留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西部高山峡谷区重大滑坡成生规律及灾变演化机理研究进展

张世殊 胡新丽 章广成 李亚博 刘欣宇 徐庆尧 冉从彦 赵小平

张世殊,胡新丽,章广成,等,2024. 西部高山峡谷区重大滑坡成生规律及灾变演化机理研究进展[J]. 地质力学学报,30(5):795−810 doi: 10.12090/j.issn.1006-6616.2024031
引用本文: 张世殊,胡新丽,章广成,等,2024. 西部高山峡谷区重大滑坡成生规律及灾变演化机理研究进展[J]. 地质力学学报,30(5):795−810 doi: 10.12090/j.issn.1006-6616.2024031
ZHANG S S,HU X L,ZHANG G C,et al.,2024. Formation and catastrophic evolution of giant landslides in the alpine canyon area of western China[J]. Journal of Geomechanics,30(5):795−810 doi: 10.12090/j.issn.1006-6616.2024031
Citation: ZHANG S S,HU X L,ZHANG G C,et al.,2024. Formation and catastrophic evolution of giant landslides in the alpine canyon area of western China[J]. Journal of Geomechanics,30(5):795−810 doi: 10.12090/j.issn.1006-6616.2024031

西部高山峡谷区重大滑坡成生规律及灾变演化机理研究进展

doi: 10.12090/j.issn.1006-6616.2024031
基金项目: 国家自然科学基金项目(U22A20601)
详细信息
    作者简介:

    张世殊(1970—),男,博士,正高级工程师,岩土工程专业,主要从事工程勘察与地灾研究。Email:1992070@chidi.com.cn

  • 中图分类号: P642.22

Formation and catastrophic evolution of giant landslides in the alpine canyon area of western China

Funds: This research is financially supported by National Natural Science Foundation of China (Grant No. U22A20601).
More Information
    Author Bio:

    张世殊,正高级工程师,中国电建集团成都勘测设计研究院有限公司党委副书记、总经理,国际岩石力学与岩石工程学会(ISRM)中国国家小组副主席,四川省岩石力学与工程学会理事长。2023年荣获第十八次李四光地质科学奖野外奖。从事水电工程勘察设计和技术管理工作30余年,为我国水电开发建设事业做出重要贡献:牵头国家某重大工程勘察设计,策划并实施该巨型工程重大科学问题与关键技术的科技攻关,系统构建超2000 m级深部工程定向钻探与随钻探测技术、超深厚河床覆盖层原位取样测试技术;研发高能环境深埋越岭隧TBM高效安全施工与超前地质预报技术,显著促进工程勘测技术水平的重大提升;提出工程岩体力学参数综合取值方法,开创性地利用Ⅲ2类岩体作为300 m级特高拱坝坝基,突破高坝基岩体利用下限,为特高拱坝建基面的科学选定做出贡献;解决滑坡失稳堰塞、高陡危岩体、泥石流、隐蔽型变形体等地质灾害防控难题,为水电工程安全建设与运行提供支撑。获国家发明专利授权50余项;出版技术专著13部,编纂专业辞典2部;发表论文100余篇;起草行业、团体技术标准16项。先后获国务院政府特殊津贴专家、电建集团首席技术专家、四川省工程勘察设计大师,入选成都市重大人才计划“蓉城英才计划”。获国家科技进步二等奖1项、省部级科技进步特等奖等25项科技奖

