Geochemical characteristics of apatite in metabasic rocks under different metamorphic conditions: a case study from the Paleoproterozoic Trans-North China Orogen
-
摘要: 磷灰石是一种常见的副矿物,在各种岩石类型中均有产出,其U-Pb年龄、微量元素(特别是REE、Th、U和Sr等)和Sr-Nd同位素组成可提供重要的年代学和地球化学信息。目前对于其在造山过程中不同变质级别下的地球化学行为的研究并不清楚。作为古元古代典型的陆−陆碰撞造山带,华北克拉通中部造山带记录了一套从绿片岩相、经角闪岩相至麻粒岩相的完整变质岩石组合,因而是研究基性岩变质演化过程磷灰石地球化学属性的理想区域。文章在中部造山带的五台—恒山地区系统采集了绿片岩、斜长角闪岩和基性麻粒岩样品,并对不同变质级别变基性岩中的磷灰石进行了详细的岩相学和微量元素研究。研究结果表明,绿片岩样品中含有岩浆成因和变质成因2种类型的磷灰石,斜长角闪岩样品中主要为变质成因磷灰石,而基性麻粒岩样品中主要为深熔型磷灰石,表现出岩浆成因磷灰石的微量元素特征,可能结晶自深熔熔体。研究表明磷灰石的微量元素变化能够清晰地反映变质演化过程中随温压条件变化而出现的熔体和共存结晶矿物的影响,为了解造山作用过程中的元素迁移和平衡提供了新的约束。Abstract:
Objective Apatite is a common accessory mineral that is widely distributed in various rock types. Its U-Pb age, trace elements (particularly REE, Th, U, and Sr), and Sr-Nd isotopic compositions provide important information on its chronology and magmatism. However, the geochemical behavior at different metamorphic levels during orogenesis remains unclear. As a typical continent-to-continent collisional orogenic belt in the Paleoproterozoic, the Trans-North China Orogen (TNCO) has recorded an integrated metamorphic sequence ranging from greenschist to amphibolite to granulite facies. Therefore, it is an ideal area to study the geochemical behavior of apatite during various grades of metamorphism involving the orogenic process. Methods In this study, we systematically collected metabasic samples of different metamorphic grades, including greenschist, amphibolite, and mafic granulite, in the Wutai-Hengshan area of the TNCO. We conducted detailed petrographic observations and geochemical analyses of apatite grains from metabasic rocks with different metamorphic grades. Results Our results showed that the apatite grains from the greenschist samples had both magmatic and metamorphic origins. The apatite grains in the amphibolite samples were mainly of metamorphic origin. In contrast, the grains from the granulite samples were closely related to crustal anatexis, exhibiting geochemical characteristics of magmatic-origin apatite. Conclusion This study shows that trace element variations in apatite can clearly reflect the influence of metamorphic grades, crustal anatexis, and coexisting rock-forming minerals with variations in temperature and pressure conditions during metamorphism. Significance The results of this study provide new constraints to our understanding of elemental migration and the geochemical balance within apatite during orogeny. -
Key words:
- North China Craton /
- Trans-North China Orogen /
- metabasic rocks /
- metamorphism /
- apatite /
- trace elements
-
0. 引言
水溶天然气(简称水溶气)是指溶解在地层水中的以甲烷气为主的气体,属于非常规油气资源。全球已查明的水溶气资源量非常丰富,盆地中地层水溶性天然气资源量约为33837×1012 m3,为常规天然气资源量的一百多倍。在日本、美国、俄罗斯、乌克兰、哈萨克斯坦、乌兹别克斯坦、阿塞拜疆、土库曼斯坦、匈牙利、意大利、菲律宾、尼泊尔、伊朗等国都发现了水溶天然气,并开展了勘探、开发及地质综合研究。尤其在日本,大约四分之一国土都发现了水溶气,目前,开采量约为10×108 m3/a,并累计了70多年的勘探开发工作经验[1]。
从理论上讲,水溶气资源的分布领域较常规天然气的分布领域更加广泛[1]。但由于水溶气目前还属于一个新型非常规能源,研究程度较低,所以对水溶气层的判断开发还没有一个统一的标准。
渭河盆地位于陕西省中部(关中平原),是秦岭造山带与鄂尔多斯盆地2个大地构造单元接合部位的新生代断陷盆地,其地层属华北地层区南缘分区。研究区固市凹陷位于渭河盆地东部,属于渭河盆地的一个次级凹陷[2~3]。在固市凹陷地热勘探过程中,钻至第三系张家坡组时发生甲烷天然气井喷,发现了水溶甲烷气藏。对浅层气水层的识别通常是依据单纯的常规测井电阻率曲线变化及补偿声波是否发生周波跳跃来进行快速简单的判断。但由于水溶气属于非常规能源,水气互溶,常规测井解释的气层和水层相互干扰较大,而且补偿声波测井对其常常有误判[4]。从试气结果来看,该方法对本地区的非常规水溶甲烷气藏应用效果不明确,必须配合其他的测井手段进行综合分析,建立一套适合本区储层特征的气水层识别方法和标准。
1. 储层特征及气藏类型
研究区地层为第三系,埋藏较浅,一般小于2000 m,属于湖相沉积。固市凹陷在实际工作中划分为3种储层类型,即含水气层、气水同层、含气水层(包含差气层)。储层圈闭类型为岩性圈闭,在横向上对比较整齐,储层段气水互溶性好,为自生自储的非常规气藏,具有统一的气水界面[4~5]。从已有的岩心分析资料看,该区储层孔隙度虽较高,但由于岩石结构和成分成熟度均低,颗粒大小混杂,分选差,杂基含量较高[6~7],所以渗透率中等,仅偶尔出现较高的渗透率,表现出高孔中渗的物性特征。总体上来说储层岩性粒度较细,砂泥互层较发育,岩性界面较模糊且灰质含量较高,储层横向展布对比较稳定。
2. 气水层识别难点
2.1 地层气水互溶对测井识别的影响
由岩心实验数据得知,储层中游离水和束缚水含量不同。研究区可采水溶气一般赋存于游离水中,在高含气储层段,游离水含量高;而差气层束缚水含量高,游离水含量相对较低,因此形成高含气水层和低含气水层。高含气水层和低含气水层含水均较高,从而导致储层和水层在声波时差和电阻率上的差异较小,造成常规测井对气层和水层极难识别[4]。
2.2 测井曲线受岩性的影响
正常情况下,储层含气易使声波时差明显增大,甚至有可能发生周波跳跃;但当储层岩性较松散或含水较多时可能会引起声波时差变化不大,不易区别储层与含水层。研究区地层属于第三系,埋藏较浅,未经过强压实作用,故岩性疏松;加之水溶气藏气水互溶,使得补偿声波测井在该区的储层时差变化较小,区分气水层效果非常不明显。此外对于水溶气藏,研究区储层与非储层的含水都较高而导致电性特征差异小,因此电测井对水溶甲烷气水层的识别也较困难。
2.3 地质构造对测井识别的影响
宏观上渭河盆地构造断层较多,小断层较发育,但本区凹陷被小断层所包围,内部连续稳定。东西向较大规模的断裂造成渭河盆地南北边缘形成一系列东西向展布的断阶,北东向或北西向断层相互切割,形成众多大小不一的次级凹陷,各个凹陷互相独立,形成自生自储式气藏[1]。研究区是位于渭河盆地东部的次一级凹陷,储层横向上连通性接触关系较好,小层对比较稳定,因此气水连通互溶性好,测井曲线对气水互溶层响应差异较小,导致气水层较难判别。
3. 气水层识别方法
3.1 利用孔隙度重叠法和常规测井曲线快速直观识别气水层
本文通过自然电位曲线和自然伽马曲线特征(电位负异常、低自然伽马)大致判断出渗透性砂岩储层[8];然后结合三电阻率(八侧向电阻率、中感应电阻率、深感应电阻率)的差异显示,对渗透层判别气水层,高中电阻处应为高含气层,低电阻为水层。应用标准化后的三孔隙度(补偿密度、声波时差、补偿中子)曲线在储层处重叠,并采用相同的视孔隙度横向比例显示,依据水溶气层的特殊响应特征进行判别:补偿声波孔隙度在水溶气层变化不大,处于基值,所以小于补偿中子和补偿密度孔隙度;补偿中子测井在水溶气层处“挖掘效应”不明显,所以补偿中子孔隙度大于补偿密度孔隙度和补偿声波孔隙度,这样在气层处三孔隙度曲线便出现明显的特征差异[9],用这种方法能快速直观地判别储层与非储层(见图 1)。
3.2 利用测井孔隙度差值比值法(孔隙参数法)进行气水层识别
本文借鉴云南保山盆地的气水识别方法[4, 10~11],结合研究区实际地层特点,总结出一套以三孔隙度的差值及比值(即孔隙参数)法识别气水层。具体方法是:分别计算标准化后的三孔隙度的比值及差值,放大气层在三孔隙度测井曲线上的响应信息,利用孔隙度比值重叠显示和孔隙度差值对称显示,从而更加清楚地判断储层含气性。在张家坡组储层水溶气水层识别中,运用三孔隙度差值和比值(孔隙参数)法结合其他常规测井信息综合识别气水层效果较好(见图 2)。
由于目的层段属于浅层的水溶气层,压实作用不强烈且受水气互溶因素的影响,具体实例中应用的都是标准化后的数据。由三孔隙度测井资料提取如下6种气层孔隙参数:DCD为视中子孔隙度与视密度孔隙度之差,DCA为视中子孔隙度与视声波孔隙度之差,DDA为视密度孔隙度与视声波孔隙度之差;RCD为视中子孔隙度与视密度孔隙度比值,RCA为视中子孔隙度与视声波孔隙度比值,RDA为视密度孔隙度与视声波孔隙度比值。
对储层运用孔隙参数法,当孔隙参数DCD、DCA、DDA、RCD、RCA、RDA均大于1,并当DCD、DCA、RCD、RCA越小且越接近1,同时DDA、RDA越大时,判定气层可能性越大;各个孔隙参数的区间值分别指示了含水气层、气水同层和含气水层(差气层)的区别。通过对试气层孔隙参数与电阻率及各测井曲线综合对比交会,可确定这6个孔隙参数识别气水层的区间标准[12~13]。
3.3 根据气测录井全烃资料确定气水层识别标准
研究区气测录井资料为电脱气测,根据录井全烃变化的特点,采用全烃的净增值法、比值法、显示厚度与测井资料厚度比值(饱满系数)法建立了研究区内气测识别气水层的标准。
3.4 结合TNIS成像测井成果图综合分析
本文不仅对常规测井资料进行分析研究,而且结合了TNIS过套管成像测井,进一步对研究区浅层的气水层进行判别。TNIS过套管成像测井原理是:使用高能的中子发生器向地层发射14 MeV的快中子,经过一系列弹性与非弹性碰撞,最后被地层俘获,利用仪器上2个中子探测器得到的中子计数的比值可以计算出储层的含氢指数,进而计算孔隙度,判别气水层。如图 3所示,本区TNIS过套管成像测井结果显示,热中子俘获谱、衰减成像、俘获成像均表现为异常变高,黄色指示,判断为气层,与孔隙参数法及综合测井结论相吻合,确定了该方法在本研究区的适用性。
3.5 储层气水层识别标准的对比确立
综合测井资料及气测录井、TNIS过套管成像测井资料,建立了该区储层的浅层水溶气水层识别区间标准(见表 1)。
表 1 气水层综合判别标准Table 1. Comprehensive discriminant standard of gas-and water-bearing layers4. 应用实例
如图 2所示的单井气层判别情况,从图中可以看出,自然电位和自然伽马曲线表现异常,显示为典型的渗透层,三孔隙度差异明显,显示出明显的高孔隙层位,根据孔隙参数法计算出的孔隙参数:DCA=35,DCD=10,DDA=50,RCD=1.024,RCA=1.162,RDA=1.135,气测全烃从1%上升到6%,净增值5%,比值为6,饱满系数为1.1,以上参数都符合气层的综合判别标准,并且TNIS成像测井成果图也同样解释了该层为明显的含气异常层,故解释为含水气层,与试气结论相吻合。这类储层在以前解释时都比较困难,与水层、含气水层很难区分,但通过该套方法的建立,放大了测井信息,能较准确的识别出含气储层。
通过建立的标准,对所有试气的储层(28层)进行了综合判断,14个含水气层,10个气水同层,4个含气水层(包含差气层),与现场实际试气成果符合率达到90%。
5. 结论
结合气测录井资料,建立了一套适用于渭河盆地固市凹陷第三系张家坡组浅层疏松砂岩储层水溶气水层的识别方法,利用孔隙度重叠法、孔隙度差值及比值法(孔隙参数法)和适合于本地区的综合测井的补偿中子曲线与电阻率曲线对比分析法、TNIS成像测井综合识别水溶气水层的方法和标准。
放大了气层在三孔隙度测井曲线上的响应信息;结合气测全烃资料的净增值、比值等参数,对储层的含气性质进行综合判断,在很大程度上解决了解释中存在的气水层识别困难问题。
参照该方法对本研究区28个层段进行分析研究,与实际生产的试气对比得出,其符合率达90%,应用效果较好。
-
图 1 华北克拉通构造单元划分(据Zhao et al.,2001,2005修改)
