Geochemical characteristics of apatite in metabasic rocks under different metamorphic conditions: a case study from the Paleoproterozoic Trans-North China Orogen
-
摘要: 磷灰石是一种常见的副矿物,在各种岩石类型中均有产出,其U-Pb年龄、微量元素(特别是REE、Th、U和Sr等)和Sr-Nd同位素组成可提供重要的年代学和地球化学信息。目前对于其在造山过程中不同变质级别下的地球化学行为的研究并不清楚。作为古元古代典型的陆−陆碰撞造山带,华北克拉通中部造山带记录了一套从绿片岩相、经角闪岩相至麻粒岩相的完整变质岩石组合,因而是研究基性岩变质演化过程磷灰石地球化学属性的理想区域。文章在中部造山带的五台—恒山地区系统采集了绿片岩、斜长角闪岩和基性麻粒岩样品,并对不同变质级别变基性岩中的磷灰石进行了详细的岩相学和微量元素研究。研究结果表明,绿片岩样品中含有岩浆成因和变质成因2种类型的磷灰石,斜长角闪岩样品中主要为变质成因磷灰石,而基性麻粒岩样品中主要为深熔型磷灰石,表现出岩浆成因磷灰石的微量元素特征,可能结晶自深熔熔体。研究表明磷灰石的微量元素变化能够清晰地反映变质演化过程中随温压条件变化而出现的熔体和共存结晶矿物的影响,为了解造山作用过程中的元素迁移和平衡提供了新的约束。Abstract:
Objective Apatite is a common accessory mineral that is widely distributed in various rock types. Its U-Pb age, trace elements (particularly REE, Th, U, and Sr), and Sr-Nd isotopic compositions provide important information on its chronology and magmatism. However, the geochemical behavior at different metamorphic levels during orogenesis remains unclear. As a typical continent-to-continent collisional orogenic belt in the Paleoproterozoic, the Trans-North China Orogen (TNCO) has recorded an integrated metamorphic sequence ranging from greenschist to amphibolite to granulite facies. Therefore, it is an ideal area to study the geochemical behavior of apatite during various grades of metamorphism involving the orogenic process. Methods In this study, we systematically collected metabasic samples of different metamorphic grades, including greenschist, amphibolite, and mafic granulite, in the Wutai-Hengshan area of the TNCO. We conducted detailed petrographic observations and geochemical analyses of apatite grains from metabasic rocks with different metamorphic grades. Results Our results showed that the apatite grains from the greenschist samples had both magmatic and metamorphic origins. The apatite grains in the amphibolite samples were mainly of metamorphic origin. In contrast, the grains from the granulite samples were closely related to crustal anatexis, exhibiting geochemical characteristics of magmatic-origin apatite. Conclusion This study shows that trace element variations in apatite can clearly reflect the influence of metamorphic grades, crustal anatexis, and coexisting rock-forming minerals with variations in temperature and pressure conditions during metamorphism. Significance The results of this study provide new constraints to our understanding of elemental migration and the geochemical balance within apatite during orogeny. -
Key words:
- North China Craton /
- Trans-North China Orogen /
- metabasic rocks /
- metamorphism /
- apatite /
- trace elements
-
图 1 华北克拉通构造单元划分(据Zhao et al.,2001,2005修改)
Figure 1. Tectonic subdivision of the North China Craton (modified after Zhao et al., 2001, 2005)
图 2 五台杂岩和恒山杂岩主要岩性单元划分以及样品采集位置(据Zhao et al.,2007;Zhang et al.,2012修改)
Figure 2. Lithologic map of the Wutai-Hengshan Complex and the sampling locations in this study (modified after Zhao et al., 2007; Zhang et al., 2012)
图 4 样品显微镜下特征
Ap—磷灰石;Chl—绿泥石;Fsp—长石;Grt—石榴子石;Hbl—角闪石;Ilm—钛铁矿;Px—辉石;Qtz—石英;Zr—锆石a、b—22WT-03样品;c、d—22WT-21样品;e、f—22WT-07样品;g、h—22WT-22样品;i、j—22WT-09样品;k、l—22WT-12样品
Figure 4. Microscopic characteristics of the samples
(a, b) Sample 22WT-03; (c, d) Sample 22WT-21; (e, f) Sample 22WT-07; (g, h) Sample 22WT-22; (i, j) Sample 22WT-09; (k, l) Sample 22WT-12Ap—apatite; Chl—chlorite; Fsp—feldspar; Grt—garnet; Hbl—hornblende; Ilm—ilmenite; Px—pyroxene; Qtz—quartz; Zr—zircon
图 6 五台—恒山地区变基性岩全岩主量元素图解
a—Nb/Y-Zr/Ti图解(底图据Pearce,1996);b—SiO2−TFeO/MgO图解(底图据Miyashiro,1974);c—TiO2−TFeO/MgO图
Figure 6. Diagram of whole rock major element of the metabasic rocks in the Wutai-Hengshan area
(a) Nb/Y-Zr/Ti classification diagram of metabasic rocks in Wutai and Hengshan (modified after Pearce, 1996); (b) SiO2-TFeO/MgO classification diagram (modified afterMiyashiro, 1974); (c) Diagram of TiO2-TFeO/MgO
图 7 全岩微量元素图解(标准化值据Sun and McDonough, 1989)
a—变基性岩球粒陨石标准化稀土元素配分图;b—原始地幔标准化微量元素蛛网图
Figure 7. Diagram of whole rock trace element (standardized values according to Sun and McDonough, 1989)
(a) Chondrite-normalized diagram of rare earth element for the metabasic rocks; (b) Primitive mantle-normalized diagram of trace elements for the metabasic rocks
图 8 不同变质级别样品中磷灰石主量元素图解
a—F−CaO图解;b—Cl−CaO图解;c—P2O5−CaO图解;d—SiO2−CaO图解;e—FeO−CaO图解;f—MnO−CaO图解
Figure 8. Major element diagram of apatite grains of different metamorphic grades
(a) F-CaO relationship diagram; (b) Cl-CaO relationship diagram; (c) P2O5-CaO relationship diagram; (d) SiO2-CaO relationship diagram; (e) FeO-CaO relationship diagram; (f) MnO-CaO relationship diagram
图 9 不同变质级别样品中磷灰石微量元素图解
a—绿片岩样品微量元素图解;b—斜长角闪岩样品微量元素图解;c—基性麻粒岩样品微量元素图解
Figure 9. Trace element diagram of apatite grains of different metamorphic grades
(a) Trace element diagram of apatite grains of greenschist; (b) Trace element diagram of apatite grains of plagioclase amphibolite; (c) Trace element diagram of apatite grains of mafic granulite
图 10 不同成因类型磷灰石微量元素图解(据O'Sullivan et al., 2020修改)
Figure 10. Trace element diagram of apatite of different genetic types (modified after O'Sullivan et al., 2020)
图 11 大别−苏鲁造山带固态重结晶深熔锆石球粒陨石标准化稀土模式图(据Chen and Zheng, 2017修改;文献数据参考Chen et al., 2010; Xia et al., 2010)
灰色部分为岩浆成因的原岩锆石
Figure 11. Chondrite-normalized REE patterns for solid-state recrystallization of metamorphosed zircons from the Dabie-Sulu Orogenic Belt (modified after Chen and Zheng, 2017;Reference data: Chen et al., 2010; Xia et al., 2010)
The gray zone denotes the protolith zircon of magmatic origin.