  • 摘要: 中国西部水电工程大多位于高山峡谷内,复杂的工程地质条件导致峡谷库岸滑坡灾害分布广泛。基于西部高山峡谷水电工程区的工程地质特征,系统分析了地形、地质构造、滑体物质、坡体结构和水文地质条件与滑坡的成生发育关系,并总结了典型滑坡的类型、特征及其灾变演化的力学机制。研究结果表明:西部高山峡谷滑坡以坡度30°~50°、高程超过1000 m、体积超过100×104 m3的滑坡为主;三叠系、奥陶系和志留系为典型的易滑地层;降雨和水库蓄水导致侵蚀基准面抬升、侵蚀范围扩大,库区水位的反复升降导致涉水滑坡体前缘岩土体性质降低。西部高山峡谷区滑坡类型主要分为以牵引式滑坡、推移式滑坡和复合式滑坡为主的堆积层滑坡以及以顺层岩质滑坡、溃屈型岩质滑坡、反倾岩质滑坡和座落式滑坡为主的岩质滑坡,不同类型的滑坡其演化过程不同,滑坡灾变机理也有所差异。研究成果将对西部高山峡谷区的滑坡识别、监测、预警以及防治具有一定的指导意义。

     

  • 图  1  川西高程分布图

    Figure  1.  Elevation distribution of the western Sichuan, China

    图  2  库区77个典型滑坡发育分布图

    Figure  2.  Distribution of 77 typical landslide developments in the reservoir area

    图  3  牵引式滑坡受力分析模型(变量含义见文中)

    Figure  3.  Mechanical model of buckling failure for rock slopes

    图  4  推移式滑坡演化过程示意图

    Figure  4.  Evolutionary process diagram of thrust-type landslide

    图  5  复合式滑坡演化示意图(易志坚,2010

    Figure  5.  Diagram of evolution of complex landslide(Yi,2010

    (a) Unoading bounce-slip-compression strain fracture deformation stage; (b) Step creep, sliding surface through stage (leading edge instability); (c) steep creep, sliding surface through stage (integral trailing edge slide); (d) Landslide classification sliding-river blocking stage

    图  6  复合式滑坡地质力学模型

    Figure  6.  Geomechanical model for complex landslide

    (a) Physical and mechanical model of sliding slope; (b) Mechanics and deformation characteristics of landslide evolution

    图  7  顺层岩质滑坡演化概念模型(Tang et al.,2015

    Figure  7.  Conceptual model of the evolution of consequent bedding rockslides (Tang et al., 2015)

    图  8  顺层岩质滑坡渐进锁固力学模型

    Figure  8.  Progressive locking mechanical model of consequent bedding rockslides

    图  9  典型溃屈型滑坡演化示意图(闫国强等,2022

    Figure  9.  Evolution diagram of typical buckling landslide (Yan et al., 2022)

    (a) Slight flexural uplift ; (b) Strong uplift deformation; (c) Cutting through failure (slipping-fragmentation-dispersing)

    图  10  岩质边坡溃屈破坏力学模型

    Figure  10.  Mechanical model of buckling failure for rock slopes

    图  11  反倾岩质边坡倾覆破坏力学模型(殷坤龙等,2014

    Figure  11.  Mechanical model of counter-tilt rock slopes(Yin et al.,2014

    (a) Mechanical model of flexural slip deformation of superposed cantikver beam; (b) Bending deformation model of independent cantilever beam

    图  12  座落式滑坡演化示意图(据雷清雄,2017

    Figure  12.  Evolution diagram of sliding-falling body landslide(Lei,2017

    表  1  中国西部地区地下水的主要类型

    Table  1.   Main classification of groundwater in the western region

    类别 分布区域 补给方式 排泄方式
    松散沉积物孔隙水 成都平原、断陷盆地、黄土高原 冰雪消融水、降水 河流外泄、蒸发排泄
    基岩裂隙水 天山南麓、鄂尔多斯高原、黔北山地等高山丘陵区 降雨入渗、冰雪消融 泉水、蒸发、向山区河流的泻流
    碳酸盐岩裂隙溶洞水 西南地区 降水、地表径流 泉水、泻流
    冻土冻结水 阿尔泰山区及青藏高原地区
    下载: 导出CSV