Figure 1. Tectonic subdivision of the North China Craton (modified after Zhao et al., 2001, 2005)
图 2 五台杂岩和恒山杂岩主要岩性单元划分以及样品采集位置(据Zhao et al.,2007;Zhang et al.,2012修改)
Figure 2. Lithologic map of the Wutai-Hengshan Complex and the sampling locations in this study (modified after Zhao et al., 2007; Zhang et al., 2012)
图 4 样品显微镜下特征
Ap—磷灰石;Chl—绿泥石;Fsp—长石;Grt—石榴子石;Hbl—角闪石;Ilm—钛铁矿;Px—辉石;Qtz—石英;Zr—锆石a、b—22WT-03样品;c、d—22WT-21样品;e、f—22WT-07样品;g、h—22WT-22样品;i、j—22WT-09样品;k、l—22WT-12样品
Figure 4. Microscopic characteristics of the samples
(a, b) Sample 22WT-03; (c, d) Sample 22WT-21; (e, f) Sample 22WT-07; (g, h) Sample 22WT-22; (i, j) Sample 22WT-09; (k, l) Sample 22WT-12Ap—apatite; Chl—chlorite; Fsp—feldspar; Grt—garnet; Hbl—hornblende; Ilm—ilmenite; Px—pyroxene; Qtz—quartz; Zr—zircon
图 6 五台—恒山地区变基性岩全岩主量元素图解
a—Nb/Y-Zr/Ti图解(底图据Pearce,1996);b—SiO2−TFeO/MgO图解(底图据Miyashiro,1974);c—TiO2−TFeO/MgO图
Figure 6. Diagram of whole rock major element of the metabasic rocks in the Wutai-Hengshan area
(a) Nb/Y-Zr/Ti classification diagram of metabasic rocks in Wutai and Hengshan (modified after Pearce, 1996); (b) SiO2-TFeO/MgO classification diagram (modified afterMiyashiro, 1974); (c) Diagram of TiO2-TFeO/MgO
图 7 全岩微量元素图解(标准化值据Sun and McDonough, 1989)
a—变基性岩球粒陨石标准化稀土元素配分图;b—原始地幔标准化微量元素蛛网图
Figure 7. Diagram of whole rock trace element (standardized values according to Sun and McDonough, 1989)
(a) Chondrite-normalized diagram of rare earth element for the metabasic rocks; (b) Primitive mantle-normalized diagram of trace elements for the metabasic rocks
图 8 不同变质级别样品中磷灰石主量元素图解
a—F−CaO图解;b—Cl−CaO图解;c—P2O5−CaO图解;d—SiO2−CaO图解;e—FeO−CaO图解;f—MnO−CaO图解
Figure 8. Major element diagram of apatite grains of different metamorphic grades
(a) F-CaO relationship diagram; (b) Cl-CaO relationship diagram; (c) P2O5-CaO relationship diagram; (d) SiO2-CaO relationship diagram; (e) FeO-CaO relationship diagram; (f) MnO-CaO relationship diagram
图 9 不同变质级别样品中磷灰石微量元素图解
a—绿片岩样品微量元素图解;b—斜长角闪岩样品微量元素图解;c—基性麻粒岩样品微量元素图解
Figure 9. Trace element diagram of apatite grains of different metamorphic grades
(a) Trace element diagram of apatite grains of greenschist; (b) Trace element diagram of apatite grains of plagioclase amphibolite; (c) Trace element diagram of apatite grains of mafic granulite
图 10 不同成因类型磷灰石微量元素图解(据O'Sullivan et al., 2020修改)
Figure 10. Trace element diagram of apatite of different genetic types (modified after O'Sullivan et al., 2020)
图 11 大别−苏鲁造山带固态重结晶深熔锆石球粒陨石标准化稀土模式图(据Chen and Zheng, 2017修改;文献数据参考Chen et al., 2010; Xia et al., 2010)
灰色部分为岩浆成因的原岩锆石
Figure 11. Chondrite-normalized REE patterns for solid-state recrystallization of metamorphosed zircons from the Dabie-Sulu Orogenic Belt (modified after Chen and Zheng, 2017;Reference data: Chen et al., 2010; Xia et al., 2010)
The gray zone denotes the protolith zircon of magmatic origin.
表 1 五台-恒山地区变基性岩全岩主量元素(%)与微量元素(×10−6)组成
Table 1. Whole rock major (%) and trace element (×10−6) compositions of the metabasic rocks in the Wutai-Hengshan area
样品名称 绿片岩 斜长角闪岩 基性麻粒岩 22WT-03 22WT-21 22WT-07 22WT-22 22WT-09 22WT-12 SiO2 44.98 44.66 49.63 48.79 49.89 48.85 TiO2 0.85 0.86 0.60 0.94 1.74 0.96 Al2O3 15.41 14.36 15.86 14.56 12.70 13.79 TFe2O3 8.46 8.38 11.31 12.71 18.70 14.98 MnO 0.16 0.18 0.15 0.17 0.26 0.22 MgO 3.69 3.57 7.64 7.22 4.54 6.95 CaO 12.58 11.02 9.60 11.36 9.31 10.82 Na2O 1.32 1.08 1.79 1.75 2.31 1.75 K2O 2.65 3.13 0.75 0.15 0.78 1.00 P2O5 0.30 0.34 0.07 0.07 0.20 0.10 LOI 8.72 11.90 2.08 2.07 −0.01 0.32 SUM 99.12 99.49 99.48 99.79 100.41 99.72 FeO 5.28 5.05 6.60 8.60 10.90 10.30 TFeO 7.61 7.55 9.28 11.44 16.83 13.48 Sc 12.47 22.45 35.43 40.88 43.82 46.57 Ti 5095.75 5167.69 3620.98 5605.33 10413.32 5725.23 V 95.41 174.57 213.12 284.21 356.60 297.35 Cr 124.66 501.90 134.69 184.70 29.56 77.51 Co 14.30 29.08 51.54 50.83 49.84 58.67 Ni 55.87 133.80 177.18 106.60 26.91 69.78 Cu 11.02 74.26 78.99 122.01 45.55 83.11 Zn 304.52 72.84 74.29 88.04 141.05 92.70 Ga 15.46 18.13 15.63 16.69 19.38 16.84 Rb 57.80 116.88 20.92 2.86 26.98 47.35 Sr 99.51 774.66 199.13 112.84 119.17 64.81 Y 13.38 24.35 14.14 18.32 44.90 24.79 Zr 121.28 130.53 44.74 46.49 138.71 60.03 Nb 5.04 9.80 1.88 2.62 7.51 3.12 Sn 0.94 1.36 0.51 0.47 1.27 0.61 Cs 0.61 1.42 2.45 0.38 0.60 0.51 Ba 311.93 1053.04 93.76 18.27 199.41 151.06 La 16.21 23.60 4.91 2.32 13.49 5.87 Ce 36.33 52.03 10.97 6.24 33.84 13.63 Pr 4.32 6.60 1.57 1.06 4.67 2.02 Nd 15.92 27.17 6.64 5.50 20.39 9.50 Sm 3.29 5.31 1.84 1.95 5.67 2.78 Eu 0.91 1.40 0.72 0.69 1.68 0.91 Gd 2.77 4.60 2.22 2.67 6.58 3.53 Tb 0.44 0.72 0.40 0.48 1.10 0.60 Dy 2.53 4.17 2.48 3.11 7.62 4.14 Ho 0.53 0.85 0.54 0.67 1.63 0.90 Er 1.41 2.37 1.54 1.98 4.78 2.46 Tm 0.21 0.35 0.22 0.28 0.66 0.36 Yb 1.42 2.34 1.53 1.92 4.61 2.48 Lu 0.21 0.36 0.22 0.29 0.69 0.38 Hf 3.14 3.13 1.26 1.29 3.75 1.66 Ta 0.38 0.47 0.11 0.15 0.47 0.18 Pb 4.95 8.84 2.03 0.98 2.66 0.90 Th 5.33 3.95 0.50 0.21 2.30 0.58 U 1.17 1.01 0.12 0.06 0.50 0.09 (La/Sm) N 3.08 2.77 1.67 0.74 1.49 1.32 (La/Yb) N 7.74 6.84 2.18 0.82 1.99 1.60 δEu 0.89 0.84 1.08 0.92 0.84 0.89 注:部分样品的烧失量为负数,因为样品中可能含有较多的低价态金属氧化物,高温氧化,所以烧失量为负数 表 2 五台—恒山地区变基性岩磷灰石主量元素组成 (%)
Table 2. Apatite major element compositions of the metabasic rocks in the Wutai-Hengshan area (%)
样品点号 K2O SO3 CaO FeO MgO Al2O3 P2O5 SrO MnO Na2O SiO2 F Cl 合计 Ap-03-1 0 0.12 54.83 0 0 0 41.34 0.03 0.02 0.05 0.26 4.31 0.02 99.17 Ap-03-2 0 0.06 55.00 0 0 0.02 41.18 0.08 0 0 0.01 4.24 0.02 98.83 Ap-03-3 0 0.12 54.03 0.12 0.02 0 41.59 0.07 0.04 0.03 0.03 4.07 0.03 98.44 Ap-03-4 0 0 54.49 0.01 0 0.03 42.13 0.10 0.03 0 0 4.73 0.02 99.52 Ap-03-5 0 0.26 54.54 0.08 0 0 42.05 0.14 0.06 0.06 0.18 4.65 0.02 100.07 Ap-03-6 0 0 54.81 0.05 0 0 41.21 0.03 0.10 0.06 0 4.74 0.03 99.02 Ap-03-7 0 0.16 54.24 0.13 0 0 41.05 0.04 0.02 0.04 0.32 4.50 0 98.62 Ap-03-8 0 0.32 54.44 0.07 0.01 0.02 40.28 0.16 0 0.06 0.37 4.32 0.01 98.23 Ap-03-9 0.02 0.24 54.50 0.17 0.13 0 41.25 0.19 0.04 0.11 0.24 4.45 0.03 99.47 Ap-03-10 0 0.07 54.49 0.01 0.01 0.02 42.47 0.05 0 0.08 0 4.34 0.01 99.72 Ap-21-1 0 0.01 54.54 0.05 0 0 42.88 0.35 0.06 0 0 4.46 0.01 100.49 Ap-21-2 0 0 54.84 0 0 0.01 42.38 0.34 0.02 0 0.01 4.50 0 100.20 Ap-21-3 0 0.01 55.01 0.01 0 0.01 42.21 0.34 0 0 0.02 4.45 0.01 100.20 Ap-21-4 0.01 0 53.86 0 0 0.01 42.06 0.40 0 0.01 0 5.22 0.01 99.38 Ap-21-5 0.02 0.01 54.42 0.01 0 0 42.27 0.43 0.02 0 0.01 4.58 0 99.84 Ap-21-6 0.01 0 54.76 0.10 0 0 42.30 0.38 0.02 0.01 0.01 4.49 0 100.20 Ap-21-7 0 0 54.27 0.04 0 0 42.38 0.32 0 0 0 4.40 0.02 99.57 Ap-21-8 0.02 0.02 54.08 0 0 0 42.71 0.17 0.02 0 0 5.00 0 99.90 Ap-21-9 