表 1 五台-恒山地区变基性岩全岩主量元素(%)与微量元素(×10−6)组成
Table 1. Whole rock major (%) and trace element (×10−6) compositions of the metabasic rocks in the Wutai-Hengshan area
样品名称 绿片岩 斜长角闪岩 基性麻粒岩 22WT-03 22WT-21 22WT-07 22WT-22 22WT-09 22WT-12 SiO2 44.98 44.66 49.63 48.79 49.89 48.85 TiO2 0.85 0.86 0.60 0.94 1.74 0.96 Al2O3 15.41 14.36 15.86 14.56 12.70 13.79 TFe2O3 8.46 8.38 11.31 12.71 18.70 14.98 MnO 0.16 0.18 0.15 0.17 0.26 0.22 MgO 3.69 3.57 7.64 7.22 4.54 6.95 CaO 12.58 11.02 9.60 11.36 9.31 10.82 Na2O 1.32 1.08 1.79 1.75 2.31 1.75 K2O 2.65 3.13 0.75 0.15 0.78 1.00 P2O5 0.30 0.34 0.07 0.07 0.20 0.10 LOI 8.72 11.90 2.08 2.07 −0.01 0.32 SUM 99.12 99.49 99.48 99.79 100.41 99.72 FeO 5.28 5.05 6.60 8.60 10.90 10.30 TFeO 7.61 7.55 9.28 11.44 16.83 13.48 Sc 12.47 22.45 35.43 40.88 43.82 46.57 Ti 5095.75 5167.69 3620.98 5605.33 10413.32 5725.23 V 95.41 174.57 213.12 284.21 356.60 297.35 Cr 124.66 501.90 134.69 184.70 29.56 77.51 Co 14.30 29.08 51.54 50.83 49.84 58.67 Ni 55.87 133.80 177.18 106.60 26.91 69.78 Cu 11.02 74.26 78.99 122.01 45.55 83.11 Zn 304.52 72.84 74.29 88.04 141.05 92.70 Ga 15.46 18.13 15.63 16.69 19.38 16.84 Rb 57.80 116.88 20.92 2.86 26.98 47.35 Sr 99.51 774.66 199.13 112.84 119.17 64.81 Y 13.38 24.35 14.14 18.32 44.90 24.79 Zr 121.28 130.53 44.74 46.49 138.71 60.03 Nb 5.04 9.80 1.88 2.62 7.51 3.12 Sn 0.94 1.36 0.51 0.47 1.27 0.61 Cs 0.61 1.42 2.45 0.38 0.60 0.51 Ba 311.93 1053.04 93.76 18.27 199.41 151.06 La 16.21 23.60 4.91 2.32 13.49 5.87 Ce 36.33 52.03 10.97 6.24 33.84 13.63 Pr 4.32 6.60 1.57 1.06 4.67 2.02 Nd 15.92 27.17 6.64 5.50 20.39 9.50 Sm 3.29 5.31 1.84 1.95 5.67 2.78 Eu 0.91 1.40 0.72 0.69 1.68 0.91 Gd 2.77 4.60 2.22 2.67 6.58 3.53 Tb 0.44 0.72 0.40 0.48 1.10 0.60 Dy 2.53 4.17 2.48 3.11 7.62 4.14 Ho 0.53 0.85 0.54 0.67 1.63 0.90 Er 1.41 2.37 1.54 1.98 4.78 2.46 Tm 0.21 0.35 0.22 0.28 0.66 0.36 Yb 1.42 2.34 1.53 1.92 4.61 2.48 Lu 0.21 0.36 0.22 0.29 0.69 0.38 Hf 3.14 3.13 1.26 1.29 3.75 1.66 Ta 0.38 0.47 0.11 0.15 0.47 0.18 Pb 4.95 8.84 2.03 0.98 2.66 0.90 Th 5.33 3.95 0.50 0.21 2.30 0.58 U 1.17 1.01 0.12 0.06 0.50 0.09 (La/Sm) N 3.08 2.77 1.67 0.74 1.49 1.32 (La/Yb) N 7.74 6.84 2.18 0.82 1.99 1.60 δEu 0.89 0.84 1.08 0.92 0.84 0.89 注:部分样品的烧失量为负数,因为样品中可能含有较多的低价态金属氧化物,高温氧化,所以烧失量为负数 表 2 五台—恒山地区变基性岩磷灰石主量元素组成 (%)
Table 2. Apatite major element compositions of the metabasic rocks in the Wutai-Hengshan area (%)
样品点号 K2O SO3 CaO FeO MgO Al2O3 P2O5 SrO MnO Na2O SiO2 F Cl 合计 Ap-03-1 0 0.12 54.83 0 0 0 41.34 0.03 0.02 0.05 0.26 4.31 0.02 99.17 Ap-03-2 0 0.06 55.00 0 0 0.02 41.18 0.08 0 0 0.01 4.24 0.02 98.83 Ap-03-3 0 0.12 54.03 0.12 0.02 0 41.59 0.07 0.04 0.03 0.03 4.07 0.03 98.44 Ap-03-4 0 0 54.49 0.01 0 0.03 42.13 0.10 0.03 0 0 4.73 0.02 99.52 Ap-03-5 0 0.26 54.54 0.08 0 0 42.05 0.14 0.06 0.06 0.18 4.65 0.02 100.07 Ap-03-6 0 0 54.81 0.05 0 0 41.21 0.03 0.10 0.06 0 4.74 0.03 99.02 Ap-03-7 0 0.16 54.24 0.13 0 0 41.05 0.04 0.02 0.04 0.32 4.50 0 98.62 Ap-03-8 0 0.32 54.44 0.07 0.01 0.02 40.28 0.16 0 0.06 0.37 4.32 0.01 98.23 Ap-03-9 0.02 0.24 54.50 0.17 0.13 0 41.25 0.19 0.04 0.11 0.24 4.45 0.03 99.47 Ap-03-10 0 0.07 54.49 0.01 0.01 0.02 42.47 0.05 0 0.08 0 4.34 0.01 99.72 Ap-21-1 0 0.01 54.54 0.05 0 0 42.88 0.35 0.06 0 0 4.46 0.01 100.49 Ap-21-2 0 0 54.84 0 0 0.01 42.38 0.34 0.02 0 0.01 4.50 0 100.20 Ap-21-3 0 0.01 55.01 0.01 0 0.01 42.21 0.34 0 0 0.02 4.45 0.01 100.20 Ap-21-4 0.01 0 53.86 0 0 0.01 42.06 0.40 0 0.01 0 5.22 0.01 99.38 Ap-21-5 0.02 0.01 54.42 0.01 0 0 42.27 0.43 0.02 0 0.01 4.58 0 99.84 Ap-21-6 0.01 0 54.76 0.10 0 0 42.30 0.38 0.02 0.01 0.01 4.49 0 100.20 Ap-21-7 0 0 54.27 0.04 0 0 42.38 0.32 0 0 0 4.40 0.02 99.57 Ap-21-8 0.02 0.02 54.08 0 0 0 42.71 0.17 0.02 0 0 5.00 0 99.90 Ap-21-9 0 0.01 54.51 0.09 0.02 0.01 42.56 0.36 0 0 0 4.43 0.01 100.14 Ap-21-10 0 0.03 54.72 0 0.01 0.02 42.44 0.36 0 0 0 4.74 0.01 100.33 Ap-07-1 0.01 0.05 55.20 0 0 0.02 41.56 0.10 0.03 0.03 0 4.50 0 99.62 Ap-07-2 0.03 0 53.24 0.01 0.36 0.38 40.96 0.02 0.05 0.02 0.08 1.70 1.38 98.18 Ap-07-3 0 0.02 54.37 0 0 0 41.79 0.02 0.07 0.01 0.02 1.29 1.28 98.04 Ap-07-4 0.01 0 54.27 0.05 0 0 41.72 0.01 0.04 0.03 0 1.35 1.42 98.01 Ap-07-5 0 0 54.25 0 0.03 0 41.53 0.04 0.06 0 0 1.45 1.22 97.69 Ap-07-6 0.01 0.08 54.44 0.01 0.01 0 41.84 0.03 0.05 0 0.01 1.51 1.24 98.30 Ap-07-7 0.03 0 53.83 0.14 0 0 41.46 0.04 0.05 0.01 0 1.24 1.54 97.46 Ap-07-8 0 0.03 53.70 0 0.01 0 42.09 0 0.02 0.02 0 1.64 0.91 97.51 Ap-07-9 0 0 54.17 0.01 0.02 0 42.58 0.01 0.01 0.04 0 1.39 1.49 98.80 Ap-07-10 0.01 0.03 53.84 0.11 0 0 41.31 0.01 0 0 0 1.64 1.19 97.19 Ap-22-1 0 0.03 54.19 0.04 0 0 42.53 0.01 0.08 0.04 0.03 1.43 2.27 99.53 Ap-22-2 0 0.07 54.51 0.03 0 0 41.83 0.01 0.05 0.07 0 1.44 2.24 99.13 Ap-22-3 0.01 0.03 54.84 0 0.04 0 42.35 0 0.06 0 0.01 2.08 0.87 99.20 Ap-22-4 0.01 0 54.99 0 0 0.01 42.37 0.03 0.04 0 0 2.38 0.41 99.13 Ap-22-5 0 0.02 54.57 0.08 0 0 42.59 0.02 0.05 0 0.03 2.13 0.54 99.01 Ap-22-6 0 0 54.02 0.01 0 0.01 41.74 0.02 0.04 0.02 0.01 1.61 2.32 98.58 Ap-22-7 0 0.02 54.80 0.09 0 0 41.65 0.04 0.07 0 0 2.22 1.31 98.98 Ap-22-8 0 0.04 54.77 0.06 0.01 0.02 42.47 0.01 0.04 0 0 2.89 0.61 99.56 Ap-22-9 0 0.01 54.32 0 0 0 41.91 0.01 0.06 0 0 1.35 2.17 98.78 Ap-22-10 0.01 0 55.00 0.01 0.03 0 42.08 0 0.08 0 0.03 2.14 0.37 98.75 Ap-09-1 0 0 54.95 0.04 0.01 0 41.20 0.02 0.02 0.01 0 3.43 0.03 98.26 Ap-09-2 0 0.03 54.18 0 0.02 0 42.13 0.01 0 0.01 0 3.91 0.03 98.67 Ap-09-3 0 0 54.45 0.06 0.01 0 41.32 0 0.02 0 0.04 3.46 0.04 97.93 Ap-09-4 0 0.02 53.81 0 0 0.01 41.67 0 0 0.01 0.02 3.49 0.05 97.60 Ap-09-5 0.01 0 54.91 0.01 0.01 0 42.06 0.02 0 0.02 0.02 3.69 0.05 99.23 Ap-09-6 0 0 54.79 0.06 0 0 41.93 0.01 0.06 0 0.04 3.54 0.02 98.96 Ap-09-7 0 0.03 54.57 0 0.02 0.02 41.45 0 0 0.03 0.01 3.73 0.04 98.32 Ap-09-8 0 0.05 53.88 0 0 0.01 41.97 0 0.04 0 0 3.49 0.03 98.00 Ap-09-9 0 0 54.11 0.04 0.02 0 42.30 0 0.06 0.04 0.03 3.78 0.04 98.83 Ap-09-10 0 0.01 54.19 0.05 0 0 41.75 0 0.02 0.04 0 3.56 0.05 98.15 Ap-12-1 0 0 54.49 0.08 0 0 41.50 0.02 0.02 0.09 0 3.78 0.15 98.51 Ap-12-2 0 0.06 54.59 0.03 0 0.02 42.05 0.02 0.04 0.01 0.01 3.56 0.14 99.00 Ap-12-3 0 0 53.69 0 0 0.01 41.54 0.02 0.04 0 0.07 3.75 0.15 97.65 Ap-12-4 0.01 0.04 54.56 0.03 0 0 41.83 0.03 0.06 0 0.06 3.97 0.17 99.04 Ap-12-5 0 0 54.17 0.03 0.01 0 42.08 0.01 0.06 0.04 0.04 3.57 0.16 98.62 Ap-12-6 0 0.04 55.07 0 0 0.01 41.87 0 0.06 0.04 0.05 3.52 0.15 99.30 Ap-12-7 0.03 0.01 53.69 0.08 0 0 41.92 0 0.04 0.05 0.06 3.57 0.13 98.03 Ap-12-8 0.03 0.02 54.64 0.06 0 0.04 41.74 0 0.07 0.03 0.05 3.86 0.16 99.05 Ap-12-9 0 0 54.93 0.05 0 0 41.96 0 0.09 0 0.09 3.82 0.24 99.52 Ap-12-10 0 0.01 54.40 0.04 0 0.01 41.75 0.03 0.03 0.01 0 3.56 0.22 98.49 表 3 五台—恒山地区变基性岩岩浆成因磷灰石微量元素组成(×10−6)