    表  2  滑坡发育流域统计

    Table  2.   Basin statistics of landslide development

    流域岷江雅砻江金沙江大渡河
    滑坡数量2036138
    占比/%26471710
    下载: 导出CSV

    表  3  滑坡发育高程统计

    Table  3.   Elevation statistics of landslide development

    高程/m 500~1000 1000~2000 >2000
    滑坡数量 14 38 22
    占比/% 19 51 30
    下载: 导出CSV

    表  4  滑坡发育体积分类统计

    Table  4.   Volume statistics of landslide development

    体积/
    ×104m3
    小型
    (<10)
    中型
    (10~100)
    大型
    (100~1000)
    特大型
    (1000~10000)
    巨型
    (>10000)
    滑坡数量 1 9 23 34 8
    占比/% 1 12 31 45 11
    下载: 导出CSV

    表  5  滑坡发育岸别统计

    Table  5.   Bank statistics of landslide development

    流域 岷江 雅砻江 金沙江 大渡河
    左岸滑坡数量 11 9 6 5
    右岸滑坡数量 9 27 7 3
    下载: 导出CSV

    表  6  滑坡发育坡度统计

    Table  6.   Slope gradient statistics of landslide development

    坡度/(°)10~2020~3030~4040~5050~60
    滑坡数量1741142
    占比/%11163223
    下载: 导出CSV

    表  7  滑坡发育坡高统计

    Table  7.   Slope height statistics of landslide development

    坡高/m0~200200~400400~600600~800800~10001000~1200
    滑坡数量1127151425
    占比/%1536201937
    下载: 导出CSV

