.9 −4.5 −1.38 +0.5 −0.6
    注:+表示地面回弹,−表示地面沉降
    下载: 导出CSV

    表  3  常州典型分层标各层形变情况(1984—2023年)

    Table  3.   Deformation of individual soil layers of layerwise marks in Changzhou

    层号 起止深度/m 主要岩性 监测层段 形变情况
    1:地面标—分1 0~5.98 亚黏土 第Ⅰ承压含水层顶板 形变量较小,总体稳定
    2:分1—分2 5.98~19.10 粉砂 第Ⅰ承压含水砂层 轻微压缩,总体稳定
    3:分2—分3 19.1~39.19 淤泥质亚砂土、淤泥质亚黏土、
    粉砂和亚黏土
    第Ⅰ承压隔水底板 1984—2006年累计压缩12.63 mm
    2007—2023年累计回弹5.38 mm
    4:分3—分4 39.19~71.85 亚黏土 第Ⅱ承压隔水顶板 上段 1984—2006年累计压缩125.29 mm
    2007—2023年累计回弹26.38 mm
    5:分4—分5 71.85~92.33 淤泥质亚黏土 下段 1984—2002年累计压缩250.65 mm
    2003—2023年累计回弹30.82 mm
    6:分5—分6 92.33~109.09 细砂、粉砂 第Ⅱ承压含水砂层 1984—2002年累计压缩79.11 mm
    2003-2023年累计回弹13.84 mm
    7:分6—分7 109.09~118.50 亚黏土 第Ⅱ—Ⅲ承压弱透水层 1984—2004年累计压缩46.97 mm
    2005—2023年累计回弹8.88 mm
    8:分7—分8 118.50~144.78 粉细砂、细砂夹亚黏土、黏土 第Ⅲ承压含水砂层 1984—2010年累计压缩132.6 mm
    2011—2023年累计回弹10.4 mm
    9:分8—基岩 144.78~288.09 亚黏土、粉细砂、泥岩、泥质砂砾层 第Ⅲ承压下部地层 1984—2005年累计压缩40.06 mm
    2006—2023年累计回弹20.12 mm
    下载: 导出CSV
  • [1] BAWDEN G W, THATCHER W, STEIN R S, et al., 2001. Tectonic contraction across Los Angeles after removal of groundwater pumping effects[J]. Nature, 412(6849): 812-815. doi: 10.1038/35090558
    [2] BRAMBATI A, CARBOGNIN L, QUAIA T, et al., 2003. The lagoon of Venice: geological setting, evolution and land subsidence[J]. Episodes, 26(3): 264-268. doi: 10.18814/epiiugs/2003/v26i3/020
    [3] CHEN C X, PEI S P, JIAO J, 2003. Land subsidence caused by groundwater exploitation in Suzhou City, China[J]. Hydrogeology Journal, 11(2): 275-287. doi: 10.1007/s10040-002-0225-5
    [4] Department of Land and Resources of Jiangsu Province, 2012. Geological disaster prevention and control planning (2011-2020) in Jiangsu province[EB/OL]. (2012-04-06)[2024-03-24]. https://zrzy.jiangsu.gov.cn/gtxxgk/nrglIndex.action?type=2&messageID=2c9082547d5e4398017d5ed727f10008. (in Chinese)
    [5] GONG X L, GENG J S, SUN Q, et al., 2020. Experimental study on pumping-induced land subsidence and earth fissures: a case study in the Su-Xi-Chang region, China[J]. Bulletin of Engineering Geology and the Environment, 79(9): 4515-4525, doi: 10.1007/s10064-020-01864-1
    [6] GUO H P, LI W P, WANG L Y, et al., 2021. Present situation and research prospects of the land subsidence driven by groundwater levels in the North China Plain[J]. Hydrogeology & Engineering Geology, 48(3): 162-171. (in Chinese with English abstract
    [7] GUO K Y, GUO S Q, YU J, et al. , 2005. Groundwater resources and geohazards surveying and evaluation in Yangtze Delta area[R]. Nanjing Institute of Geology and Mineral Resources, and Jiangsu Geological Survey and Research Institute,Shanghai Institute of Geological Survey, Geological Environment Monitoring Stationof Zhejiang Province, Geological Survey of Zhejiang Province. (in Chinese)
    [8] HELM D C, 1994. Horizontal aquifer movement in a Theis-Thiem confined system[J]. Water Resources Research, 30(4): 953-964. doi: 10.1029/94WR00030
    [9] HERRERA-GARCÍA G, EZQUERRO P, TOMÁS R, et al., 2021. Mapping the global threat of land subsidence[J]. Science, 371(6524): 34-36. doi: 10.1126/science.abb8549
    [10] HU Z Q, XU X L, ZHAO Y L, 2012. Dynamic monitoring of land subsidence in mining area from multi-source remote-sensing data – a case study at Yanzhou, China[J]. International Journal of Remote Sensing, 33(17): 5528-5545. doi: 10.1080/01431161.2012.663113