0 0.01 54.51 0.09 0.02 0.01 42.56 0.36 0 0 0 4.43 0.01 100.14 Ap-21-10 0 0.03 54.72 0 0.01 0.02 42.44 0.36 0 0 0 4.74 0.01 100.33 Ap-07-1 0.01 0.05 55.20 0 0 0.02 41.56 0.10 0.03 0.03 0 4.50 0 99.62 Ap-07-2 0.03 0 53.24 0.01 0.36 0.38 40.96 0.02 0.05 0.02 0.08 1.70 1.38 98.18 Ap-07-3 0 0.02 54.37 0 0 0 41.79 0.02 0.07 0.01 0.02 1.29 1.28 98.04 Ap-07-4 0.01 0 54.27 0.05 0 0 41.72 0.01 0.04 0.03 0 1.35 1.42 98.01 Ap-07-5 0 0 54.25 0 0.03 0 41.53 0.04 0.06 0 0 1.45 1.22 97.69 Ap-07-6 0.01 0.08 54.44 0.01 0.01 0 41.84 0.03 0.05 0 0.01 1.51 1.24 98.30 Ap-07-7 0.03 0 53.83 0.14 0 0 41.46 0.04 0.05 0.01 0 1.24 1.54 97.46 Ap-07-8 0 0.03 53.70 0 0.01 0 42.09 0 0.02 0.02 0 1.64 0.91 97.51 Ap-07-9 0 0 54.17 0.01 0.02 0 42.58 0.01 0.01 0.04 0 1.39 1.49 98.80 Ap-07-10 0.01 0.03 53.84 0.11 0 0 41.31 0.01 0 0 0 1.64 1.19 97.19 Ap-22-1 0 0.03 54.19 0.04 0 0 42.53 0.01 0.08 0.04 0.03 1.43 2.27 99.53 Ap-22-2 0 0.07 54.51 0.03 0 0 41.83 0.01 0.05 0.07 0 1.44 2.24 99.13 Ap-22-3 0.01 0.03 54.84 0 0.04 0 42.35 0 0.06 0 0.01 2.08 0.87 99.20 Ap-22-4 0.01 0 54.99 0 0 0.01 42.37 0.03 0.04 0 0 2.38 0.41 99.13 Ap-22-5 0 0.02 54.57 0.08 0 0 42.59 0.02 0.05 0 0.03 2.13 0.54 99.01 Ap-22-6 0 0 54.02 0.01 0 0.01 41.74 0.02 0.04 0.02 0.01 1.61 2.32 98.58 Ap-22-7 0 0.02 54.80 0.09 0 0 41.65 0.04 0.07 0 0 2.22 1.31 98.98 Ap-22-8 0 0.04 54.77 0.06 0.01 0.02 42.47 0.01 0.04 0 0 2.89 0.61 99.56 Ap-22-9 0 0.01 54.32 0 0 0 41.91 0.01 0.06 0 0 1.35 2.17 98.78 Ap-22-10 0.01 0 55.00 0.01 0.03 0 42.08 0 0.08 0 0.03 2.14 0.37 98.75 Ap-09-1 0 0 54.95 0.04 0.01 0 41.20 0.02 0.02 0.01 0 3.43 0.03 98.26 Ap-09-2 0 0.03 54.18 0 0.02 0 42.13 0.01 0 0.01 0 3.91 0.03 98.67 Ap-09-3 0 0 54.45 0.06 0.01 0 41.32 0 0.02 0 0.04 3.46 0.04 97.93 Ap-09-4 0 0.02 53.81 0 0 0.01 41.67 0 0 0.01 0.02 3.49 0.05 97.60 Ap-09-5 0.01 0 54.91 0.01 0.01 0 42.06 0.02 0 0.02 0.02 3.69 0.05 99.23 Ap-09-6 0 0 54.79 0.06 0 0 41.93 0.01 0.06 0 0.04 3.54 0.02 98.96 Ap-09-7 0 0.03 54.57 0 0.02 0.02 41.45 0 0 0.03 0.01 3.73 0.04 98.32 Ap-09-8 0 0.05 53.88 0 0 0.01 41.97 0 0.04 0 0 3.49 0.03 98.00 Ap-09-9 0 0 54.11 0.04 0.02 0 42.30 0 0.06 0.04 0.03 3.78 0.04 98.83 Ap-09-10 0 0.01 54.19 0.05 0 0 41.75 0 0.02 0.04 0 3.56 0.05 98.15 Ap-12-1 0 0 54.49 0.08 0 0 41.50 0.02 0.02 0.09 0 3.78 0.15 98.51 Ap-12-2 0 0.06 54.59 0.03 0 0.02 42.05 0.02 0.04 0.01 0.01 3.56 0.14 99.00 Ap-12-3 0 0 53.69 0 0 0.01 41.54 0.02 0.04 0 0.07 3.75 0.15 97.65 Ap-12-4 0.01 0.04 54.56 0.03 0 0 41.83 0.03 0.06 0 0.06 3.97 0.17 99.04 Ap-12-5 0 0 54.17 0.03 0.01 0 42.08 0.01 0.06 0.04 0.04 3.57 0.16 98.62 Ap-12-6 0 0.04 55.07 0 0 0.01 41.87 0 0.06 0.04 0.05 3.52 0.15 99.30 Ap-12-7 0.03 0.01 53.69 0.08 0 0 41.92 0 0.04 0.05 0.06 3.57 0.13 98.03 Ap-12-8 0.03 0.02 54.64 0.06 0 0.04 41.74 0 0.07 0.03 0.05 3.86 0.16 99.05 Ap-12-9 0 0 54.93 0.05 0 0 41.96 0 0.09 0 0.09 3.82 0.24 99.52 Ap-12-10 0 0.01 54.40 0.04 0 0.01 41.75 0.03 0.03 0.01 0 3.56 0.22 98.49 表 3 五台—恒山地区变基性岩岩浆成因磷灰石微量元素组成(×10−6)
Table 3. Trace element compositions of magmatic apatite in metabasic rocks from the Wutai-Hengshan area (×10−6)
样品点号 Rb Sr Y Zr Ba Ga La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Nb Ta Pb Th U (La/Yb) N δEu Ap-03-2 0.03 1368.16 211.21 0.28 0.68 3.41 17.86 94.98 25.52 195.47 64.37 16.93 61.55 7.52 40.58 7.49 19.22 2.42 14.94 2.14 0 0 0 7.2 2.3 11.06 0.81 0.82 Ap-03-3 0.05 1004.23 296.07 0.1 0.42 2.44 10.16 65.76 19.06 162.25 61.25 17.09 69.89 9.26 55.28 11.22 28.42 3.69 22.18 3.08 0 0 0 8.62 2.35 8.91 0.31 0.8 Ap-03-5 0.32 1396.01 315.92 0.27 1.13 3.28 18.47 108.84 29.5 228.15 63.76 17.67 63.88 9.38 60.91 12.21 30.68 3.75 20.79 2.55 0 0.03 0 7.13 3.4 3.33 0.6 0.84 Ap-03-6 0.18 367.66 1340.29 0.04 0.21 7.86 90.85 361.61 71.45 430.42 181.11 17.02 244.68 43.53 262.76 48.27 125.31 16.59 106.09 13.88 0 0 0 6.58 4.02 5.11 0.58 0.25 Ap-03-10 0 400.93 277.6 0.12 0.38 5.04 61.86 223.69 41.29 243.34 66.91 15.85 80.09 9.31 49.3 9.67 25.2 3.19 18.84 3.07 0 0 0 4.01 4.4 3.18 2.23 0.66 Ap-03-11 0.06 3514.45 496.51 0 0 0.87 3.4 14.53 3.42 27.13 16.93 7.58 44.2 9.37 78.37 18.61 47.6 4.62 17.23 1.39 0 0 0 7.44 0.01 0 0 0.84 Ap-03-12 0.28 680.29 509.08 0.15 0.49 1.37 7.57 29.7 6.22 45.09 19.65 10.8 49.3 12.85 99.75 20.92 53.53 6.51 36.49 4.15 0 0 0 12.46 5.52 5.43 0.14 1.06 Ap-03-15 0.06 590.07 378.58 0.38 0.25 5.19 86.02 278.72 42.66 208.67 38.25 15.59 50.64 9.32 68.37 14 37.43 4.72 30.12 3.87 0 0 0 10.25 11.55 4.28 1.94 1.08 Ap-03-16 0.06 1536.28 400.4 0.44 0.93 5.73 36.02 195.81 53.63 424.94 134.48 31.84 133.31 15.13 77.7 14.2 35.62 4.49 26.12 3.88 0 0.01 0 9.36 1.11 12.28 0.94 0.72 Ap-03-20 0.14 713.26 704.28 1.81 0.88 3.05 25.82 99.77 20.58 140.25 63.02 17.53 104.35 20.36 142.86 27.93 70.25 8.6 48.61 5.58 0.02 0 0 13.05 5.44 8.91 0.36 0.66 Ap-21-2 0.19 2541.29 234.71 43.83 1.29 0.63 1.57 6.63 1.61 12.12 8.03 3.4 19.56 4.35 34.53 8.82 23.31 2.24 8.16 0.62 1.04 − − 5.43 0.02 − 0.13 0.83 Ap-21-3 0.12 3120.9 411.41 310.55 0.65 1.34 17.83 43.35 7.04 36.6 15.44 5.55 32.7 6.56 57.17 14.8 42.15 4.44 19.46 1.75 8.63 − − 7.35 5.47 − 0.62 0.75 Ap-21-4 0.03 3577.44 471.93 1.04 0 0.75 3.5 15.55 3.52 28.49 19.27 8.4 48.87 10.15 80.46 17.99 45.16 4.26 15.77 1.38 0.04 − − 7.51 0.02 − 0.15 0.83 Ap-21-5 1.4 3460.81 418.28 0.02 11.13 1.24 4.06 16.16 3.83 29.19 17.46 7.39 42.59 8.55 67.3 15.87 38.51 3.65 13.88 1.09 0 − − 7.24 2.24 − 0.2 0.83 Ap-21-6 2.12 1051.97 84.37 104.44 48.64 1.28 11.56 30.85 4.65 23.65 6.31 1.77 8.74 1.64 13.2 2.9 8.3 0.98 5.12 0.53 2.55 − − 2.67 4.93 − 1.53 0.73 Ap-21-7 0.06 3547.7 459.25 710.89 0 0.85 3.16 13.83 3.29 27.35 17.51 8.09 46.13 9.45 75.56 16.63 41.57 4.08 16.33 1.69 19.92 − − 8.54 0.06 − 0.13 0.87 Ap-21-8 0.08 3476.36 399.06 15.65 0 0.92 2.84 11.96 2.87 22.26 13.67 6.52 35.76 7.89 64.21 14.77 37.38 3.59 12.79 1.09 0.43 − − 7.35 0.26 − 0.15 0.9 Ap-21-9 0.09 2984.42 305.04 25.91 0.36 1.33 12.68 33.04 4.77 25.79 11.75 4.86 26.74 5.67 46.4 10.95 29.01 2.84 10.24 0.87 0.56 − − 6.72 1.45 − 0.84 0.84 Ap-21-11 0.05 3517.78 500.66 − 0 0.91 3.55 14.91 3.51 27.66 18.25 7.84 47.01 10.19 83.51 18.66 46.43 4.21 15.35 1.28 0 − − 7.5 0.01 − 0.16 0.82 Ap-07-1 0.01 379.37 2.94 0 1.25 0.67 0.76 1.88 0.26 1.84 0.6 0.16 0.57 0.08 0.51 0.11 0.38 0.08 0.49 0.08 0 0 0 0.78 0.02 0.11 1.05 0.85 Ap-07-2 − 360.8 4.31 0 0.71 0.84 0.47 1.16 0.17 0.93 0.39 0.09 0.82 0.09 0.49 0.16 0.58 0.1 0.69 0.14 0 0 0 0.64 0.01 0.07 0.46 0.46 Ap-07-3 0.18 312.5 4.89 0.01 0.46 0.75 0.78 1.3 0.23 1.6 0.38 0.1 0.78 0.12 0.66 0.17 0.63 0.11 0.9 0.18 0 0 0 0.52 0.02 0.05 0.59 0.54 Ap-07-4 − 312.78 3.28 0 0.42 0.87 0.18 0.44 0.05 0.4 0.17 