Table 3. Trace element compositions of magmatic apatite in metabasic rocks from the Wutai-Hengshan area (×10−6)
样品点号 Rb Sr Y Zr Ba Ga La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Nb Ta Pb Th U (La/Yb) N δEu Ap-03-2 0.03 1368.16 211.21 0.28 0.68 3.41 17.86 94.98 25.52 195.47 64.37 16.93 61.55 7.52 40.58 7.49 19.22 2.42 14.94 2.14 0 0 0 7.2 2.3 11.06 0.81 0.82 Ap-03-3 0.05 1004.23 296.07 0.1 0.42 2.44 10.16 65.76 19.06 162.25 61.25 17.09 69.89 9.26 55.28 11.22 28.42 3.69 22.18 3.08 0 0 0 8.62 2.35 8.91 0.31 0.8 Ap-03-5 0.32 1396.01 315.92 0.27 1.13 3.28 18.47 108.84 29.5 228.15 63.76 17.67 63.88 9.38 60.91 12.21 30.68 3.75 20.79 2.55 0 0.03 0 7.13 3.4 3.33 0.6 0.84 Ap-03-6 0.18 367.66 1340.29 0.04 0.21 7.86 90.85 361.61 71.45 430.42 181.11 17.02 244.68 43.53 262.76 48.27 125.31 16.59 106.09 13.88 0 0 0 6.58 4.02 5.11 0.58 0.25 Ap-03-10 0 400.93 277.6 0.12 0.38 5.04 61.86 223.69 41.29 243.34 66.91 15.85 80.09 9.31 49.3 9.67 25.2 3.19 18.84 3.07 0 0 0 4.01 4.4 3.18 2.23 0.66 Ap-03-11 0.06 3514.45 496.51 0 0 0.87 3.4 14.53 3.42 27.13 16.93 7.58 44.2 9.37 78.37 18.61 47.6 4.62 17.23 1.39 0 0 0 7.44 0.01 0 0 0.84 Ap-03-12 0.28 680.29 509.08 0.15 0.49 1.37 7.57 29.7 6.22 45.09 19.65 10.8 49.3 12.85 99.75 20.92 53.53 6.51 36.49 4.15 0 0 0 12.46 5.52 5.43 0.14 1.06 Ap-03-15 0.06 590.07 378.58 0.38 0.25 5.19 86.02 278.72 42.66 208.67 38.25 15.59 50.64 9.32 68.37 14 37.43 4.72 30.12 3.87 0 0 0 10.25 11.55 4.28 1.94 1.08 Ap-03-16 0.06 1536.28 400.4 0.44 0.93 5.73 36.02 195.81 53.63 424.94 134.48 31.84 133.31 15.13 77.7 14.2 35.62 4.49 26.12 3.88 0 0.01 0 9.36 1.11 12.28 0.94 0.72 Ap-03-20 0.14 713.26 704.28 1.81 0.88 3.05 25.82 99.77 20.58 140.25 63.02 17.53 104.35 20.36 142.86 27.93 70.25 8.6 48.61 5.58 0.02 0 0 13.05 5.44 8.91 0.36 0.66 Ap-21-2 0.19 2541.29 234.71 43.83 1.29 0.63 1.57 6.63 1.61 12.12 8.03 3.4 19.56 4.35 34.53 8.82 23.31 2.24 8.16 0.62 1.04 − − 5.43 0.02 − 0.13 0.83 Ap-21-3 0.12 3120.9 411.41 310.55 0.65 1.34 17.83 43.35 7.04 36.6 15.44 5.55 32.7 6.56 57.17 14.8 42.15 4.44 19.46 1.75 8.63 − − 7.35 5.47 − 0.62 0.75 Ap-21-4 0.03 3577.44 471.93 1.04 0 0.75 3.5 15.55 3.52 28.49 19.27 8.4 48.87 10.15 80.46 17.99 45.16 4.26 15.77 1.38 0.04 − − 7.51 0.02 − 0.15 0.83 Ap-21-5 1.4 3460.81 418.28 0.02 11.13 1.24 4.06 16.16 3.83 29.19 17.46 7.39 42.59 8.55 67.3 15.87 38.51 3.65 13.88 1.09 0 − − 7.24 2.24 − 0.2 0.83 Ap-21-6 2.12 1051.97 84.37 104.44 48.64 1.28 11.56 30.85 4.65 23.65 6.31 1.77 8.74 1.64 13.2 2.9 8.3 0.98 5.12 0.53 2.55 − − 2.67 4.93 − 1.53 0.73 Ap-21-7 0.06 3547.7 459.25 710.89 0 0.85 3.16 13.83 3.29 27.35 17.51 8.09 46.13 9.45 75.56 16.63 41.57 4.08 16.33 1.69 19.92 − − 8.54 0.06 − 0.13 0.87 Ap-21-8 0.08 3476.36 399.06 15.65 0 0.92 2.84 11.96 2.87 22.26 13.67 6.52 35.76 7.89 64.21 14.77 37.38 3.59 12.79 1.09 0.43 − − 7.35 0.26 − 0.15 0.9 Ap-21-9 0.09 2984.42 305.04 25.91 0.36 1.33 12.68 33.04 4.77 25.79 11.75 4.86 26.74 5.67 46.4 10.95 29.01 2.84 10.24 0.87 0.56 − − 6.72 1.45 − 0.84 0.84 Ap-21-11 0.05 3517.78 500.66 − 0 0.91 3.55 14.91 3.51 27.66 18.25 7.84 47.01 10.19 83.51 18.66 46.43 4.21 15.35 1.28 0 − − 7.5 0.01 − 0.16 0.82 Ap-07-1 0.01 379.37 2.94 0 1.25 0.67 0.76 1.88 0.26 1.84 0.6 0.16 0.57 0.08 0.51 0.11 0.38 0.08 0.49 0.08 0 0 0 0.78 0.02 0.11 1.05 0.85 Ap-07-2 − 360.8 4.31 0 0.71 0.84 0.47 1.16 0.17 0.93 0.39 0.09 0.82 0.09 0.49 0.16 0.58 0.1 0.69 0.14 0 0 0 0.64 0.01 0.07 0.46 0.46 Ap-07-3 0.18 312.5 4.89 0.01 0.46 0.75 0.78 1.3 0.23 1.6 0.38 0.1 0.78 0.12 0.66 0.17 0.63 0.11 0.9 0.18 0 0 0 0.52 0.02 0.05 0.59 0.54 Ap-07-4 − 312.78 3.28 0 0.42 0.87 0.18 0.44 0.05 0.4 0.17 0.01 0.31 0.05 0.37 0.12 0.4 0.1 0.7 0.08 0 0 0 0.51 0.04 0.06 0.18 0.12 Ap-07-5 0.44 370.84 3.57 0.09 4.94 1.24 0.88 2.19 0.3 2.09 0.38 0.11 0.74 0.09 0.45 0.14 0.51 0.07 0.69 0.13 0 0 0 0.73 0.01 0.08 0.87 0.61 Ap-07-6 0 328.42 2.55 0.19 0.51 0.72 0.1 0.2 0.03 0.23 0.08 0.01 0.09 0.03 0.28 0.08 0.31 0.07 0.51 0.11 0 0 0 0.56 0.03 0.09 0.13 0.33 Ap-07-7 0 440.71 3.92 1.51 1.24 0.96 0.94 2.28 0.36 2.26 0.54 0.2 1.16 0.12 0.75 0.16 0.47 0.07 0.63 0.1 0.05 0 0 1.01 0.01 0.07 1.01 0.79 Ap-07-8 0.01 335.44 2.18 0 0.37 0.82 0.14 0.2 0.03 0.27 0.05 0.01 0.15 0.03 0.21 0.08 0.36 0.05 0.5 0.12 0 0 0 0.52 0 0.07 0.18 0.53 Ap-07-9 0.01 243.68 5.52 0 0.29 0.68 0.08 0.14 0.02 0.14 0.03 0.01 0.17 0.05 0.55 0.18 0.74 0.1 0.91 0.18 0 0 0 0.38 0 0.12 0.06 0.64 Ap-07-10 0 303.45 24.04 0.44 0.54 0.83 1.56 4.63 0.84 4.86 1.79 0.67 3.25 0.53 4.13 0.94 3.29 0.54 4.87 0.93 0 0.01 0 1.19 5.22 0.08 0.22 0.85 Ap-07-11 0.03 342.21 105.74 2.13 0.59 1.02 7.83 23.13 4.04 23.98 9.55 3.45 16.7 2.82 18.24 4.31 12.4 1.73 13.57 2.53 0 0 0 1.11 2.97 0.02 0.39 0.83 Ap-07-12 0 221.87 4.24 0 0.42 0.74 0.09 0.24 0.03 0.33 0.13 0.02 0.3 0.07 0.47 0.16 0.56 0.12 0.8 0.15 0 0 0 0.42 0 0.03 0.08 0.36 Ap-07-13 − 369.02 35.61 84.63 0.45 0.96 2.18 6.89 1.27 7.67 3.16 1.02 5.16 0.94 5.85 1.45 4.15 0.62 4.66 0.82 1.98 0 0 1.23 2.21 0.65 0.32 0.77 Ap-07-14 − 313.06 4.55 0.01 0.87 0.7 0.1 0.21 0.03 0.27 0.1 0.03 0.37 0.07 0.55 0.16 0.68 0.12 0.94 0.18 0 0 0 0.51 0.39 0.07 0.07 0.47 Ap-22-1 0 184.15 99.84 0 0.17 0.9 3.97 15.11 3.62 27.59 14.61 5.84 21.41 3.22 19.21 3.58 9.16 1.08 5.61 0.67 0 − − 0.57 0 − 0.48 1.01 Ap-22-2 0 185.64 152.79 0 0.18 0.76 3.62 13.6 3.4 26.77 17.04 6.33 29.14 4.89 29.73 5.83 14.31 1.62 8.3 1 0 − − 0.56 0.01 − 0.3 0.87 Ap-22-3 0.01 177.59 64.89 0 0.29 0.9 3.48 14.66 3.58 25.88 12.64 5.11 16.03 2.2 11.92 2.3 5.97 0.64 3.83 0.59 0 − − 0.92 0 − 0.62 1.1 Ap-22-4 0.14 211.54 81.79 0.04 0.22 1.04 3.55 16.16 4.08 30.14 15.09 4.91 20.47 3.05 