    表  8  滑坡发育地层统计

    Table  8.   Stratigraphic unit statistics of landslide development

    地层元古界寒武系奥陶系、志留系泥盆系二叠系三叠系
    滑坡数量22273134
    占比/%33394249
    下载: 导出CSV

    表  9  滑坡发育岸坡结构统计

    Table  9.   Bank slope structure statistics of landslide development

    岸坡结构顺向坡逆向坡斜向坡
    滑坡数量27221
    占比/%54442
    下载: 导出CSV
  • [1] BELLONI L G, STEFANI R, 1987. The Vajont slide: instrumentation: past experience and the modern approach[J]. Engineering Geology, 24(1-4): 445-474. doi: 10.1016/0013-7952(87)90079-2
    [2] CHEN Z L, ZHANG X Y, SHEN F, et al., 1999. GPS monitoring of the crustal motion in southwestern China[J]. Chinese Science Bulletin, 44(19): 1804-1807. (in Chinese with English abstract doi: 10.1007/BF02886164
    [3] CHENG G D, JIN H J, 2013. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes[J]. Hydrogeology & Engineering Geology, 40(1): 1-11. (in Chinese with English abstract
    [4] China electricity council, 2007. Design specification for slope of hydropower and water conservancy project: DL/T 5353-2006[S]. Beijing: China Electric Power Press: 6-72. (in Chinese)
    [5] DU Y, YAN E C, CAI J S, et al., 2023. Mechanical discrimination of stability state of progressive failure of broken-line complex landslides[J]. Chinese Journal of Geotechnical Engineering, 45(6): 1151-1161. (in Chinese with English abstract
    [6] HU R J, FAN Z L, WANG Y J, et al., 2002. Groundwater resources and their characteristics in arid lands of northwestern China[J]. Journal of Natural Resources, 17(3): 321-326. (in Chinese with English abstract
    [7] HUANG R Q, 2007. large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454. (in Chinese with English abstract
    [8] HUANG R Q, 2009. Some catastrophic landslides since the twentieth century in the southwest of China[J]. Landslides, 6(1): 69-81. doi: 10.1007/s10346-009-0142-y
    [9] KENNEDY R, TAKE W A, SIEMENS G, 2021. Geotechnical centrifuge modelling of retrogressive sensitive clay landslides[J]. Canadian Geotechnical Journal, 58(10): 1452-1465. doi: 10.1139/cgj-2019-0677
    [10] LEI Q X, 2017. Analysis of formation mechanism and environmental effects of collapses and landslides at Hanyuan-Tongjiezi in the Dadu River[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract
    [11] LIAN B Q, PENG J B, ZHAN H B, et al., 2020. Formation mechanism analysis of irrigation-induced retrogressive loess landslides[J]. CATENA, 195: 104441. doi: 10.1016/j.catena.2019.104441
    [12] LIU G R, YAN E C, LIAN C, 2002. Discussion on classification of landslides[J]. Journal of Engineering Geology, 10(4): 339-342. (in Chinese with English abstract
    [13] LU S Q, YI Q L, YI W, et al. , 2014. Analysis of deformation and failure mechanism of Shuping landslide in Three Gorges reservoir area[J]. Rock and Soil Mechanics, 35(4): 1123-1130, 1202. (in Chinese with English abstract
    [14] LU Y F, 2015. Deformation and failure mechanism of slope in three dimensions[J]. Journal of Rock Mechanics and Geotechnical Engineering, 7(2): 109-119. doi: 10.1016/j.jrmge.2015.02.008
    [15] PENG J B, LENG Y Q, ZHU X H, et al., 2016. Development of a loess-mudstone landslide in a fault fracture zone[J]. Environmental Earth Sciences, 75(8): 658. doi: 10.1007/s12665-016-5336-8
    [16] ROSSO R, RULLI M C, VANNUCCHI G, 2006. A physically based model for the hydrologic control on shallow landsliding[J]. Water Resources Research, 42(6): W06410.
    [17] SUN G Z, 1988. Rock mass structure mechanics[M]. Beijing: Science Press. (in Chinese)