    [11] JIANG L M, LIN H, MA J W, et al., 2011. Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda (northern China) case study[J]. Remote Sensing of Environment, 115(2): 257-268. doi: 10.1016/j.rse.2010.08.008
    [12] Jiangsu Provincial People's Government, 2015. The approval of groundwater compression exploitation plan (2014-2020): Su Zhengfu [2015] No. 19[EB/OL]. (2015-03-16). https://www.jiangsu.gov.cn/art/2015/3/16/art_46143_2542910.html. (in Chinese)
    [13] LI C J, TANG X M, MA T H, 2006. Land subsidence caused by groundwater exploitation in the Hangzhou-Jiaxing-Huzhou Plain, China[J]. Hydrogeology Journal, 14(8): 1652-1665. doi: 10.1007/s10040-006-0092-6
    [14] LI W, WU J Q, 2015. Research on monitoring method system of land subsidence in Suzhou-Wuxi-Changzhou area[J]. Global Geology, 34(3): 862-869. (in Chinese with English abstract
    [15] LI Y T, TEATINI P, YU J, et al., 2021. Aseismic multifissure modeling in unfaulted heavily pumped basins: mechanisms and applications[J]. Water Resources Research, 57(10): e2021WR030127, doi: 10.1029/2021WR030127
    [16] LI Z, LUO Z J, WANG Q, et al., 2019. A three-dimensional fluid-solid model, coupling high-rise building load and groundwater abstraction, for prediction of regional land subsidence[J]. Hydrogeology Journal, 27(4): 1515-1526. doi: 10.1007/s10040-018-01920-x
    [17] LIU C, YUAN X J, ZHU J Q, 2004. Earth fissures in Su-Xi-Chang[M]. Wuhan: China University of Geosciences Press. (in Chinese)
    [18] LIU H P, 2010. The study on the land subsidence with the affect of high-rise buildings in Tianjin Binhai New Area[D]. Xi’an: Chang’an University. (in Chinese with English abstract
    [19] LIU M Y, ZHANG Q Q, GONG X L, et al. , 2022. Study on soil deformation characteristic and the life process of land subsidence in Changzhou Area of Jiangsu province[J]. Shanghai Land & Resources, 43(4): 50-55, 72. (in Chinese with English abstract
    [20] LUO Z J, ZHANG X, TIAN X W, 2018. Prediction and early warning of Cangzhou land subsidence disaster[J]. Journal of Engineering Geology, 26(2): 365-373. (in Chinese with English abstract
    [21] Ministry of Land and Resources, Ministry of Water Resources, 2012. National plan for prevention and control of land subsidence (2011-2020)[EB/OL]. (2012-02-22)[2024-03-24]. https://www.mnr.gov.cn/dt/ywbb/201810/t20181030_2261387.html. (in Chinese)
    [22] NELSON F E, ANISIMOV O A, SHIKLOMANOV N I, 2001. Subsidence risk from thawing permafrost[J]. Nature, 410(6831): 889-890. doi: 10.1038/35073746
    [23] NOTTI D, MATEOS R M, MONSERRAT O, et al., 2016. Lithological control of land subsidence induced by groundwater withdrawal in new urban areas (Granada Basin, SE Spain). Multiband DInSAR monitoring[J]. Hydrological Processes, 30(13): 2317-2331. doi: 10.1002/hyp.10793
    [24] PARSONS T, 2021. The weight of cities: Urbanization effects on Earth's subsurface[J]. AGU Advances, 2(1): e2020AV000277. doi: 10.1029/2020AV000277
    [25] SAYYAF M, MAHDAVI M, BARANI O R, et al., 2014. Simulation of land subsidence using finite element method: Rafsanjan plain case study[J]. Natural Hazards, 72(2): 309-322. doi: 10.1007/s11069-013-1010-6