16.92 3.04 7.78 0.92 4.82 0.68 0 − − 1.5 0.01 − 0.5 0.85 Ap-22-5 0.03 183.41 149.24 0 0 1.11 3.41 14.81 3.68 31.45 19.64 5.74 30.47 5.06 27.99 5.23 11.89 1.29 6.47 0.82 0 − − 0.47 0 − 0.36 0.72 Ap-22-6 0.04 161.4 46.19 0 0.37 0.88 2.12 11.38 3.25 25.04 11.11 4.2 11.72 1.72 9.14 1.67 4.23 0.53 3.11 0.41 0 − − 0.79 0.01 − 0.46 1.12 Ap-22-7 0.03 189.95 80.26 − 0.17 0.89 3.68 14.65 3.63 27.58 15.01 4.56 20.06 2.76 16.16 2.82 7.24 0.77 4.12 0.5 0 − − 1.02 0 − 0.61 0.8 Ap-22-8 0 191.69 100.46 0 0 0.84 3.23 13.76 3.51 28.49 15.54 5.45 22.08 3.34 19.13 3.69 9.29 1.11 5.68 0.75 0 − − 0.42 0.01 − 0.39 0.9 Ap-22-9 0 186.33 121.87 0 0.16 0.8 3.9 15.23 3.57 26.74 14.89 6.22 23.94 3.81 23.66 4.55 11.84 1.39 8.11 0.95 0 − − 0.95 0.01 − 0.33 1 Ap-22-10 0.25 193.79 169 45.78 0.55 1.25 4.95 19.56 4.5 33.69 19 5.87 31.62 4.97 30.63 6.13 15.53 1.76 9.8 1.19 1.27 − − 0.56 0.02 − 0.34 0.73 Ap-22-11 0.08 184.26 148.02 0 0.25 0.96 4.24 16.11 3.96 29.57 16.53 5.73 27.79 4.56 28.27 5.77 14.57 1.64 8.95 1.04 0 − − 0.42 0.01 − 0.32 0.81 Ap-22-12 − 177.85 55.42 1.39 0.2 0.78 3.95 14.74 3.31 24.43 11.95 4.48 15.02 2.09 11.53 2.05 5.1 0.61 3.67 0.46 0.02 − − 0.94 0 − 0.73 1.02 Ap-22-13 0.01 178.61 101.4 0 0.2 1.1 3.12 13.43 3.29 26.7 14.79 5.57 21.88 3.25 20.13 3.81 10.13 1.1 6.35 0.82 0 − − 0.85 0 − 0.33 0.94 Ap-22-14 0 197.55 62.3 0 0.11 0.8 2.27 11.49 2.93 23.35 10.66 3.25 13.73 2.06 12.26 2.45 6.39 0.78 4.16 0.49 0 − − 1.33 0.01 − 0.37 0.82 Ap-22-15 0.12 172.03 61.61 0 0.22 0.93 3.46 16.78 4.04 29.51 11.54 2.99 12.34 1.88 11.1 2.28 6.08 0.79 4.88 0.8 0 − − 0.94 0 − 0.48 0.76 Ap-22-16 0 179.23 104.41 0 0.25 0.62 3.53 14.85 3.51 29.62 17 5.36 26.23 3.71 20.08 4 9.64 1.06 5.6 0.62 0 − − 0.32 0 − 0.43 0.77 Ap-22-17 0 192.03 110.25 0 0.11 0.84 4.34 17.93 4.12 33.57 19.55 5.36 29.49 4.15 23.07 4.32 10.41 1.2 5.61 0.67 0 − − 0.3 0 − 0.53 0.68 Ap-22-18 − 189.31 111.03 0 0 0.77 3.73 16.01 3.72 29.33 18.51 5.44 28.42 4.04 23.24 4.26 9.64 0.99 4.83 0.61 0 − − 0.41 0 − 0.52 0.72 表 4 五台—恒山地区变基性岩变质成因磷灰石微量元素组成(×10−6)
Table 4. Trace element compositions of metamorphic apatite in metabasic rocks from the Wutai-Hengshan area (×10−6)
样品点号 Rb Sr Y Zr Ba Ga La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Nb Ta Pb Th U (La/Yb) N δEu Ap-03-2 0.03 1368.16 211.21 0.28 0.68 3.41 17.86 94.98 25.52 195.47 64.37 16.93 61.55 7.52 40.58 7.49 19.22 2.42 14.94 2.14 0 0 0 7.2 2.3 11.06 0.81 0.82 Ap-03-3 0.05 1004.23 296.07 0.1 0.42 2.44 10.16 65.76 19.06 162.25 61.25 17.09 69.89 9.26 55.28 11.22 28.42 3.69 22.18 3.08 0 0 0 8.62 2.35 8.91 0.31 0.8 Ap-03-5 0.32 1396.01 315.92 0.27 1.13 3.28 18.47 108.84 29.5 228.15 63.76 17.67 63.88 9.38 60.91 12.21 30.68 3.75 20.79 2.55 0 0.03 0 7.13 3.4 3.33 0.6 0.84 Ap-03-6 0.18 367.66 1340.29 0.04 0.21 7.86 90.85 361.61 71.45 430.42 181.11 17.02 244.68 43.53 262.76 48.27 125.31 16.59 106.09 13.88 0 0 0 6.58 4.02 5.11 0.58 0.25 Ap-03-10 0 400.93 277.6 0.12 0.38 5.04 61.86 223.69 41.29 243.34 66.91 15.85 80.09 9.31 49.3 9.67 25.2 3.19 18.84 3.07 0 0 0 4.01 4.4 3.18 2.23 0.66 Ap-03-11 0.06 3514.45 496.51 0 0 0.87 3.4 14.53 3.42 27.13 16.93 7.58 44.2 9.37 78.37 18.61 47.6 4.62 17.23 1.39 0 0 0 7.44 0.01 0 0 0.84 Ap-03-12 0.28 680.29 509.08 0.15 0.49 1.37 7.57 29.7 6.22 45.09 19.65 10.8 49.3 12.85 99.75 20.92 53.53 6.51 36.49 4.15 0 0 0 12.46 5.52 5.43 0.14 1.06 Ap-03-15 0.06 590.07 378.58 0.38 0.25 5.19 86.02 278.72 42.66 208.67 38.25 15.59 50.64 9.32 68.37 14 37.43 4.72 30.12 3.87 0 0 0 10.25 11.55 4.28 1.94 1.08 Ap-03-16 0.06 1536.28 400.4 0.44 0.93 5.73 36.02 195.81 53.63 424.94 134.48 31.84 133.31 15.13 77.7 14.2 35.62 4.49 26.12 3.88 0 0.01 0 9.36 1.11 12.28 0.94 0.72 Ap-03-20 0.14 713.26 704.28 1.81 0.88 3.05 25.82 99.77 20.58 140.25 63.02 17.53 104.35 20.36 142.86 27.93 70.25 8.6 48.61 5.58 0.02 0 0 13.05 5.44 8.91 0.36 0.66 Ap-21-2 0.19 2541.29 234.71 43.83 1.29 0.63 1.57 6.63 1.61 12.12 8.03 3.4 19.56 4.35 34.53 8.82 23.31 2.24 8.16 0.62 1.04 − − 5.43 0.02 − 0.13 0.83 Ap-21-3 0.12 3120.9 411.41 310.55 0.65 1.34 17.83 43.35 7.04 36.6 15.44 5.55 32.7 6.56 57.17 14.8 42.15 4.44 19.46 1.75 8.63 − − 7.35 5.47 − 0.62 0.75 Ap-21-4 0.03 3577.44 471.93 1.04 0 0.75 3.5 15.55 3.52 28.49 19.27 8.4 48.87 10.15 80.46 17.99 45.16 4.26 15.77 1.38 0.04 − − 7.51 0.02 − 0.15 0.83 Ap-21-5 1.4 3460.81 418.28 0.02 11.13 1.24 4.06 16.16 3.83 29.19 17.46 7.39 42.59 8.55 67.3 15.87 38.51 3.65 13.88 1.09 0 − − 7.24 2.24 − 0.2 0.83 Ap-21-6 2.12 1051.97 84.37 104.44 48.64 1.28 11.56 30.85 4.65 23.65 6.31 1.77 8.74 1.64 13.2 2.9 8.3 0.98 5.12 0.53 2.55 − − 2.67 4.93 − 1.53 0.73 Ap-21-7 0.06 3547.7 459.25 710.89 0 0.85 3.16 13.83 3.29 27.35 17.51 8.09 46.13 9.45 75.56 16.63 41.57 4.08 16.33 1.69 19.92 − − 8.54 0.06 − 0.13 0.87 Ap-21-8 0.08 3476.36 399.06 15.65 0 0.92 2.84 11.96 2.87 22.26 13.67 6.52 35.76 7.89 64.21 14.77 37.38 3.59 12.79 1.09 0.43 − − 7.35 0.26 − 0.15 0.9 Ap-21-9 0.09 2984.42 305.04 25.91 0.36 1.33 12.68 33.04 4.77 25.79 11.75 4.86 26.74 5.67 46.4 10.95 29.01 2.84 10.24 0.87 0.56 − − 6.72 1.45 − 0.84 0.84 Ap-21-11 0.05 3517.78 500.66 − 0 0.91 3.55 14.91 3.51 27.66 18.25 7.84 47.01 10.19 83.51 18.66 46.43 4.21 15.35 1.28 0 − − 7.5 0.01 − 0.16 0.82 Ap-07-1 0.01 379.37 2.94 0 1.25 0.67 0.76 1.88 0.26 1.84 0.6 0.16 0.57 0.08 0.51 0.11 0.38 0.08 0.49 0.08 0 0 0 0.78 0.02 0.11 1.05 0.85 Ap-07-2 − 360.8 4.31 0 0.71 0.84 0.47 1.16 0.17 0.93 0.39 0.09 0.82 0.09 0.49 0.16 0.58 0.1 0.69 0.14 0 0 0 0.64 0.01 0.07 0.46 0.46 Ap-07-3 0.18 312.5 4.89 0.01 0.46 0.75 0.78 1.3 0.23 1.6 0.38 0.1 0.78 0.12 0.66 0.17 0.63 0.11 0.9 0.18 0 0 0 0.52 0.02 0.05 0.59 0.54 Ap-07-4 − 312.78 3.28 0 0.42 0.87 0.18 0.44 0.05 0.4 0.17 0.01 0.31 0.05 0.37 0.12 0.4 0.1 0.7 0.08 0 0 0 0.51 0.04 0.06 0.18 0.12 Ap-07-5 0.44 370.84 3.57 0.09 4.94 1.24 0.88 2.19 0.3 2.09 0.38 0.11 0.74 0.09 0.45 0.14 0.51 0.07 0.69 0.13 0 0 0 0.73 0.01 0.08 0.87 0.61 Ap-07-6 0 328.42 2.55 0.19 0.51 0.72 0.1 0.2 0.03 0.23 0.08 0.01 0.09 0.03 0.28 0.08 0.31 0.07 0.51 0.11 0 0 0 0.56 0.03 0.09 0.13 0.33 Ap-07-7 0 440.71 3.92 1.51 1.24 0.96 0.94 2.28 0.36 2.26 0.54 0.2 1.16 0.12 0.75 0.16 0.47 0.07 0.63 0.1 0.05 0 0 1.01 