0.01 0.31 0.05 0.37 0.12 0.4 0.1 0.7 0.08 0 0 0 0.51 0.04 0.06 0.18 0.12 Ap-07-5 0.44 370.84 3.57 0.09 4.94 1.24 0.88 2.19 0.3 2.09 0.38 0.11 0.74 0.09 0.45 0.14 0.51 0.07 0.69 0.13 0 0 0 0.73 0.01 0.08 0.87 0.61 Ap-07-6 0 328.42 2.55 0.19 0.51 0.72 0.1 0.2 0.03 0.23 0.08 0.01 0.09 0.03 0.28 0.08 0.31 0.07 0.51 0.11 0 0 0 0.56 0.03 0.09 0.13 0.33 Ap-07-7 0 440.71 3.92 1.51 1.24 0.96 0.94 2.28 0.36 2.26 0.54 0.2 1.16 0.12 0.75 0.16 0.47 0.07 0.63 0.1 0.05 0 0 1.01 0.01 0.07 1.01 0.79 Ap-07-8 0.01 335.44 2.18 0 0.37 0.82 0.14 0.2 0.03 0.27 0.05 0.01 0.15 0.03 0.21 0.08 0.36 0.05 0.5 0.12 0 0 0 0.52 0 0.07 0.18 0.53 Ap-07-9 0.01 243.68 5.52 0 0.29 0.68 0.08 0.14 0.02 0.14 0.03 0.01 0.17 0.05 0.55 0.18 0.74 0.1 0.91 0.18 0 0 0 0.38 0 0.12 0.06 0.64 Ap-07-10 0 303.45 24.04 0.44 0.54 0.83 1.56 4.63 0.84 4.86 1.79 0.67 3.25 0.53 4.13 0.94 3.29 0.54 4.87 0.93 0 0.01 0 1.19 5.22 0.08 0.22 0.85 Ap-07-11 0.03 342.21 105.74 2.13 0.59 1.02 7.83 23.13 4.04 23.98 9.55 3.45 16.7 2.82 18.24 4.31 12.4 1.73 13.57 2.53 0 0 0 1.11 2.97 0.02 0.39 0.83 Ap-07-12 0 221.87 4.24 0 0.42 0.74 0.09 0.24 0.03 0.33 0.13 0.02 0.3 0.07 0.47 0.16 0.56 0.12 0.8 0.15 0 0 0 0.42 0 0.03 0.08 0.36 Ap-07-13 − 369.02 35.61 84.63 0.45 0.96 2.18 6.89 1.27 7.67 3.16 1.02 5.16 0.94 5.85 1.45 4.15 0.62 4.66 0.82 1.98 0 0 1.23 2.21 0.65 0.32 0.77 Ap-07-14 − 313.06 4.55 0.01 0.87 0.7 0.1 0.21 0.03 0.27 0.1 0.03 0.37 0.07 0.55 0.16 0.68 0.12 0.94 0.18 0 0 0 0.51 0.39 0.07 0.07 0.47 Ap-22-1 0 184.15 99.84 0 0.17 0.9 3.97 15.11 3.62 27.59 14.61 5.84 21.41 3.22 19.21 3.58 9.16 1.08 5.61 0.67 0 − − 0.57 0 − 0.48 1.01 Ap-22-2 0 185.64 152.79 0 0.18 0.76 3.62 13.6 3.4 26.77 17.04 6.33 29.14 4.89 29.73 5.83 14.31 1.62 8.3 1 0 − − 0.56 0.01 − 0.3 0.87 Ap-22-3 0.01 177.59 64.89 0 0.29 0.9 3.48 14.66 3.58 25.88 12.64 5.11 16.03 2.2 11.92 2.3 5.97 0.64 3.83 0.59 0 − − 0.92 0 − 0.62 1.1 Ap-22-4 0.14 211.54 81.79 0.04 0.22 1.04 3.55 16.16 4.08 30.14 15.09 4.91 20.47 3.05 16.92 3.04 7.78 0.92 4.82 0.68 0 − − 1.5 0.01 − 0.5 0.85 Ap-22-5 0.03 183.41 149.24 0 0 1.11 3.41 14.81 3.68 31.45 19.64 5.74 30.47 5.06 27.99 5.23 11.89 1.29 6.47 0.82 0 − − 0.47 0 − 0.36 0.72 Ap-22-6 0.04 161.4 46.19 0 0.37 0.88 2.12 11.38 3.25 25.04 11.11 4.2 11.72 1.72 9.14 1.67 4.23 0.53 3.11 0.41 0 − − 0.79 0.01 − 0.46 1.12 Ap-22-7 0.03 189.95 80.26 − 0.17 0.89 3.68 14.65 3.63 27.58 15.01 4.56 20.06 2.76 16.16 2.82 7.24 0.77 4.12 0.5 0 − − 1.02 0 − 0.61 0.8 Ap-22-8 0 191.69 100.46 0 0 0.84 3.23 13.76 3.51 28.49 15.54 5.45 22.08 3.34 19.13 3.69 9.29 1.11 5.68 0.75 0 − − 0.42 0.01 − 0.39 0.9 Ap-22-9 0 186.33 121.87 0 0.16 0.8 3.9 15.23 3.57 26.74 14.89 6.22 23.94 3.81 23.66 4.55 11.84 1.39 8.11 0.95 0 − − 0.95 0.01 − 0.33 1 Ap-22-10 0.25 193.79 169 45.78 0.55 1.25 4.95 19.56 4.5 33.69 19 5.87 31.62 4.97 30.63 6.13 15.53 1.76 9.8 1.19 1.27 − − 0.56 0.02 − 0.34 0.73 Ap-22-11 0.08 184.26 148.02 0 0.25 0.96 4.24 16.11 3.96 29.57 16.53 5.73 27.79 4.56 28.27 5.77 14.57 1.64 8.95 1.04 0 − − 0.42 0.01 − 0.32 0.81 Ap-22-12 − 177.85 55.42 1.39 0.2 0.78 3.95 14.74 3.31 24.43 11.95 4.48 15.02 2.09 11.53 2.05 5.1 0.61 3.67 0.46 0.02 − − 0.94 0 − 0.73 1.02 Ap-22-13 0.01 178.61 101.4 0 0.2 1.1 3.12 13.43 3.29 26.7 14.79 5.57 21.88 3.25 20.13 3.81 10.13 1.1 6.35 0.82 0 − − 0.85 0 − 0.33 0.94 Ap-22-14 0 197.55 62.3 0 0.11 0.8 2.27 11.49 2.93 23.35 10.66 3.25 13.73 2.06 12.26 2.45 6.39 0.78 4.16 0.49 0 − − 1.33 0.01 − 0.37 0.82 Ap-22-15 0.12 172.03 61.61 0 0.22 0.93 3.46 16.78 4.04 29.51 11.54 2.99 12.34 1.88 11.1 2.28 6.08 0.79 4.88 0.8 0 − − 0.94 0 − 0.48 0.76 Ap-22-16 0 179.23 104.41 0 0.25 0.62 3.53 14.85 3.51 29.62 17 5.36 26.23 3.71 20.08 4 9.64 1.06 5.6 0.62 0 − − 0.32 0 − 0.43 0.77 Ap-22-17 0 192.03 110.25 0 0.11 0.84 4.34 17.93 4.12 33.57 19.55 5.36 29.49 4.15 23.07 4.32 10.41 1.2 5.61 0.67 0 − − 0.3 0 − 0.53 0.68 Ap-22-18 − 189.31 111.03 0 0 0.77 3.73 16.01 3.72 29.33 18.51 5.44 28.42 4.04 23.24 4.26 9.64 0.99 4.83 0.61 0 − − 0.41 0 − 0.52 0.72 表 4 五台—恒山地区变基性岩变质成因磷灰石微量元素组成(×10−6)
Table 4. Trace element compositions of metamorphic apatite in metabasic rocks from the Wutai-Hengshan area (×10−6)
样品点号 Rb Sr Y Zr Ba Ga La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Nb Ta Pb Th U (La/Yb) N δEu Ap-03-2 0.03 1368.16 211.21 0.28 0.68 3.41 17.86 94.98 25.52 195.47 64.37 16.93 61.55 7.52 40.58 7.49 19.22 2.42 14.94 2.14 0 0 0 7.2 2.3 11.06 0.81 0.82 Ap-03-3 0.05 1004.23 296.07 0.1 0.42 2.44 10.16 65.76 19.06 162.25 61.25 17.09 69.89 9.26 55.28 11.22 28.42 3.69 22.18 3.08 0 0 0 8.62 2.35 8.91 0.31 0.8 Ap-03-5 0.32 1396.01 315.92 0.27 1.13 3.28 18.47 108.84 29.5 228.15 63.76 17.67 63.88 9.38 60.91 12.21 30.68 3.75 20.79 2.55 0 0.03 0 7.13 3.4 3.33 0.6 0.84 Ap-03-6 0.18 367.66 1340.29 0.04 0.21 7.86 90.85 361.61 71.45 430.42 181.11 17.02 244.68 43.53 262.76 48.27 125.31 16.59 106.09 13.88 0 0 0 6.58 4.02 5.11 0.58 0.25 Ap-03-10 0 400.93 277.6 0.12 0.38 5.04 61.86 223.69 41.29 243.34 66.91 15.85 80.09 9.31 49.3 9.67 25.2 3.19 18.84 3.07 0 0 0 4.01 4.4 3.18 2.23 0.66 Ap-03-11 0.06 3514.45 496.51 0 0 0.87 3.4 14.53 3.42 27.13 16.93 7.58 44.2 9.37 78.37 18.61 47.6 4.62 17.23 1.39 0 0 0 7.44 0.01 0 0 0.84 Ap-03-12 0.28 680.29 509.08 0.15 0.49 1.37 7.57 29.7 6.22 45.09 19.65 10.8 49.3 12.85 99.75 20.92 53.53 6.51 36.49 4.15 0 0 0 12.46 5.52 5.43 0.14 1.06 Ap-03-15 0.06 590.07 378.58 0.38 0.25 5.19 86.02 278.72 42.66 208.67 38.25 15.59 50.64 9.32 68.37 14 37.43 4.72 30.12 3.87 0 0 0 10.25 11.55 4.28 1.94 1.08 Ap-03-16 0.06 1536.28 400.4 0.44 0.93 5.73 36.02 195.81 53.63 424.94 134.48 31.84 133.31 15.13 77.7 14.2 35.62 4.49 26.12 3.88 0 0.01 0 9.36 1.11 12.28 0.94 0.72 Ap-03-20 0.14 713.26 704.28 1.81 0.88 3.05 25.82 99.77 20.58 140.25 63.02 17.53 104.35 20.36 142.86 27.93 70.25 8.6 48.61 5.58 0.02 0 0 13.05 5.44 8.91 0.36 0.66 Ap-21-2 0.19 2541.29 234.71 43.83 1.29 0.63 1.57 6.63 1.61 12.12 8.03 3.4 19.56 4.35 34.53 8.82 23.31 2.24 8.16 0.62 1.04 − − 5.43 0.02 − 0.13 0.83 Ap-21-3 0.12 3120.9 411.41 310.55 0.65 1.34 17.83 43.35 7.04 36.6 15.44 5.55 32.7 6.56 57.17 14.8 42.15 4.44 19.46 1.75 8.63 − − 7.35 5.47 − 0.62 0.75 Ap-21-4 0.03 3577.44 471.93 1.04 0 0.75 3.5 15.55 3.52 28.49 19.27 8.4 48.87 10.15 80.46 17.99 45.16 4.26 15.77 1.38 0.04 − − 7.51 0.02 − 0.15 0.83 Ap-21-5 1.4 3460.81 418.28 0.02 11.13 1.24 4.06 16.16 3.83 29.19 17.46 7.39 42.59 8.55 67.3 15.87 38.51 3.65 13.88 1.09 0 − − 7.24 2.24 − 0.2 0.83 Ap-21-6 2.12 1051.97 84.37 104.44 48.64 1.28 11.56 30.85 4.65 23.65 6.31 1.77 8.74 1.64 13.2 2.9 8.3 0.98 5.12 0.53 2.55 − − 2.67 4.93 − 1.53 0.73 Ap-21-7 0.06 3547.7 459.25 