    [26] SHI X Q, XUE Y Q, WU J C, et al., 2006a. A study of soil deformation properties of the groundwater system in the Changzhou area[J]. Hydrogeology & Engineering Geology, 33(3): 1-6. (in Chinese with English abstract
    [27] SHI X Q, XUE Y Q, ZHANG Y, et al. , 2006b. Creep model of Changzhou silty clay[J]. Geotechnical Investigation & Surveying, 34(5): 16-18, 70. (in Chinese with English abstract
    [28] SHI X Q, XUE Y Q, WU J C, et al., 2007. Uniaxial compression tests for creep model of saturated sand in Changzhou[J]. Journal of Engineering Geology, 15(2): 212-216. (in Chinese with English abstract
    [29] SHI X Q, WU J C, YE S J, et al., 2008. Regional land subsidence simulation in Su-Xi-Chang area and Shanghai city, China[J]. Engineering Geology, 100(1-2): 27-42, doi: 10.1016/j.enggeo.2008.02.011
    [30] SHI X Q, FENG Z X, YAO B K, et al., 2014. Study on the deformation characteristics of soil layers after banning groundwater pumping in Su-Xi-Chang area[J]. Quaternary Sciences, 34(5): 1062-1071. (in Chinese with English abstract
    [31] State Council, 2011. Decision on strengthening the prevention and control of geological hazards: Guo Fa 〔2011〕 No. 20[EB/OL]. (2011-06-13)[2024-03-24]. https://www.gov.cn/zhengce/zhengceku/2011-06/17/content_2744.htm. (in Chinese)
    [32] SUN X H, PENG J B, CUI X M, et al., 2016. Relationship between ground fissures, groundwater exploration and land subsidence in Taiyuan basin[J]. The Chinese Journal of Geological Hazard and Control, 27(2): 91-98. (in Chinese with English abstract
    [33] The Standing Committee of Jiangsu Provincial People's Congress, 2021. Decision on prohibiting the exploitation of groundwater in the Suzhou-Wuxi Changzhou area for a limited period of time: bulletin of the standing committee of Jiangsu provincial people's congress. [2000] No. 5[EB/OL]. (2021-10-08)[2024-03-24]. https://www.jsrd.gov.cn/qwfb/sjfg/202110/t20211008_532359.shtml. (in Chinese)
    [34] WANG G Y, YU J, WU S L, et al., 2009. Land subsidence and compression of soil layers in Changzhou Area[J]. Geology and Exploration, 45(5): 612-620. (in Chinese with English abstract
    [35] WANG G Y, YOU G, ZHU J Q, et al., 2016. Earth fissures in Su-Xi-Chang region, Jiangsu, China[J]. Surveys in Geophysics, 37(6): 1095-1116. doi: 10.1007/s10712-016-9388-9
    [36] WU J Q, WU S L, LI W, et al. , 2009. Construction of risk assessment index system for land subsidence disasters in the Suzhou-Wuxi-Changzhou region[C]//Proceedings of the 2009 academic annual conference of the Chinese geological society. Beijing: Chinese Geological Society: 277-278. (in Chinese)
    [37] WU J Q, WU S L, MIN W, et al., 2014. Review on recent progress of land subsidence control in Suzhou-Wuxi-Changzhou area[J]. Journal of Geology, 38(2): 319-323. (in Chinese with English abstract
    [38] XUE Y Q, ZHANG Y, YE S J, et al., 2003. Land subsidence in China and its problems[J]. Quaternary Sciences, 23(6): 585-593. (in Chinese with English abstract
    [39] XUE Y Q, WU J C, ZHANG Y, et al., 2008. Simulation of regional land subsidence in the southern Yangtze Delta[J]. Science in China Series D: Earth Sciences, 51(6): 808-825. doi: 10.1007/s11430-008-0062-z
    [40] XUE Y Q, 2012. Discussion on groundwater overexploitation and ground settlement[J]. Ground Water, 34(6): 1-5. (in Chinese with English abstract