    [18] TANG H M, ZHANG G C, 2005. A study on slope stability during reservoir water level falling[J]. Rock and Soil Mechanics, 26(S2): 11-15. (in Chinese with English abstract
    [19] TANG H M, LI D W, HU X L, 2009. Faulting characteristics of Wenchuan earthquake and evaluation theory of regional crustal stability for engineering[J]. Journal of Engineering Geology, 17(2): 145-152. (in Chinese with English abstract
    [20] TANG H M, ZOU Z X, XIONG C R, et al., 2015. An evolution model of large consequent bedding rockslides, with particular reference to the Jiweishan rockslide in Southwest China[J]. Engineering Geology, 186: 17-27. doi: 10.1016/j.enggeo.2014.08.021
    [21] TANG Y Y, 1992. The effect of neotectonic movement on formations of landslide and debris flow in Southern Gansu[J]. Journal of Lanzhou University (Natural Sciences), 28(4): 152-160. (in Chinese with English abstract
    [22] VARNES D J, 1978. Slope movement types and processes[R]. Washington: Transportation Research Board Special Report.
    [23] WANG F, TANG H M, ZHANG G C, et al., 2018. Development characteristics and evolution mechanism of the deep-seated toppling in the upstream of the Yalong River, China[J]. Mountain Research, 36(3): 411-421. (in Chinese with English abstract
    [24] WANG K W, DENG C J, ZHANG F, 2012. Formation process of Tanggudong landslide and Yuri accumulation body in Yalong river valley in southwest China[J]. Journal of Engineering Geology, 20(6): 955-970. (in Chinese with English abstract
    [25] WANG G X, 2005. Key technique in landslide control and its handling measures[J]. Chinese Journal of Rock Mechanics and Engineering, 24(21): 3818-3827. (in Chinese with English abstract
    [26] WANG L S, ZHANG Z Y, 1979. Basic geomechanic model of slope deformation[C]//Proceedings of the First Engineering Geology Congress. Suzhou. (in Chinese)
    [27] WANG Q Z, LI Z Q, YIN Y, et al., 2020. Distribution characteristics of typical geological relics in the Western Sichuan Plateau[J]. Open Geosciences, 12(1): 307-323. doi: 10.1515/geo-2020-0104
    [28] WANG S J, 1966. An engineering geological study on the mechanical behaviour of a rock mass[J]. Chinese Journal of Geology, 7(1): 64-78. (in Chinese with English abstract
    [29] XU J R, ZHAO Z X, ISHIKAWA Y, 2008. Regional characteristics of crustal stress field and tectonic motions in and around Chinese mainland[J]. Chinese Journal of Geophysics, 51(3): 770-781. (in Chinese with English abstract
    [30] XU L, DAI F C, CHEN J, et al., 2014. Analysis of a progressive slope failure in the Xiangjiaba reservoir area, Southwest China[J]. Landslides, 11(1): 55-66. doi: 10.1007/s10346-012-0373-1
    [31] XU Q, HUANG R Q, LI X Z, 2004. Research progress in time forecast and prediction of landslides[J]. Advance in Earth Sciences, 19(3): 478-483. (in Chinese with English abstract
    [32] XU Q, HUANG R Q, 2008. Kinetics characteristics of large landslides triggered by May 12th Wenchuan earthquake[J]. Journal of Engineering Geology, 16(6): 721-729. (in Chinese with English abstract
    [33] YAN G Q, YIN Y P, HUANG B L, et al., 2022. Deterioration-buckling failure mechanism of consequent bedding limestone bank slope in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 43(9): 2568-2580. (in Chinese with English abstract
    [34] YI Z J, 2010. Research on formation mechanism and stability of Tanggudong giant landslide of Lenggu hydropower station[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract
    [35] YIN K L, ZHOU C M, CHAI B, 2014. Reservoir area failure mechanism and criterion of counter-tilt rock slopes at Wuxia gorge section in three gorges[J]. Chinese Journal of Rock Mechanics and Engineering, 33(8): 1635-1643. (in Chinese with English abstract