710.89 0 0.85 3.16 13.83 3.29 27.35 17.51 8.09 46.13 9.45 75.56 16.63 41.57 4.08 16.33 1.69 19.92 − − 8.54 0.06 − 0.13 0.87 Ap-21-8 0.08 3476.36 399.06 15.65 0 0.92 2.84 11.96 2.87 22.26 13.67 6.52 35.76 7.89 64.21 14.77 37.38 3.59 12.79 1.09 0.43 − − 7.35 0.26 − 0.15 0.9 Ap-21-9 0.09 2984.42 305.04 25.91 0.36 1.33 12.68 33.04 4.77 25.79 11.75 4.86 26.74 5.67 46.4 10.95 29.01 2.84 10.24 0.87 0.56 − − 6.72 1.45 − 0.84 0.84 Ap-21-11 0.05 3517.78 500.66 − 0 0.91 3.55 14.91 3.51 27.66 18.25 7.84 47.01 10.19 83.51 18.66 46.43 4.21 15.35 1.28 0 − − 7.5 0.01 − 0.16 0.82 Ap-07-1 0.01 379.37 2.94 0 1.25 0.67 0.76 1.88 0.26 1.84 0.6 0.16 0.57 0.08 0.51 0.11 0.38 0.08 0.49 0.08 0 0 0 0.78 0.02 0.11 1.05 0.85 Ap-07-2 − 360.8 4.31 0 0.71 0.84 0.47 1.16 0.17 0.93 0.39 0.09 0.82 0.09 0.49 0.16 0.58 0.1 0.69 0.14 0 0 0 0.64 0.01 0.07 0.46 0.46 Ap-07-3 0.18 312.5 4.89 0.01 0.46 0.75 0.78 1.3 0.23 1.6 0.38 0.1 0.78 0.12 0.66 0.17 0.63 0.11 0.9 0.18 0 0 0 0.52 0.02 0.05 0.59 0.54 Ap-07-4 − 312.78 3.28 0 0.42 0.87 0.18 0.44 0.05 0.4 0.17 0.01 0.31 0.05 0.37 0.12 0.4 0.1 0.7 0.08 0 0 0 0.51 0.04 0.06 0.18 0.12 Ap-07-5 0.44 370.84 3.57 0.09 4.94 1.24 0.88 2.19 0.3 2.09 0.38 0.11 0.74 0.09 0.45 0.14 0.51 0.07 0.69 0.13 0 0 0 0.73 0.01 0.08 0.87 0.61 Ap-07-6 0 328.42 2.55 0.19 0.51 0.72 0.1 0.2 0.03 0.23 0.08 0.01 0.09 0.03 0.28 0.08 0.31 0.07 0.51 0.11 0 0 0 0.56 0.03 0.09 0.13 0.33 Ap-07-7 0 440.71 3.92 1.51 1.24 0.96 0.94 2.28 0.36 2.26 0.54 0.2 1.16 0.12 0.75 0.16 0.47 0.07 0.63 0.1 0.05 0 0 1.01 0.01 0.07 1.01 0.79 Ap-07-8 0.01 335.44 2.18 0 0.37 0.82 0.14 0.2 0.03 0.27 0.05 0.01 0.15 0.03 0.21 0.08 0.36 0.05 0.5 0.12 0 0 0 0.52 0 0.07 0.18 0.53 Ap-07-9 0.01 243.68 5.52 0 0.29 0.68 0.08 0.14 0.02 0.14 0.03 0.01 0.17 0.05 0.55 0.18 0.74 0.1 0.91 0.18 0 0 0 0.38 0 0.12 0.06 0.64 Ap-07-10 0 303.45 24.04 0.44 0.54 0.83 1.56 4.63 0.84 4.86 1.79 0.67 3.25 0.53 4.13 0.94 3.29 0.54 4.87 0.93 0 0.01 0 1.19 5.22 0.08 0.22 0.85 Ap-07-11 0.03 342.21 105.74 2.13 0.59 1.02 7.83 23.13 4.04 23.98 9.55 3.45 16.7 2.82 18.24 4.31 12.4 1.73 13.57 2.53 0 0 0 1.11 2.97 0.02 0.39 0.83 Ap-07-12 0 221.87 4.24 0 0.42 0.74 0.09 0.24 0.03 0.33 0.13 0.02 0.3 0.07 0.47 0.16 0.56 0.12 0.8 0.15 0 0 0 0.42 0 0.03 0.08 0.36 Ap-07-13 − 369.02 35.61 84.63 0.45 0.96 2.18 6.89 1.27 7.67 3.16 1.02 5.16 0.94 5.85 1.45 4.15 0.62 4.66 0.82 1.98 0 0 1.23 2.21 0.65 0.32 0.77 Ap-07-14 − 313.06 4.55 0.01 0.87 0.7 0.1 0.21 0.03 0.27 0.1 0.03 0.37 0.07 0.55 0.16 0.68 0.12 0.94 0.18 0 0 0 0.51 0.39 0.07 0.07 0.47 Ap-22-1 0 184.15 99.84 0 0.17 0.9 3.97 15.11 3.62 27.59 14.61 5.84 21.41 3.22 19.21 3.58 9.16 1.08 5.61 0.67 0 − − 0.57 0 − 0.48 1.01 Ap-22-2 0 185.64 152.79 0 0.18 0.76 3.62 13.6 3.4 26.77 17.04 6.33 29.14 4.89 29.73 5.83 14.31 1.62 8.3 1 0 − − 0.56 0.01 − 0.3 0.87 Ap-22-3 0.01 177.59 64.89 0 0.29 0.9 3.48 14.66 3.58 25.88 12.64 5.11 16.03 2.2 11.92 2.3 5.97 0.64 3.83 0.59 0 − − 0.92 0 − 0.62 1.1 Ap-22-4 0.14 211.54 81.79 0.04 0.22 1.04 3.55 16.16 4.08 30.14 15.09 4.91 20.47 3.05 16.92 3.04 7.78 0.92 4.82 0.68 0 − − 1.5 0.01 − 0.5 0.85 Ap-22-5 0.03 183.41 149.24 0 0 1.11 3.41 14.81 3.68 31.45 19.64 5.74 30.47 5.06 27.99 5.23 11.89 1.29 6.47 0.82 0 − − 0.47 0 − 0.36 0.72 Ap-22-6 0.04 161.4 46.19 0 0.37 0.88 2.12 11.38 3.25 25.04 11.11 4.2 11.72 1.72 9.14 1.67 4.23 0.53 3.11 0.41 0 − − 0.79 0.01 − 0.46 1.12 Ap-22-7 0.03 189.95 80.26 − 0.17 0.89 3.68 14.65 3.63 27.58 15.01 4.56 20.06 2.76 16.16 2.82 7.24 0.77 4.12 0.5 0 − − 1.02 0 − 0.61 0.8 Ap-22-8 0 191.69 100.46 0 0 0.84 3.23 13.76 3.51 28.49 15.54 5.45 22.08 3.34 19.13 3.69 9.29 1.11 5.68 0.75 0 − − 0.42 0.01 − 0.39 0.9 Ap-22-9 0 186.33 121.87 0 0.16 0.8 3.9 15.23 3.57 26.74 14.89 6.22 23.94 3.81 23.66 4.55 11.84 1.39 8.11 0.95 0 − − 0.95 0.01 − 0.33 1 Ap-22-10 0.25 193.79 169 45.78 0.55 1.25 4.95 19.56 4.5 33.69 19 5.87 31.62 4.97 30.63 6.13 15.53 1.76 9.8 1.19 1.27 − − 0.56 0.02 − 0.34 0.73 Ap-22-11 0.08 184.26 148.02 0 0.25 0.96 4.24 16.11 3.96 29.57 16.53 5.73 27.79 4.56 28.27 5.77 14.57 1.64 8.95 1.04 0 − − 0.42 0.01 − 0.32 0.81 Ap-22-12 − 177.85 55.42 1.39 0.2 0.78 3.95 14.74 3.31 24.43 11.95 4.48 15.02 2.09 11.53 2.05 5.1 0.61 3.67 0.46 0.02 − − 0.94 0 − 0.73 1.02 Ap-22-13 0.01 178.61 101.4 0 0.2 1.1 3.12 13.43 3.29 26.7 14.79 5.57 21.88 3.25 20.13 3.81 10.13 1.1 6.35 0.82 0 − − 0.85 0 − 0.33 0.94 Ap-22-14 0 197.55 62.3 0 0.11 0.8 2.27 11.49 2.93 23.35 10.66 3.25 13.73 2.06 12.26 2.45 6.39 0.78 4.16 0.49 0 − − 1.33 0.01 − 0.37 0.82 Ap-22-15 0.12 172.03 61.61 0 0.22 0.93 3.46 16.78 4.04 29.51 11.54 2.99 12.34 1.88 11.1 2.28 6.08 0.79 4.88 0.8 0 − − 0.94 0 − 0.48 0.76 Ap-22-16 0 179.23 104.41 0 0.25 0.62 3.53 14.85 3.51 29.62 17 5.36 26.23 3.71 20.08 4 9.64 1.06 5.6 0.62 0 − − 0.32 0 − 0.43 0.77 Ap-22-17 0 192.03 110.25 0 0.11 0.84 4.34 17.93 4.12 33.57 19.55 5.36 29.49 4.15 23.07 4.32 10.41 1.2 5.61 0.67 0 − − 0.3 0 − 0.53 0.68 Ap-22-18 − 189.31 111.03 0 0 0.77 3.73 16.01 3.72 29.33 18.51 5.44 28.42 4.04 23.24 4.26 9.64 0.99 4.83 0.61 0 − − 0.41 0 − 0.52 0.72 -
[1] BAI J, 1986. The Early Precambrian geology of Wutaishan[M]. Tianjin: Tianjin Science and Technology Press: 1-475. (in Chinese) [2] BRUAND E, FOWLER M, STOREY C, et al., 2017. Apatite trace element and isotope applications to petrogenesis and provenance[J]. American Mineralogist, 102(1): 75-84. doi: 10.2138/am-2017-5744 [3] CHEN H X, LIU J H, ZHANG Q W L, et al., 2020. A long-lived tectono-metamorphic event in the Late Paleoproterozoic: evidence from SIMS U-Th-Pb dating of monazite from metapelite in central-south Trans-North China Orogen[J]. Precambrian Research, 336: 105497. doi: 10.1016/j.precamres.2019.105497 [4] CHEN R X, ZHENG Y F, XIE L W, 2010. Metamorphic growth and recrystallization of zircon: distinction by simultaneous in-situ analyses of trace elements, U-Th-Pb and Lu-Hf isotopes in zircons from eclogite-facies rocks in the Sulu Orogen[J]. Lithos, 114(1-2): 132-154. doi: 10.1016/j.lithos.2009.08.006 [5] CHEN R X, ZHENG Y F, 2017. Metamorphic zirconology of continental subduction zones[J]. Journal of Asian Earth Sciences, 145: 149-176. doi: 10.1016/j.jseaes.2017.04.029 [6] CHEN W, SIMONETTI A, 2013. In-situ determination of major and trace elements in calcite and apatite, and U–Pb ages of apatite from the Oka carbonatite complex: insights into a complex crystallization history[J]. Chemical Geology, 353: 151-172. doi: 10.1016/j.chemgeo.2012.04.022 [7] CHEN Y X, ZHENG Y F, CHEN R X, et al., 2011. Metamorphic growth and recrystallization of zircons in extremely 18O-depleted rocks during eclogite-facies