0.01 0.07 1.01 0.79 Ap-07-8 0.01 335.44 2.18 0 0.37 0.82 0.14 0.2 0.03 0.27 0.05 0.01 0.15 0.03 0.21 0.08 0.36 0.05 0.5 0.12 0 0 0 0.52 0 0.07 0.18 0.53 Ap-07-9 0.01 243.68 5.52 0 0.29 0.68 0.08 0.14 0.02 0.14 0.03 0.01 0.17 0.05 0.55 0.18 0.74 0.1 0.91 0.18 0 0 0 0.38 0 0.12 0.06 0.64 Ap-07-10 0 303.45 24.04 0.44 0.54 0.83 1.56 4.63 0.84 4.86 1.79 0.67 3.25 0.53 4.13 0.94 3.29 0.54 4.87 0.93 0 0.01 0 1.19 5.22 0.08 0.22 0.85 Ap-07-11 0.03 342.21 105.74 2.13 0.59 1.02 7.83 23.13 4.04 23.98 9.55 3.45 16.7 2.82 18.24 4.31 12.4 1.73 13.57 2.53 0 0 0 1.11 2.97 0.02 0.39 0.83 Ap-07-12 0 221.87 4.24 0 0.42 0.74 0.09 0.24 0.03 0.33 0.13 0.02 0.3 0.07 0.47 0.16 0.56 0.12 0.8 0.15 0 0 0 0.42 0 0.03 0.08 0.36 Ap-07-13 − 369.02 35.61 84.63 0.45 0.96 2.18 6.89 1.27 7.67 3.16 1.02 5.16 0.94 5.85 1.45 4.15 0.62 4.66 0.82 1.98 0 0 1.23 2.21 0.65 0.32 0.77 Ap-07-14 − 313.06 4.55 0.01 0.87 0.7 0.1 0.21 0.03 0.27 0.1 0.03 0.37 0.07 0.55 0.16 0.68 0.12 0.94 0.18 0 0 0 0.51 0.39 0.07 0.07 0.47 Ap-22-1 0 184.15 99.84 0 0.17 0.9 3.97 15.11 3.62 27.59 14.61 5.84 21.41 3.22 19.21 3.58 9.16 1.08 5.61 0.67 0 − − 0.57 0 − 0.48 1.01 Ap-22-2 0 185.64 152.79 0 0.18 0.76 3.62 13.6 3.4 26.77 17.04 6.33 29.14 4.89 29.73 5.83 14.31 1.62 8.3 1 0 − − 0.56 0.01 − 0.3 0.87 Ap-22-3 0.01 177.59 64.89 0 0.29 0.9 3.48 14.66 3.58 25.88 12.64 5.11 16.03 2.2 11.92 2.3 5.97 0.64 3.83 0.59 0 − − 0.92 0 − 0.62 1.1 Ap-22-4 0.14 211.54 81.79 0.04 0.22 1.04 3.55 16.16 4.08 30.14 15.09 4.91 20.47 3.05 16.92 3.04 7.78 0.92 4.82 0.68 0 − − 1.5 0.01 − 0.5 0.85 Ap-22-5 0.03 183.41 149.24 0 0 1.11 3.41 14.81 3.68 31.45 19.64 5.74 30.47 5.06 27.99 5.23 11.89 1.29 6.47 0.82 0 − − 0.47 0 − 0.36 0.72 Ap-22-6 0.04 161.4 46.19 0 0.37 0.88 2.12 11.38 3.25 25.04 11.11 4.2 11.72 1.72 9.14 1.67 4.23 0.53 3.11 0.41 0 − − 0.79 0.01 − 0.46 1.12 Ap-22-7 0.03 189.95 80.26 − 0.17 0.89 3.68 14.65 3.63 27.58 15.01 4.56 20.06 2.76 16.16 2.82 7.24 0.77 4.12 0.5 0 − − 1.02 0 − 0.61 0.8 Ap-22-8 0 191.69 100.46 0 0 0.84 3.23 13.76 3.51 28.49 15.54 5.45 22.08 3.34 19.13 3.69 9.29 1.11 5.68 0.75 0 − − 0.42 0.01 − 0.39 0.9 Ap-22-9 0 186.33 121.87 0 0.16 0.8 3.9 15.23 3.57 26.74 14.89 6.22 23.94 3.81 23.66 4.55 11.84 1.39 8.11 0.95 0 − − 0.95 0.01 − 0.33 1 Ap-22-10 0.25 193.79 169 45.78 0.55 1.25 4.95 19.56 4.5 33.69 19 5.87 31.62 4.97 30.63 6.13 15.53 1.76 9.8 1.19 1.27 − − 0.56 0.02 − 0.34 0.73 Ap-22-11 0.08 184.26 148.02 0 0.25 0.96 4.24 16.11 3.96 29.57 16.53 5.73 27.79 4.56 28.27 5.77 14.57 1.64 8.95 1.04 0 − − 0.42 0.01 − 0.32 0.81 Ap-22-12 − 177.85 55.42 1.39 0.2 0.78 3.95 14.74 3.31 24.43 11.95 4.48 15.02 2.09 11.53 2.05 5.1 0.61 3.67 0.46 0.02 − − 0.94 0 − 0.73 1.02 Ap-22-13 0.01 178.61 101.4 0 0.2 1.1 3.12 13.43 3.29 26.7 14.79 5.57 21.88 3.25 20.13 3.81 10.13 1.1 6.35 0.82 0 − − 0.85 0 − 0.33 0.94 Ap-22-14 0 197.55 62.3 0 0.11 0.8 2.27 11.49 2.93 23.35 10.66 3.25 13.73 2.06 12.26 2.45 6.39 0.78 4.16 0.49 0 − − 1.33 0.01 − 0.37 0.82 Ap-22-15 0.12 172.03 61.61 0 0.22 0.93 3.46 16.78 4.04 29.51 11.54 2.99 12.34 1.88 11.1 2.28 6.08 0.79 4.88 0.8 0 − − 0.94 0 − 0.48 0.76 Ap-22-16 0 179.23 104.41 0 0.25 0.62 3.53 14.85 3.51 29.62 17 5.36 26.23 3.71 20.08 4 9.64 1.06 5.6 0.62 0 − − 0.32 0 − 0.43 0.77 Ap-22-17 0 192.03 110.25 0 0.11 0.84 4.34 17.93 4.12 33.57 19.55 5.36 29.49 4.15 23.07 4.32 10.41 1.2 5.61 0.67 0 − − 0.3 0 − 0.53 0.68 Ap-22-18 − 189.31 111.03 0 0 0.77 3.73 16.01 3.72 29.33 18.51 5.44 28.42 4.04 23.24 4.26 9.64 0.99 4.83 0.61 0 − − 0.41 0 − 0.52 0.72 -
[1] BAI J, 1986. The Early Precambrian geology of Wutaishan[M]. Tianjin: Tianjin Science and Technology Press: 1-475. (in Chinese) [2] BRUAND E, FOWLER M, STOREY C, et al., 2017. Apatite trace element and isotope applications to petrogenesis and provenance[J]. American Mineralogist, 102(1): 75-84. doi: 10.2138/am-2017-5744 [3] CHEN H X, LIU J H, ZHANG Q W L, et al., 2020. A long-lived tectono-metamorphic event in the Late Paleoproterozoic: evidence from SIMS U-Th-Pb dating of monazite from metapelite in central-south Trans-North China Orogen[J]. Precambrian Research, 336: 105497. doi: 10.1016/j.precamres.2019.105497 [4] CHEN R X, ZHENG Y F, XIE L W, 2010. Metamorphic growth and recrystallization of zircon: distinction by simultaneous in-situ analyses of trace elements, U-Th-Pb and Lu-Hf isotopes in zircons from eclogite-facies rocks in the Sulu Orogen[J]. Lithos, 114(1-2): 132-154. doi: 10.1016/j.lithos.2009.08.006 [5] CHEN R X, ZHENG Y F, 2017. Metamorphic zirconology of continental subduction zones[J]. Journal of Asian Earth Sciences, 145: 149-176. doi: 10.1016/j.jseaes.2017.04.029 [6] CHEN W, SIMONETTI A, 2013. In-situ determination of major and trace elements in calcite and apatite, and U–Pb ages of apatite from the Oka carbonatite complex: insights into a complex crystallization history[J]. Chemical Geology, 353: 151-172. doi: 10.1016/j.chemgeo.2012.04.022 [7] CHEN Y X, ZHENG Y F, CHEN R X, et al., 2011. Metamorphic growth and recrystallization of zircons in extremely 18O-depleted rocks during eclogite-facies metamorphism: evidence from U-Pb ages, trace elements, and O-Hf isotopes[J]. Geochimica et Cosmochimica Acta, 75(17): 4877-4898. doi: 10.1016/j.gca.2011.06.003 [8] CHEW D M, SPIKINGS R A, 2021. Apatite U-Pb thermochronology: a review[J]. Minerals, 11(10): 1095. doi: 10.3390/min11101095 [9] CHU M F, WANG K L, GRILLFIN W L, et al., 2009. Apatite composition: tracing petrogenetic processes in Transhimalayan granitoids[J]. Journal of Petrology, 50(10): 1829-1855. doi: 10.1093/petrology/egp054 [10] FENG W Y, ZHENG J H, 2023. Apatite trace elements and O-Sr isotopes reveal different magmatic sources of Fe-Ti oxide deposits in the eastern Tianshan, NW China[J]. Ore Geology Reviews, 163: 105764. doi: 10.1016/j.oregeorev.2023.105764 [11] FILIPPELLI G M, 2002. The global phosphorus cycle[J]. Reviews in Mineralogy and Geochemistry, 48(1): 391-425. doi: 10.2138/rmg.2002.48.10 [12] GALL Q, DAVIS W J, LOWE D G, et al., 2017. Diagenetic apatite character and in situion microprobe U-Pb age, Keeseville Formation, Potsdam Group, New York State[J]. Canadian Journal