    [41] YAN X X, GONG S L, ZENG Z Q, et al., 2002. Relationship between building density and land subsidence in Shanghai urban zone[J]. Hydrogeology & Engineering Geology, 29(6): 21-25. (in Chinese with English abstract
    [42] YE S J, 2004. Study on the regional land subsidence model and its application[D]. Nanjing: Nanjing University. (in Chinese with English abstract
    [43] YE S J, XUE Y Q, 2005. Stress-strain analysis for storage coefficients and vertical hydraulic conductivities of aquitards in Shanghai area[J]. Rock and Soil Mechanics, 26(2): 256-260. (in Chinese with English abstract
    [44] YE S J, XUE Y Q, ZHANG Y, et al., 2005. Study on the deformation characteristics of soil layers in regional land subsidence model of Shanghai[J]. Chinese Journal of Geotechnical Engineering, 27(2): 140-147. (in Chinese with English abstract
    [45] YE S J, XUE Y Q, WU J C, et al., 2011. Regional land subsidence model embodying complex deformation[J]. Proceedings of the Institution of Civil Engineers -Water Management, 164(10): 519-531. doi: 10.1680/wama.1000062
    [46] YE S J, FRANCESCHINI A, ZHANG Y, et al., 2018. A novel approach to model earth fissure caused by extensive aquifer exploitation and its application to the Wuxi Case, China[J]. Water Resources Research, 54(3): 2249-2269, doi: 10.1002/2017WR021872
    [47] YU J, WANG X M, SU X S, et al., 2004. The mechanism analysis on ground fissure disaster formation in Suzhou-Wuxi-Changzhou area[J]. Journal of Jilin University (Earth Science Edition), 34(2): 236-241. (in Chinese with English abstract
    [48] YU J, WANG X M, WU J Q, et al., 2006. Characteristics of land subsidence and its remedial proposal in Suzhou-Wuxi-Changzhou area[J]. Geological Journal of China Universities, 12(2): 179-184. (in Chinese with English abstract
    [49] YU J, WU J C, YE S J, et al., 2007. Research on nonlinear coupled modeling of land subsidence in Suzhou, Wuxi and Changzhou areas, China[J]. Hydrogeology & Engineering Geology, 34(5): 11-16. (in Chinese with English abstract
    [50] YU J, WU J Q, 2008. Preliminary research on risk evaluation management model of land subsidence in Su-Xi-Chang region[J]. Jiangsu Geology, 32(2): 113-117. (in Chinese with English abstract
    [51] ZHANG Y, WU J C, XUE Y Q, et al., 2017. Fully coupled three-dimensional nonlinear numerical simulation of pumping-induced land movement[J]. Environmental Earth Sciences, 76(16): 552. doi: 10.1007/s12665-017-6891-3
    [52] ZHANG Y, YU J, GONG X L, et al., 2018. Pumping-induced stress and strain in aquifer systems in Wuxi, China[J]. Hydrogeology Journal, 26(3): 771-787. doi: 10.1007/s10040-017-1697-7
    [53] ZHU J Q, JIAO X, YU J, et al., 2008. Evaluation of earth fissures based on GA-ANN coupling model in the Suzhou-Wuxi-Changzhou area[J]. Hydrogeology & Engineering Geology, 35(4): 106-110. (in Chinese with English abstract
    [54] ZHU J Q, ZHANG W Q, YU J, et al. , 2016. Hazards of soil cracking and experimental research[M]. Xuzhou: China University of Mining and Technology Press. (in Chinese)
    [55] ZHU L, GONG H L, LI X J, et al., 2024. Research progress and prospect of land subsidence[J]. Hydrogeology & Engineering Geology, 51(4): 167-177. (in Chinese with English abstract
    [56] 郭海朋,李文鹏,王丽亚,等,2021. 华北平原地下水位驱动下的地面沉降现状与研究展望[J]. 水文地质工程地质,48(3):162-171.