metamorphism: evidence from U-Pb ages, trace elements, and O-Hf isotopes[J]. Geochimica et Cosmochimica Acta, 75(17): 4877-4898. doi: 10.1016/j.gca.2011.06.003 [8] CHEW D M, SPIKINGS R A, 2021. Apatite U-Pb thermochronology: a review[J]. Minerals, 11(10): 1095. doi: 10.3390/min11101095 [9] CHU M F, WANG K L, GRILLFIN W L, et al., 2009. Apatite composition: tracing petrogenetic processes in Transhimalayan granitoids[J]. Journal of Petrology, 50(10): 1829-1855. doi: 10.1093/petrology/egp054 [10] FENG W Y, ZHENG J H, 2023. Apatite trace elements and O-Sr isotopes reveal different magmatic sources of Fe-Ti oxide deposits in the eastern Tianshan, NW China[J]. Ore Geology Reviews, 163: 105764. doi: 10.1016/j.oregeorev.2023.105764 [11] FILIPPELLI G M, 2002. The global phosphorus cycle[J]. Reviews in Mineralogy and Geochemistry, 48(1): 391-425. doi: 10.2138/rmg.2002.48.10 [12] GALL Q, DAVIS W J, LOWE D G, et al., 2017. Diagenetic apatite character and in situion microprobe U-Pb age, Keeseville Formation, Potsdam Group, New York State[J]. Canadian Journal of Earth Sciences, 54(7): 785-797. doi: 10.1139/cjes-2016-0195 [13] GAO P, SANTOSH M, 2019. Building the Wutai arc: insights into the Archean-Paleoproterozoic crustal evolution of the North China Craton[J]. Precambrian Research, 333: 105429. doi: 10.1016/j.precamres.2019.105429 [14] GAO P, SANTOSH M, KWON S, et al., 2021. Ocean plate stratigraphy of a long-lived Precambrian subduction-accretion system: the Wutai complex, North China Craton[J]. Precambrian Research, 363: 106334. doi: 10.1016/j.precamres.2021.106334 [15] GAO S S, LI Q G, HU P Y, et al., 2023. Geochemical features and tectonic significance of Late Archean metavolcanic rocks in Hengshan Area, North China Craton[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 59(1): 143-160. (in Chinese with English abstract [16] GUO R R, LIU S W, SANTOSH M, et al., 2013. Geochemistry, zircon U–Pb geochronology and Lu–Hf isotopes of metavolcanics from eastern Hebei reveal Neoarchean subduction tectonics in the North China Craton[J]. Gondwana Research, 24(2): 664-686. doi: 10.1016/j.gr.2012.12.025 [17] GUO R R, LIU S W, WYMAN D, et al., 2015. Neoarchean subduction: a case study of arc volcanic rocks in Qinglong-Zhuzhangzi area of the eastern Hebei Province, North China Craton[J]. Precambrian Research, 264: 36-62. doi: 10.1016/j.precamres.2015.04.007 [18] GUO R R, LIU S W, BAI X, et al., 2017. A Neoarchean subduction recorded by the eastern Hebei Precambrian basement, North China Craton: geochemical fingerprints from metavolcanic rocks of the Saheqiao-Shangying-Qinglong supracrustal belt[J]. Journal of Asian Earth Sciences, 135: 347-369. doi: 10.1016/j.jseaes.2017.01.007 [19] HAMMERLI J, GREBER N D, MARTIN L, et al., 2021. Tracing sulfur sources in the crust via SIMS measurements of sulfur isotopes in apatite[J]. Chemical Geology, 579: 120242. doi: 10.1016/j.chemgeo.2021.120242 [20] HE L C, ZHANG J, ZHAO G C, et al., 2021. Macro-and microstructural analysis of the Zhujiafang ductile shear zone, Hengshan complex: tectonic nature and geodynamic implications of the evolution of Trans–North China orogen[J]. GSA Bulletin, 133(5-6): 1237-1255. doi: 10.1130/B35672.1 [21] HENRICHS I A, O'SULLIVAN G, CHEW D M, et al., 2018. The trace element and U-Pb systematics of metamorphic apatite[J]. Chemical Geology, 483: 218-238. doi: 10.1016/j.chemgeo.2017.12.031 [22] HOSKIN P W O, KINNY P D, WYBORN D, et al., 2000. Identifying accessory mineral saturation during differentiation in granitoid magmas: an integrated approach[J]. Journal of Petrology, 41(9): 1365-1396. doi: 10.1093/petrology/41.9.1365 [23] HU Y L, LIU S W, FU J H, et al., 2021. Neoarchean-early Paleoproterozoic granitoids, the geothermal gradient and geodynamic evolution in the Hengshan Terrane, North China Craton[J]. Gondwana Research, 94: 143-163. doi: 10.1016/j.gr.2021.03.004 [24] HUGHES J M, RAKOVAN J F, 2015. Structurally robust, chemically diverse: apatite and apatite supergroup minerals[J]. Elements, 11(3): 165-170. doi: 10.2113/gselements.11.3.165 [25] KRÖNER A, WILDE S A, LI J H, et al., 2005a. Age and evolution of a Late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of Northern China[J]. Journal of Asian Earth Sciences, 24(5): 577-595. doi: 10.1016/j.jseaes.2004.01.001 [26] KRÖNER A, WILDE S A, O’BRIEN P J, et al., 2005b. Field relationships, geochemistry, zircon ages and evolution of a Late Archaean to Palaeoproterozoic lower crustal section in the Hengshan Terrain of Northern China[J]. Acta Geologica Sinica (English Edition), 79(5): 605-632. [27] LI T S, ZHAI M G, PENG P, et al., 2010. Ca. 2.5 billion year old coeval ultramafic–mafic and syenitic dykes in Eastern Hebei: implications for Cratonization of the North China Craton[J]. Precambrian Research, 180(3-4): 143-155. doi: 10.1016/j.precamres.2010.04.001 [28] LIU C H, LIU F L, SHI J R, et al., 2016a. Depositional age and provenance of the Wutai group: evidence from zircon U-Pb and Lu-Hf isotopes and whole-rock geochemistry[J]. Precambrian Research, 281: 269-290. doi: 10.1016/j.precamres.2016.06.002 [29] LIU C H, ZHAO G C, LIU F L, et al., 2016b. Constraints of volcanic rocks of the Wutai complex (Shanxi Province, Northern China) on a giant Late Neoarchean intra-oceanic arc system in the Trans-North China Orogen[J]. Journal of Asian Earth Sciences, 123: 178-212. doi: 10.1016/j.jseaes.2016.04.006 [30] LIU J B, ZHANG L M, CHEN Y, et al., 2013. Chlorine contents in apatites of eclogites and hosted veins from the Dabie-Sulu UHP belt: implication for fluid evolution in the process of metamorphism[J]. Chinese Science Bulletin, 58(22): 2165-2168. (in Chinese with English abstract doi: 10.1360/csb2013-58-22-2165 [31] LIU J H, ZHANG Q W L, LI Z M G, et al., 2020. Metamorphic evolution and U-Pb geochronology of metapelite, northeastern Wutai complex: implications for Paleoproterozoic tectonic evolution of the Trans-North China Orogen[J]. Precambrian Research, 350: 105928. doi: 10.1016/j.precamres.2020.105928 [32] LIU S Q, ZHANG G B, LI H J, 2023. Fingerprinting crustal anatexis with apatite trace element, halogen, and Sr isotope data[J]. Geochimica et Cosmochimica Acta, 351: 14-31. doi: 10.1016/j.gca.2023.04.021 [33] LIU S W, PAN Y M, LI J H, et al., 2002. Geological and isotopic geochemical constraints on the evolution of the Fuping complex, North China Craton[J]. Precambrian Research, 117(1-2): 41-56. doi: 10.1016/S0301-9268(02)00063-3 [34] LIU S W, PAN Y M, XIE Q L, et al., 2004. Archean geodynamics in the central zone, North China Craton: constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutai complexes[J]. Precambrian Research, 130(1-4): 229-249. doi: 10.1016/j.precamres.2003.12.001 [35] LIU S W, ZHAO G C, WILDE S A, et al., 2006. Th-U-Pb monazite geochronology of the Lüliang and Wutai complexes: constraints on the tectonothermal evolution of the Trans-North China Orogen[J]. Precambrian Research, 148(3-4): 205-224. doi: 10.1016/j.precamres.2006.04.003 [36] MAO M X, LIOU P, DU L L, et al., 2024. Petrogenesis of 2.7-2.65Ga TTGs in the Wutai complex: constraints on the Neoarchean crustal evolution of the North China Craton[J]. Precambrian Research, 400: 107245. doi: 10.1016/j.precamres.2023.107245 [37] MIYASHIRO A, 1974. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 274(4): 321-355. doi: 10.2475/ajs.274.4.321 [38] NATHWANI C L, LOADER M A, WILKINSON J J, et al., 2020. Multi-stage arc magma evolution recorded by apatite in volcanic rocks[J]. Geology, 48(4): 323-327. doi: 10.1130/G46998.1 [39] O'SULLIVAN G, CHEW D, KENNY G, et al., 2020. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth-Science Reviews, 201: 103044. doi: 10.1016/j.earscirev.2019.103044 [40] O'SULLIVAN G J, CHEW D M, 2020. The clastic record of a Wilson cycle: evidence from detrital apatite petrochronology of the Grampian-Taconic fore-arc[J]. Earth and Planetary Science Letters, 552: 116588. doi: 10.1016/j.jpgl.2020.116588 [41] PAN L C, HU R Z, WANG X S, et al., 2016. Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: examples from four granite plutons in the Sanjiang Region, SW China[J]. Lithos, 254-255: 118-130. doi: 10.1016/j.lithos.2016.03.010 [42] PATON C, HELLSTROM J, PAUL B, et al., 2011. Iolite: freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 26(12): 2508-2518. doi: 10.1039/c1ja10172b [43] PEARCE J A, 1996. A user’s guide to basalt discrimination diagrams[M]//WYMAN D A. Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. St. John's: Geological Association of Canada: 79-113. [44] PENG P, FENG L J, SUN F B, et al., 2017. Dating the Gaofan and Hutuo groups – Targets to investigate the Paleoproterozoic great oxidation event in North China[J]. Journal of Asian Earth Sciences, 138: 535-547. doi: 10.1016/j.jseaes.2017.03.001 [45] PICCOLI P M, CANDELA P A, 2002. Apatite in igneous systems[J]. Reviews in Mineralogy and Geochemistry, 48(1): 255-292. doi: 10.2138/rmg.2002.48.6 [46] POLAT A, KUSKY T, LI J H, 2005. Geochemistry of Neoarchean (ca. 2.55-2.50 Ga) volcanic and ophiolitic rocks in the Wutaishan greenstone belt, central orogenic belt, North China Craton: implications for geodynamic setting and continental growth[J]. GSA Bulletin, 117(11-12): 1387-1399. [47] QIAN J H, WEI C J, ZHOU X W, et al., 2013. Metamorphic P-T paths and new zircon U-Pb age data for garnet-mica schist from the Wutai group, North China Craton[J]. Precambrian Research, 233: 282-296. doi: 10.1016/j.precamres.2013.05.012 [48] QIAN J H, WEI C J, 2016. P-T-t evolution of garnet amphibolites in the Wutai-Hengshan area, North China Craton: insights from phase equilibria and geochronology[J]. Journal of Metamorphic Geology, 34(5): 423-446. doi: 10.1111/jmg.12186 [49] SPEAR F S, PYLE J M, 2002. Apatite, monazite, and xenotime in metamorphic rocks[J]. Reviews in Mineralogy and Geochemistry, 48(1): 293-335. doi: 10.2138/rmg.2002.48.7 [50] STOKES T N, BROMILEY G D, POTTS N J, et al., 2019. The effect of melt composition and oxygen fugacity on manganese partitioning between apatite and silicate melt[J]. Chemical Geology, 506: 162-174. doi: 10.1016/j.chemgeo.2018.12.015 [51] SUN D, LI Q G, LIU S W, et al., 2019. Neoarchean-Paleoproterozoic magmatic arc evolution in the Wutai-Hengshan-Fuping area, North China Craton: new perspectives from zircon U-Pb ages and Hf isotopic data[J]. Precambrian Research, 331: 105368. doi: 10.1016/j.precamres.2019.105368 [52] SUN J F, YANG J H, ZHANG J H, et al., 2021. Apatite geochemical and Sr-Nd isotopic insights into granitoid petrogenesis[J]. Chemical Geology, 566: 120104. doi: 10.1016/j.chemgeo.2021.120104 [53] SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Magmatism in the Ocean Basins[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [54] TAN H M R, HUANG X W, MENG Y M, et al., 2023. Multivariate statistical analysis of trace elements in apatite: discrimination of apatite with different origins[J]. Ore Geology Reviews, 153: 105269. doi: 10.1016/j.oregeorev.2022.105269 [55] TANG L, SANTOSH M, 2018. Neoarchean granite-greenstone belts and related ore mineralization in the North China Craton: an overview[J]. Geoscience Frontiers, 9(3): 751-768. doi: 10.1016/j.gsf.2017.04.002 [56] TANG M, LEE C T A, JI W Q, et al., 2020. Crustal thickening and endogenic oxidation of magmatic sulfur[J]. Science Advances, 6(31): eaba6342. doi: 10.1126/sciadv.aba6342 [57] TRAP P, FAURE M, LIN W, et al., 2007. Late Paleoproterozoic (1900-1800 Ma) nappe stacking and polyphase deformation in the Hengshan-Wutaishan area: implications for the understanding of the Trans-North-China belt, North China Craton[J]. Precambrian Research, 156(1-2): 85-106. doi: 10.1016/j.precamres.2007.03.001 [58] WAN Y S, DONG C Y, XIE H Q, et al., 2022. Huge growth of the Late Mesoarchean–Early Neoarchean (2.6~3.0 Ga) continental crust in the North China Craton: a review[J]. Journal of Geomechanics, 28(5): 866-906. (in Chinese with English abstract [59] WANG C L, ZHANG L C, LAN C Y, et al., 2014. Petrology and geochemistry of the Wangjiazhuang banded iron formation and associated supracrustal rocks from the Wutai greenstone belt in the North China Craton: implications for their origin and tectonic setting[J]. Precambrian Research, 255: 603-626. doi: 10.1016/j.precamres.2014.08.002 [60] WANG X P, PENG P, LI X B, 2023. Petrogenesis and geological implications of the ca. 2520Ma gabbroic intrusions in Wutai Mountain of the North China Craton[J]. Acta Petrologica Sinica, 39(3): 845-864. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.03.13 [61] WANG Z H, WILDE S A, WANG K Y, et al., 2004. A MORB-arc basalt-Adakite association in the 2.5 Ga Wutai greenstone belt: Late Archean magmatism and crustal growth in the North China Craton[J]. Precambrian Research, 131(3-4): 323-343. doi: 10.1016/j.precamres.2003.12.014 [62] WEBSTER J D, PICCOLI P M, 2015. Magmatic apatite: a powerful, yet deceptive, mineral[J]. Elements, 11(3): 177-182. doi: 10.2113/gselements.11.3.177 [63] WEI C J, 2018. Paleoproterozoic metamorphism and tectonic evolution in Wutai-Hengshan region, Trans-North China Orogen[J]. Earth Science, 43(1): 24-43. (in Chinese with English abstract [64] WILDE S A, CAWOOD P A, WANG K Y, et al., 2004. Determining Precambrian crustal evolution in China: a case-study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U-Pb geochronology[J]. Geological Society, London, Special Publications, 226(1): 5-25. doi: 10.1144/GSL.SP.2004.226.01.02 [65] XIA Q X, ZHENG Y F, YUAN H L, et al., 2009. Contrasting Lu-Hf and U-Th-Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie Orogen, China[J]. Lithos, 112(3-4): 477-496. doi: 10.1016/j.lithos.2009.04.015 [66] XIA Q X, ZHENG Y F, HU Z C, 2010. Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie Orogen: implications for action of supercritical fluid during continental subduction-zone metamorphism[J]. Lithos, 114(3-4): 385-412. doi: 10.1016/j.lithos.2009.09.013 [67] XING K, SHU Q H, 2021. Applications of apatite in study of ore deposits: a review[J]. Mineral Deposits, 40(2): 189-205. (in Chinese with English abstract [68] YANG Q Y, SANTOSH M, 2015. Paleoproterozoic arc magmatism in the North China Craton: no Siderian global plate tectonic shutdown[J]. Gondwana Research, 28(1): 82-105. doi: 10.1016/j.gr.2014.08.005 [69] YANG Q Y, SANTOSH M, 2017. The building of an Archean microcontinent: evidence from the North China Craton[J]. Gondwana Research, 50: 3-37. doi: 10.1016/j.gr.2017.01.003 [70] ZAFAR T, REHMAN H U, MAHAR M A, et al., 2020. A critical review on petrogenetic, metallogenic and geodynamic implications of granitic rocks exposed in north and East China: new insights from apatite geochemistry[J]. Journal of Geodynamics, 136: 101723. doi: 10.1016/j.jog.2020.101723 [71] ZHAI M G, GUO J H, LIU W J, 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review[J]. Journal of Asian Earth Sciences, 24(5): 547-561. doi: 10.1016/j.jseaes.2004.01.018 [72] ZHAI M G, SANTOSH M, 2011. The Early Precambrian odyssey of the North China Craton: a synoptic overview[J]. Gondwana Research, 20(1): 6-25. doi: 10.1016/j.gr.2011.02.005 [73] ZHAI M G, 2019. Tectonic evolution of the North China Craton[J]. Journal of Geomechanics, 25(5): 722-745. (in Chinese with English abstract [74] ZHAN Q Y, ZHU D C, WANG Q, et al., 2022. Partitioning behaviors of some key elements in apatite and their implications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 41(6): 1087-1099. (in Chinese with English abstract [75] ZHANG J, ZHAO G C, SUN M, et al., 2006. High-pressure mafic granulites in the Trans–North China Orogen: tectonic significance and age[J]. Gondwana Research, 9(3): 349-362. doi: 10.1016/j.gr.2005.10.005 [76] ZHANG J, ZHAO G C, LI S Z, et al., 2007. Deformation history of the Hengshan complex: implications for the tectonic evolution of the Trans–North China Orogen[J]. Journal of Structural Geology, 29(6): 933-949. doi: 10.1016/j.jsg.2007.02.013 [77] ZHANG J, ZHAO G C, LI S Z, et al., 2012. Structural pattern of the Wutai complex and its constraints on the tectonic framework of the Trans–North China Orogen[J]. Precambrian Research, 222-223: 212-229. doi: 10.1016/j.precamres.2011.08.009 [78] ZHANG J, ZHAO G C, SHEN W L, et al., 2015. Aeromagnetic study of the Hengshan-Wutai-Fuping region: unraveling a crustal profile of the Paleoproterozoic Trans–North China Orogen[J]. Tectonophysics, 662: 208-218. doi: 10.1016/j.tecto.2015.08.025 [79] ZHANG S Y, YANG L Q, HE W Y, et al., 2021. Melt volatile budgets and magma evolution revealed by diverse apatite halogen and trace elements compositions: a case study at Pulang porphyry Cu-Au deposit, China[J]. Ore Geology Reviews, 139: 104509. doi: 10.1016/j.oregeorev.2021.104509 [80] ZHAO G C, WILDE S A, CAWOOD P A, et al., 1998. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting[J]. International Geology Review, 40(8): 706-721. doi: 10.1080/00206819809465233 [81] ZHAO G C, CAWOOD P A, WILDE S A, et al., 2000. Metamorphism of basement rocks in the central zone of the North China Craton: implications for Paleoproterozoic tectonic evolution[J]. Precambrian Research, 103(1-2): 55-88. doi: 10.1016/S0301-9268(00)00076-0 [82] ZHAO G C, WILDE S A, CAWOOD P A, et al., 2001. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research, 107(1-2): 45-73. doi: 10.1016/S0301-9268(00)00154-6 [83] ZHAO G C, SUN M, WILDE S A, et al., 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002 [84] ZHAO G C, KRÖNER A, WILDE S A, et al., 2007. Lithotectonic elements and geological events in the Hengshan–Wutai–Fuping belt: a synthesis and implications for the evolution of the Trans-North China Orogen[J]. Geological Magazine, 144(5): 753-775. doi: 10.1017/S0016756807003561 [85] ZHAO G C, WILDE S A, GUO J H, et al., 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton[J]. Precambrian Research, 177(3-4): 266-276. doi: 10.1016/j.precamres.2009.12.007 [86] ZHAO G C, CAWOOD P A, LI S Z, et al., 2012. Amalgamation of the North China Craton: key issues and discussion[J]. Precambrian Research, 222-223: 55-76. doi: 10.1016/j.precamres.2012.09.016 [87] ZHAO Y F, HU J M, GONG W B, et al., 2019. Comparison of main characteristics of different Precambrian blocks in the Trans-North China Orogen[J]. Acta Petrologica Sinica, 35(7): 2259-2279. (in Chinese with English abstract doi: 10.18654/1000-0569/2019.07.19 [88] 白瑾,1986. 五台山早前寒武纪地质[M]. 天津:天津科学技术出版社:1-475. [89] 高山松,李秋根,胡鹏月,等,2023. 华北克拉通恒山地区晚太古代变质火山岩的地球化学特征及构造意义[J]. 北京大学学报(自然科学版),59(1):143-160. [90] 刘景波,张灵敏,陈意,等,2013. 大别-苏鲁造山带超高压榴辉岩和脉体磷灰石含氯特征与变质流体演化[J]. 科学通报,58(22):2165-2168. [91] 万渝生,董春艳,颉颃强,等,2022. 华北克拉通新太古代早期—中太古代晚期(2.6~3.0 Ga)巨量陆壳增生:综述[J]. 地质力学学报,28(5):866-906. doi: 10.12090/j.issn.1006-6616.20222817 [92] 王欣平,彭澎,李小兵,2023. 华北克拉通五台山~2520 Ma辉长岩侵入体的成因及其地质意义[J]. 岩石学报,39(3):845-864. doi: 10.18654/1000-0569/2023.03.13 [93] 魏春景,2018. 华北中部造山带五台-恒山地区古元古代变质作用与构造演化[J]. 地球科学,43(1):24-43. [94] 邢凯,舒启海,2021. 磷灰石在矿床学研究中的应用[J]. 矿床地质,40(2):189-205. [95] 翟明国,2019. 华北克拉通构造演化[J]. 地质力学学报,25(5):722-745. doi: 10.12090/j.issn.1006-6616.2019.25.05.063 [96] 詹琼窑,朱弟成,王青,等,2022. 磷灰石中一些关键元素的分配行为及意义[J]. 矿物岩石地球化学通报,41(6):1087-1099. [97] 赵远方,胡健民,公王斌,等,2019. 华北中部构造带不同前寒武纪地块主要特征对比研究[J]. 岩石学报,35(7):2259-2279. doi: 10.18654/1000-0569/2019.07.19 期刊类型引用(3)
1. 周永刚,戴黎明,田振环,于春楠,张振飞,刘伟,裴伦培. 鲁北平原南部QK4钻孔岩心特征及第四纪地层划分. 物探与化探. 2023(01): 55-64 . 百度学术
2. 刘宪光,杨晋炜,胡利,夏斌,孙丰瑞,王钜,董军林. 长江三角洲北翼ZKA02孔第四纪多重地层划分研究. 地层学杂志. 2023(01): 49-58 . 百度学术
3. 申家宁,晏井春,高卫国,钱林波,韩璐,陈梦舫. 多相抽提技术在化工污染地块修复中的应用潜力. 环境工程学报. 2021(10): 3286-3296 . 百度学术
其他类型引用(3)
-