of Earth Sciences, 54(7): 785-797. doi: 10.1139/cjes-2016-0195 [13] GAO P, SANTOSH M, 2019. Building the Wutai arc: insights into the Archean-Paleoproterozoic crustal evolution of the North China Craton[J]. Precambrian Research, 333: 105429. doi: 10.1016/j.precamres.2019.105429 [14] GAO P, SANTOSH M, KWON S, et al., 2021. Ocean plate stratigraphy of a long-lived Precambrian subduction-accretion system: the Wutai complex, North China Craton[J]. Precambrian Research, 363: 106334. doi: 10.1016/j.precamres.2021.106334 [15] GAO S S, LI Q G, HU P Y, et al., 2023. Geochemical features and tectonic significance of Late Archean metavolcanic rocks in Hengshan Area, North China Craton[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 59(1): 143-160. (in Chinese with English abstract [16] GUO R R, LIU S W, SANTOSH M, et al., 2013. Geochemistry, zircon U–Pb geochronology and Lu–Hf isotopes of metavolcanics from eastern Hebei reveal Neoarchean subduction tectonics in the North China Craton[J]. Gondwana Research, 24(2): 664-686. doi: 10.1016/j.gr.2012.12.025 [17] GUO R R, LIU S W, WYMAN D, et al., 2015. Neoarchean subduction: a case study of arc volcanic rocks in Qinglong-Zhuzhangzi area of the eastern Hebei Province, North China Craton[J]. Precambrian Research, 264: 36-62. doi: 10.1016/j.precamres.2015.04.007 [18] GUO R R, LIU S W, BAI X, et al., 2017. A Neoarchean subduction recorded by the eastern Hebei Precambrian basement, North China Craton: geochemical fingerprints from metavolcanic rocks of the Saheqiao-Shangying-Qinglong supracrustal belt[J]. Journal of Asian Earth Sciences, 135: 347-369. doi: 10.1016/j.jseaes.2017.01.007 [19] HAMMERLI J, GREBER N D, MARTIN L, et al., 2021. Tracing sulfur sources in the crust via SIMS measurements of sulfur isotopes in apatite[J]. Chemical Geology, 579: 120242. doi: 10.1016/j.chemgeo.2021.120242 [20] HE L C, ZHANG J, ZHAO G C, et al., 2021. Macro-and microstructural analysis of the Zhujiafang ductile shear zone, Hengshan complex: tectonic nature and geodynamic implications of the evolution of Trans–North China orogen[J]. GSA Bulletin, 133(5-6): 1237-1255. doi: 10.1130/B35672.1 [21] HENRICHS I A, O'SULLIVAN G, CHEW D M, et al., 2018. The trace element and U-Pb systematics of metamorphic apatite[J]. Chemical Geology, 483: 218-238. doi: 10.1016/j.chemgeo.2017.12.031 [22] HOSKIN P W O, KINNY P D, WYBORN D, et al., 2000. Identifying accessory mineral saturation during differentiation in granitoid magmas: an integrated approach[J]. Journal of Petrology, 41(9): 1365-1396. doi: 10.1093/petrology/41.9.1365 [23] HU Y L, LIU S W, FU J H, et al., 2021. Neoarchean-early Paleoproterozoic granitoids, the geothermal gradient and geodynamic evolution in the Hengshan Terrane, North China Craton[J]. Gondwana Research, 94: 143-163. doi: 10.1016/j.gr.2021.03.004 [24] HUGHES J M, RAKOVAN J F, 2015. Structurally robust, chemically diverse: apatite and apatite supergroup minerals[J]. Elements, 11(3): 165-170. doi: 10.2113/gselements.11.3.165 [25] KRÖNER A, WILDE S A, LI J H, et al., 2005a. Age and evolution of a Late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of Northern China[J]. Journal of Asian Earth Sciences, 24(5): 577-595. doi: 10.1016/j.jseaes.2004.01.001 [26] KRÖNER A, WILDE S A, O’BRIEN P J, et al., 2005b. Field relationships, geochemistry, zircon ages and evolution of a Late Archaean to Palaeoproterozoic lower crustal section in the Hengshan Terrain of Northern China[J]. Acta Geologica Sinica (English Edition), 79(5): 605-632. [27] LI T S, ZHAI M G, PENG P, et al., 2010. Ca. 2.5 billion year old coeval ultramafic–mafic and syenitic dykes in Eastern Hebei: implications for Cratonization of the North China Craton[J]. Precambrian Research, 180(3-4): 143-155. doi: 10.1016/j.precamres.2010.04.001 [28] LIU C H, LIU F L, SHI J R, et al., 2016a. Depositional age and provenance of the Wutai group: evidence from zircon U-Pb and Lu-Hf isotopes and whole-rock geochemistry[J]. Precambrian Research, 281: 269-290. doi: 10.1016/j.precamres.2016.06.002 [29] LIU C H, ZHAO G C, LIU F L, et al., 2016b. Constraints of volcanic rocks of the Wutai complex (Shanxi Province, Northern China) on a giant Late Neoarchean intra-oceanic arc system in the Trans-North China Orogen[J]. Journal of Asian Earth Sciences, 123: 178-212. doi: 10.1016/j.jseaes.2016.04.006 [30] LIU J B, ZHANG L M, CHEN Y, et al., 2013. Chlorine contents in apatites of eclogites and hosted veins from the Dabie-Sulu UHP belt: implication for fluid evolution in the process of metamorphism[J]. Chinese Science Bulletin, 58(22): 2165-2168. (in Chinese with English abstract doi: 10.1360/csb2013-58-22-2165 [31] LIU J H, ZHANG Q W L, LI Z M G, et al., 2020. Metamorphic evolution and U-Pb geochronology of metapelite, northeastern Wutai complex: implications for Paleoproterozoic tectonic evolution of the Trans-North China Orogen[J]. Precambrian Research, 350: 105928. doi: 10.1016/j.precamres.2020.105928 [32] LIU S Q, ZHANG G B, LI H J, 2023. Fingerprinting crustal anatexis with apatite trace element, halogen, and Sr isotope data[J]. Geochimica et Cosmochimica Acta, 351: 14-31. doi: 10.1016/j.gca.2023.04.021 [33] LIU S W, PAN Y M, LI J H, et al., 2002. Geological and isotopic geochemical constraints on the evolution of the Fuping complex, North China Craton[J]. Precambrian Research, 117(1-2): 41-56. doi: 10.1016/S0301-9268(02)00063-3 [34] LIU S W, PAN Y M, XIE Q L, et al., 2004. Archean geodynamics in the central zone, North China Craton: constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutai complexes[J]. Precambrian Research, 130(1-4): 229-249. doi: 10.1016/j.precamres.2003.12.001 [35] LIU S W, ZHAO G C, WILDE S A, et al., 2006. Th-U-Pb monazite geochronology of the Lüliang and Wutai complexes: constraints on the tectonothermal evolution of the Trans-North China Orogen[J]. Precambrian Research, 148(3-4): 205-224. doi: 10.1016/j.precamres.2006.04.003 [36] MAO M X, LIOU P, DU L L, et al., 2024. Petrogenesis of 2.7-2.65Ga TTGs in the Wutai complex: constraints on the Neoarchean crustal evolution of the North China Craton[J]. Precambrian Research, 400: 107245. doi: 10.1016/j.precamres.2023.107245 [37] MIYASHIRO A, 1974. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 274(4): 321-355. doi: 10.2475/ajs.274.4.321 [38] NATHWANI C L, LOADER M A, WILKINSON J J, et al., 2020. Multi-stage arc magma evolution recorded by apatite in volcanic rocks[J]. Geology, 48(4): 323-327. doi: 10.1130/G46998.1 [39] O'SULLIVAN G, CHEW D, KENNY G, et al., 2020. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth-Science Reviews, 201: 103044. doi: 10.1016/j.earscirev.2019.103044 [40] O'SULLIVAN G J, CHEW D M, 2020. The clastic record of a Wilson cycle: evidence from detrital apatite petrochronology of the Grampian-Taconic fore-arc[J]. Earth and Planetary Science Letters, 552: 116588. doi: 10.1016/j.jpgl.2020.116588 [41] PAN L C, HU R Z, WANG X S, et al., 2016. Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: examples from four granite plutons in the Sanjiang Region, SW China[J]. Lithos, 254-255: 118-130. doi: 10.1016/j.lithos.2016.03.010 [42] PATON C, HELLSTROM J, PAUL B, et al., 2011. Iolite: freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 26(12): 2508-2518. doi: 10.1039/c1ja10172b [43] PEARCE J A, 1996. A user’s guide to basalt discrimination diagrams[M]//WYMAN D A. Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. St. John's: Geological Association of Canada: 79-113. [44] PENG P, FENG L J, SUN F B, et al., 2017. Dating the Gaofan and Hutuo groups – Targets to investigate the Paleoproterozoic great oxidation event in North China[J]. Journal of Asian Earth Sciences, 138: 535-547. doi: 10.1016/j.jseaes.2017.03.001 [45] PICCOLI P M, CANDELA P A, 2002. Apatite in igneous systems[J]. Reviews in Mineralogy and Geochemistry, 48(1): 255-292. doi: 10.2138/rmg.2002.48.6 [46] POLAT A, KUSKY T, LI J H, 2005. Geochemistry of Neoarchean (ca. 2.55-2.50 Ga) volcanic and ophiolitic rocks in the Wutaishan greenstone belt, central orogenic belt, North China Craton: implications for geodynamic setting and continental growth[J]. GSA Bulletin, 117(11-12): 1387-1399. [47] QIAN J H, WEI C J, ZHOU X W, et al., 2013. Metamorphic P-T paths and new zircon U-Pb age data for garnet-mica schist from the Wutai group, North China Craton[J]. Precambrian Research, 233: 282-296. doi: 10.1016/j.precamres.2013.05.012 [48] QIAN J H, WEI C J, 2016. P-T-t evolution of garnet amphibolites in the Wutai-Hengshan area, North China Craton: insights from phase equilibria and geochronology[J]. Journal of Metamorphic Geology, 34(5): 423-446. doi: 10.1111/jmg.12186 [49] SPEAR F S, PYLE J M, 2002. Apatite, monazite, and xenotime in metamorphic rocks[J]. Reviews in Mineralogy and Geochemistry, 48(1): 293-335. doi: 10.2138/rmg.2002.48.7 [50] STOKES T N, BROMILEY G D, POTTS N J, et al., 2019. The effect of melt composition and oxygen fugacity on manganese partitioning between apatite and silicate melt[J]. Chemical Geology, 506: 162-174. doi: 10.1016/j.chemgeo.2018.12.015 [51] SUN D, LI Q G, LIU S W, et al., 2019. Neoarchean-Paleoproterozoic magmatic arc evolution in the Wutai-Hengshan-Fuping area, North China Craton: new perspectives from zircon U-Pb ages and Hf isotopic data[J]. Precambrian Research, 331: 105368. doi: 10.1016/j.precamres.2019.105368 [52] SUN J F, YANG J H, ZHANG J H, et al., 2021. Apatite geochemical and Sr-Nd isotopic insights into granitoid petrogenesis[J]. Chemical Geology, 566: 120104. doi: 10.1016/j.chemgeo.2021.120104 [53] SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Magmatism in the Ocean Basins[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [54] TAN H M R, HUANG X W, MENG Y M, et al., 2023. Multivariate statistical analysis of trace elements in apatite: discrimination of apatite with different origins[J]. Ore Geology Reviews, 153: 105269. doi: 10.1016/j.oregeorev.2022.105269 [55] TANG L, SANTOSH M, 2018. Neoarchean granite-greenstone belts and related ore mineralization in the North China Craton: an overview[J]. Geoscience Frontiers, 9(3): 751-768. doi: 10.1016/j.gsf.2017.04.002 [56] TANG M, LEE C T A, JI W Q, et al., 2020. Crustal thickening and endogenic oxidation of magmatic sulfur[J]. Science Advances, 6(31): eaba6342. doi: 10.1126/sciadv.aba6342 [57] TRAP P, FAURE M, LIN W, et al., 2007. Late Paleoproterozoic (1900-1800 Ma) nappe stacking and polyphase deformation in the Hengshan-Wutaishan area: implications for the understanding of the Trans-North-China belt, North China Craton[J]. Precambrian Research, 156(1-2): 85-106. doi: 10.1016/j.precamres.2007.03.001 [58] WAN Y S, DONG C Y, XIE H Q, et al., 2022. Huge growth of the Late Mesoarchean–Early Neoarchean (2.6~3.0 Ga) continental crust in the North China Craton: a review[J]. Journal of Geomechanics, 28(5): 866-906. (in Chinese with English abstract [59] WANG C L, ZHANG L C, LAN C Y, et al., 2014. Petrology and geochemistry of the Wangjiazhuang banded iron formation and associated supracrustal rocks from the Wutai greenstone belt in the North China Craton: implications for their origin and tectonic setting[J]. Precambrian Research, 255: 603-626. doi: 10.1016/j.precamres.2014.08.002 [60] WANG X P, PENG P, LI X B, 2023. Petrogenesis and geological implications of the ca. 2520Ma gabbroic intrusions in Wutai Mountain of the North China Craton[J]. Acta Petrologica Sinica, 39(3): 845-864. (in Chinese with English abstract doi: 10.18654/1000-0569/2023.03.13 [61] WANG Z H, WILDE S A, WANG K Y, et al., 2004. A MORB-arc basalt-Adakite association in the 2.5 Ga Wutai greenstone belt: Late Archean magmatism and crustal growth in the North China Craton[J]. Precambrian Research, 131(3-4): 323-343. doi: 10.1016/j.precamres.2003.12.014 [62] WEBSTER J D, PICCOLI P M, 2015. Magmatic apatite: a powerful, yet deceptive, mineral[J]. Elements, 11(3): 177-182. doi: 10.2113/gselements.11.3.177 [63] WEI C J, 2018. Paleoproterozoic metamorphism and tectonic evolution in Wutai-Hengshan region, Trans-North China Orogen[J]. Earth Science, 43(1): 24-43. (in Chinese with English abstract [64] WILDE S A, CAWOOD P A, WANG K Y, et al., 2004. Determining Precambrian crustal evolution in China: a case-study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U-Pb geochronology[J]. Geological Society, London, Special Publications, 226(1): 5-25. doi: 10.1144/GSL.SP.2004.226.01.02 [65] XIA Q X, ZHENG Y F, YUAN H L, et al., 2009. Contrasting Lu-Hf and U-Th-Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie Orogen, China[J]. Lithos, 112(3-4): 477-496. doi: 10.1016/j.lithos.2009.04.015 [66] XIA Q X, ZHENG Y F, HU Z C, 2010. Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie Orogen: implications for action of supercritical fluid during continental subduction-zone metamorphism[J]. Lithos, 114(3-4): 385-412. doi: 10.1016/j.lithos.2009.09.013 [67] XING K, SHU Q H, 2021. Applications of apatite in study of ore deposits: a review[J]. Mineral Deposits, 40(2): 189-205. (in Chinese with English abstract [68] YANG Q Y, SANTOSH M, 2015. Paleoproterozoic arc magmatism in the North China Craton: no Siderian global plate tectonic shutdown[J]. Gondwana Research, 28(1): 82-105. doi: 10.1016/j.gr.2014.08.005 [69] YANG Q Y, SANTOSH M, 2017. The building of an Archean microcontinent: evidence from the North China Craton[J]. Gondwana Research, 50: 3-37. doi: 10.1016/j.gr.2017.01.003 [70] ZAFAR T, REHMAN H U, MAHAR M A, et al., 2020. A critical review on petrogenetic, metallogenic and geodynamic implications of granitic rocks exposed in north and East China: new insights from apatite geochemistry[J]. Journal of Geodynamics, 136: 101723. doi: 10.1016/j.jog.2020.101723 [71] ZHAI M G, GUO J H, LIU W J, 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review[J]. Journal of Asian Earth Sciences, 24(5): 547-561. doi: 10.1016/j.jseaes.2004.01.018 [72] ZHAI M G, SANTOSH M, 2011. The Early Precambrian odyssey of the North China Craton: a synoptic overview[J]. Gondwana Research, 20(1): 6-25. doi: 10.1016/j.gr.2011.02.005 [73] ZHAI M G, 2019. Tectonic evolution of the North China Craton[J]. Journal of Geomechanics, 25(5): 722-745. (in Chinese with English abstract [74] ZHAN Q Y, ZHU D C, WANG Q, et al., 2022. Partitioning behaviors of some key elements in apatite and their implications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 41(6): 1087-1099. (in Chinese with English abstract [75] ZHANG J, ZHAO G C, SUN M, et al., 2006. High-pressure mafic granulites in the Trans–North China Orogen: tectonic significance and age[J]. Gondwana Research, 9(3): 349-362. doi: 10.1016/j.gr.2005.10.005 [76] ZHANG J, ZHAO G C, LI S Z, et al., 2007. Deformation history of the Hengshan complex: implications for the tectonic evolution of the Trans–North China Orogen[J]. Journal of Structural Geology, 29(6): 933-949. doi: 10.1016/j.jsg.2007.02.013 [77] ZHANG J, ZHAO G C, LI S Z, et al., 2012. Structural pattern of the Wutai complex and its constraints on the tectonic framework of the Trans–North China Orogen[J]. Precambrian Research, 222-223: 212-229. doi: 10.1016/j.precamres.2011.08.009 [78] ZHANG J, ZHAO G C, SHEN W L, et al., 2015. Aeromagnetic study of the Hengshan-Wutai-Fuping region: unraveling a crustal profile of the Paleoproterozoic Trans–North China Orogen[J]. Tectonophysics, 662: 208-218. doi: 10.1016/j.tecto.2015.08.025 [79] ZHANG S Y, YANG L Q, HE W Y, et al., 2021. Melt volatile budgets and magma evolution revealed by diverse apatite halogen and trace elements compositions: a case study at Pulang porphyry Cu-Au deposit, China[J]. Ore Geology Reviews, 139: 104509. doi: 10.1016/j.oregeorev.2021.104509 [80] ZHAO G C, WILDE S A, CAWOOD P A, et al., 1998. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting[J]. International Geology Review, 40(8): 706-721. doi: 10.1080/00206819809465233 [81] ZHAO G C, CAWOOD P A, WILDE S A, et al., 2000. Metamorphism of basement rocks in the central zone of the North China Craton: implications for Paleoproterozoic tectonic evolution[J]. Precambrian Research, 103(1-2): 55-88. doi: 10.1016/S0301-9268(00)00076-0 [82] ZHAO G C, WILDE S A, CAWOOD P A, et al., 2001. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research, 107(1-2): 45-73. doi: 10.1016/S0301-9268(00)00154-6 [83] ZHAO G C, SUN M, WILDE S A, et al., 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002 [84] ZHAO G C, KRÖNER A, WILDE S A, et al., 2007. Lithotectonic elements and geological events in the Hengshan–Wutai–Fuping belt: a synthesis and implications for the evolution of the Trans-North China Orogen[J]. Geological Magazine, 144(5): 753-775. doi: 10.1017/S0016756807003561 [85] ZHAO G C, WILDE S A, GUO J H, et al., 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton[J]. Precambrian Research, 177(3-4): 266-276. doi: 10.1016/j.precamres.2009.12.007 [86] ZHAO G C, CAWOOD P A, LI S Z, et al., 2012. Amalgamation of the North China Craton: key issues and discussion[J]. Precambrian Research, 222-223: 55-76. doi: 10.1016/j.precamres.2012.09.016 [87] ZHAO Y F, HU J M, GONG W B, et al., 2019. Comparison of main characteristics of different Precambrian blocks in the Trans-North China Orogen[J]. Acta Petrologica Sinica, 35(7): 2259-2279. (in Chinese with English abstract doi: 10.18654/1000-0569/2019.07.19 [88] 白瑾,1986. 五台山早前寒武纪地质[M]. 天津:天津科学技术出版社:1-475. [89] 高山松,李秋根,胡鹏月,等,2023. 华北克拉通恒山地区晚太古代变质火山岩的地球化学特征及构造意义[J]. 北京大学学报(自然科学版),59(1):143-160. [90] 刘景波,张灵敏,陈意,等,2013. 大别-苏鲁造山带超高压榴辉岩和脉体磷灰石含氯特征与变质流体演化[J]. 科学通报,58(22):2165-2168. [91] 万渝生,董春艳,颉颃强,等,2022. 华北克拉通新太古代早期—中太古代晚期(2.6~3.0 Ga)巨量陆壳增生:综述[J]. 地质力学学报,28(5):866-906. doi: 10.12090/j.issn.1006-6616.20222817 [92] 王欣平,彭澎,李小兵,2023. 华北克拉通五台山~2520 Ma辉长岩侵入体的成因及其地质意义[J]. 岩石学报,39(3):845-864. doi: 10.18654/1000-0569/2023.03.13 [93] 魏春景,2018. 华北中部造山带五台-恒山地区古元古代变质作用与构造演化[J]. 地球科学,43(1):24-43. [94] 邢凯,舒启海,2021. 磷灰石在矿床学研究中的应用[J]. 矿床地质,40(2):189-205. [95] 翟明国,2019. 华北克拉通构造演化[J]. 地质力学学报,25(5):722-745. doi: 10.12090/j.issn.1006-6616.2019.25.05.063 [96] 詹琼窑,朱弟成,王青,等,2022. 磷灰石中一些关键元素的分配行为及意义[J]. 矿物岩石地球化学通报,41(6):1087-1099. [97] 赵远方,胡健民,公王斌,等,2019. 华北中部构造带不同前寒武纪地块主要特征对比研究[J]. 岩石学报,35(7):2259-2279. doi: 10.18654/1000-0569/2019.07.19