    [57] 郭坤一,郭盛乔,于军,等,2005. 长江三角洲地区地下水资源与地质灾害调查评价[R]. 南京地质矿产研究所,江苏省地质调查研究院,上海市地质调查研究院,浙江省地质环境监测总站,浙江省地质调查院.
    [58] 国土资源部,水利部,2012. 《全国地面沉降防治规划(2011—2020年)》[EB/OL]. (2012-02-22)[2024-03-24]. https://www.mnr.gov.cn/dt/ywbb/201810/t20181030_2261387.html.
    [59] 国务院,2011. 关于加强地质灾害防治工作的决定:国发〔2011〕20号[EB/OL]. (2011-06-13)[2024-03-24]. https://www.gov.cn/zhengce/zhengceku/2011-06/17/content_2744.htm.
    [60] 江苏省国土资源厅,2012. 《江苏省地质灾害防治规划(2011-2020年)》[EB/OL]. (2012-04-06)[2024-03-24]. https://zrzy.jiangsu.gov.cn/gtxxgk/nrglIndex.action?type=2&messageID=2c9082547d5e4398017d5ed727f10008.
    [61] 江苏省人民代表大会常务委员会,2021. 关于在苏锡常地区限期禁止开采地下水的决定:江苏省人民代表大会常务委员会公报〔2000〕5号[EB/OL]. (2021-10-08)[2024-03-24]. https://www.jsrd.gov.cn/qwfb/sjfg/202110/t20211008_532359.shtml.
    [62] 江苏省人民政府,2015. 关于江苏省地下水压采方案(2014-2020年)的批复:苏政复〔2015〕19号[EB/OL]. (2015-03-16)[2024-03-24]. https://www.jiangsu.gov.cn/art/2015/3/16/art_46143_2542910.html.
    [63] 李伟,武健强,2015. 苏锡常地区地面沉降监测方法体系建设[J]. 世界地质,34(3):862-869. doi: 10.3969/j.issn.1004-5589.2015.03.035
    [64] 刘聪,袁晓军,朱锦旗,2004. 苏锡常地裂缝[M]. 武汉:中国地质大学出版社.
    [65] 刘寒鹏,2010. 天津滨海新区高层建筑荷载作用下地面沉降研究[D]. 西安:长安大学.
    [66] 刘明遥,张其琪,龚绪龙,等,2022. 江苏常州地区地面沉降变形特征与生命过程研究[J]. 上海国土资源,43(4):50-55,72. doi: 10.3969/j.issn.2095-1329.2022.04.010
    [67] 骆祖江,张鑫,田小伟,2018. 沧州市地面沉降灾害预测预警[J]. 工程地质学报,26(2):365-373.
    [68] 庞炳乾,宋默,徐兴源,等,1984. 常州市水文地质工程地质环境地质综合勘察报告(1:50000)[R]. 常州:江苏省地矿局第1水文地质工程地质大队.
    [69] 施小清,薛禹群,吴吉春,等,2006a. 常州地区含水层系统土层压缩变形特征研究[J]. 水文地质工程地质,33(3):1-6.
    [70] 施小清,薛禹群,张云,等,2006b. 常州地区粉质粘土的蠕变模型[J]. 工程勘察,34(5):16-18,70.
    [71] 施小清,薛禹群,吴吉春,等,2007. 饱和砂性土流变模型的试验研究[J]. 工程地质学报,15(2):212-216. doi: 10.3969/j.issn.1004-9665.2007.02.012
    [72] 施小清,冯志祥,姚炳奎,等,2014. 苏锡常地区深层地下水禁采后土层变形特征分析[J]. 第四纪研究,34(5):1062-1071. doi: 10.3969/j.issn.1001-7410.2014.05.15
    [73] 孙晓涵,彭建兵,崔向美,等,2016. 山西太原盆地地裂缝与地下水开采、地面沉降关系分析[J]. 中国地质灾害与防治学报,27(2):91-98.
    [74] 王光亚,于军,吴曙亮,等,2009. 常州地区地面沉降及地层压缩性研究[J]. 地质与勘探,45(5):612-620.
    [75] 武健强,吴曙亮,李伟,等,2009. 苏锡常地区地面沉降灾害风险评价指标体系构建[C]//中国地质学会2009年学术年会论文集. 北京:中国地质学会:277-278.
    [76] 武健强,吴曙亮,闵望,等,2014. 苏锡常地区地面沉降防控最新进展评述[J]. 地质学刊,38(2):319-323. doi: 10.3969/j.issn.1674-3636.2014.02.319
    [77] 薛禹群,张云,叶淑君,等,2003. 中国地面沉降及其需要解决的几个问题[J]. 第四纪研究,23(6):585-593. doi: 10.3321/j.issn:1001-7410.2003.06.001
    [78] 薛禹群,吴吉春,张云,等,2008. 长江三角洲(南部)区域地面沉降模拟研究[J]. 中国科学 D辑:地球科学,38(4):477-492, doi: 10.3321/j.issn:1006-9267.2008.04.010.
    [79] 薛禹群,2012. 论地下水超采与地面沉降[J]. 地下水,34(6):1-5. doi: 10.3969/j.issn.1004-1184.2012.06.001
    [80] 严学新,龚士良,曾正强,等,2002. 上海城区建筑密度与地面沉降关系分析[J]. 水文地质工程地质,29(6):21-25. doi: 10.3969/j.issn.1000-3665.2002.06.006
    [81] 叶淑君,2004. 区域地面沉降模型的研究与应用[D]. 南京:南京大学.
    [82] 叶淑君,薛禹群,2005. 应用沉降和水位数据计算上海地区弱透水层的参数[J]. 岩土力学,26(2):256-260. doi: 10.3969/j.issn.1000-7598.2005.02.018
    [83] 叶淑君,薛禹群,张云,等,2005. 上海区域地面沉降模型中土层变形特征研究[J]. 岩土工程学报,27(2):140-147. doi: 10.3321/j.issn:1000-4548.2005.02.002
    [84] 于军,王晓梅,苏小四,等,2004. 苏锡常地区地裂缝地质灾害形成机理分析[J]. 吉林大学学报(地球科学版),34(2):236-241.
    [85] 于军,王晓梅,武健强,等,2006. 苏锡常地区地面沉降特征及其防治建议[J]. 高校地质学报,12(2):179-184. doi: 10.3969/j.issn.1006-7493.2006.02.004
    [86] 于军,吴吉春,叶淑君,等,2007. 苏锡常地区非线性地面沉降耦合模型研究[J]. 水文地质工程地质,34(5):11-16. doi: 10.3969/j.issn.1000-3665.2007.05.004
    [87] 于军,武健强,2008. 苏锡常地区地面沉降风险评价管理模型研究初探[J]. 江苏地质,32(2):113-117.
    [88] 朱锦旗,焦珣,于军,等,2008. 基于GA-ANN的苏锡常地裂缝危险性评价[J]. 水文地质工程地质,35(4):106-110. doi: 10.3969/j.issn.1000-3665.2008.04.025
    [89] 朱锦旗,张卫强,于军,等,2016. 土体裂缝危害及试验研究[M]. 徐州:中国矿业大学出版社有限责任公司.
    [90] 朱琳,宫辉力,李小娟,等,2024. 区域地面沉降研究进展与展望[J]. 水文地质工程地质,51(4):167-177.
  • 加载中
图(23) / 表(3)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  7
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-24
  • 修回日期:  2024-07-30
  • 录用日期:  2024-08-01
  • 预出版日期:  2024-09-26
  • 刊出日期:  2024-10-28

目录

    /

    返回文章
    返回