    [36] YIN Y P, PENG X M, 2007. Failure mechanism on Qianjiangping landslide in the three gorges reservoir region[J]. Hydrogeology & Engineering Geology, 34(3): 51-54. (in Chinese with English abstract
    [37] YIN Y P, 2008. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 16(4): 433-444. (in Chinese with English abstract
    [38] ZHANG D, WU Z H, LI J C, et al., 2013. An overview on earthquake-induced landslide research[J]. Journal of Geomechanics, 19(3): 225-241. (in Chinese with English abstract
    [39] ZHANG L F, WU Y P, MIAO F S, et al., 2019. Mechanical model and stability analysis of progressive failure for thrust-type gently inclined shallow landslide[J]. Rock and Soil Mechanics, 40(12): 4767-4776. (in Chinese with English abstract
    [40] ZHANG S S, HU X L, ZHANG G C, et al. , 2018. Catastrophic evolution and control technology of major landslides in western hydropower project[M]. Beijing: China Water & Power Press. (in Chinese)
    [41] ZOU Z X, TANG H M, XIONG C R, et al., 2012. Geomechanical model of progressive failure for large consequent bedding rockslide and its stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 31(11): 2222-2231. (in Chinese with English abstract
    [42] 中国电力企业联合会,2007. 水电水利工程边坡设计规范:DL/T 5353—2006[S]. 北京:中国电力出版社:6-72.
    [43] 陈智梁,张选阳,沈凤,等,1999. 中国西南地区地壳运动的GPS监测[J]. 科学通报,44(8):851-854. doi: 10.3321/j.issn:0023-074X.1999.08.015
    [44] 程国栋,金会军,2013. 青藏高原多年冻土区地下水及其变化[J]. 水文地质工程地质,40(1):1-11.
    [45] 杜毅,晏鄂川,蔡静森,等,2023. 折线型复合式滑坡渐进破坏稳定性状态的力学判别[J]. 岩土工程学报,45(6):1151-1161. doi: 10.11779/CJGE20220184
    [46] 胡汝骥,樊自立,王亚俊,等,2002. 中国西北干旱区的地下水资源及其特征[J]. 自然资源学报,17(3):321-326. doi: 10.3321/j.issn:1000-3037.2002.03.012
    [47] 黄润秋,2007. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,26(3):433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001
    [48] 雷清雄,2017. 大渡河汉源—铜街子段崩、滑灾害成因机制及环境效应研究[D]. 成都:成都理工大学.
    [49] 刘广润,晏鄂川,练操,2002. 论滑坡分类[J]. 工程地质学报,10(4):339-342. doi: 10.3969/j.issn.1004-9665.2002.04.001
    [50] 卢书强,易庆林,易武,等,2014. 三峡库区树坪滑坡变形失稳机制分析[J]. 岩土力学,35(4):1123-1130,1202.
    [51] 孙广忠,1988. 岩体结构力学[M]. 北京:科学出版社.
    [52] 唐辉明,章广成,2005. 库水位下降条件下斜坡稳定性研究[J]. 岩土力学,26(S2):11-15.
    [53] 唐辉明,李德威,胡新丽,2009. 龙山门断裂带活动特征与工程区域地壳稳定性评价理论[J]. 工程地质学报,17(2):145-152. doi: 10.3969/j.issn.1004-9665.2009.02.001
    [54] 唐永仪,1992. 新构造运动在陇南滑坡泥石流形成中的作用[J]. 兰州大学学报(自然科学版),28(4):152-160. doi: 10.3321/j.issn:0455-2059.1992.04.027
    [55] 王飞,唐辉明,章广成,等,2018. 雅砻江上游深层倾倒体发育特征及形成演化机制[J]. 山地学报,36(3):411-421.
    [56] 王恭先,2005. 滑坡防治中的关键技术及其处理方法[J]. 岩石力学与工程学报,24(21):3818-3827. doi: 10.3321/j.issn:1000-6915.2005.21.003
    [57] 王兰生,张倬元,1979. 斜坡岩体变形破坏的基本模式[C]//第一届工程地质大会论文. 苏州.
    [58] 王孔伟,邓成进,张帆,2012. 中国西南雅砻江流域唐古栋滑坡及雨日堆积体形成机理分析. 工程地质学报,20(06):955-970.
    [59] 王思敬,1966. 以工程地质观点探讨岩体的力学属性[J]. 地质科学,7(1):64-78.
    [60] 徐纪人,赵志新,石川有三,2008. 中国大陆地壳应力场与构造运动区域特征研究[J]. 地球物理学报,51(3):770-781. doi: 10.3321/j.issn:0001-5733.2008.03.018
    [61] 许强,黄润秋,李秀珍,2004. 滑坡时间预测预报研究进展[J]. 地球科学进展,19(3):478-483. doi: 10.3321/j.issn:1001-8166.2004.03.021
    [62] 许强,黄润秋,2008. 5.12汶川大地震诱发大型崩滑灾害动力特征初探[J]. 工程地质学报,16(6):721-729. doi: 10.3969/j.issn.1004-9665.2008.06.001
    [63] 闫国强,殷跃平,黄波林,等,2022. 三峡库区顺层灰岩岸坡劣化-溃屈灾变机制研究[J]. 岩土力学,43(9):2568-2580.
    [64] 易志坚,2010. 楞古水电站唐古栋巨型滑坡成因机制及稳定性研究[D]. 成都:成都理工大学.
    [65] 殷坤龙,周春梅,柴波,2014. 三峡库区巫峡段反倾岩石边坡的破坏机制及判据[J]. 岩石力学与工程学报,33(8):1635-1643.
    [66] 殷跃平,彭轩明,2007. 三峡库区千将坪滑坡失稳探讨[J]. 水文地质工程地质,34(3):51-54. doi: 10.3969/j.issn.1000-3665.2007.03.013
    [67] 殷跃平,2008. 汶川八级地震地质灾害研究[J]. 工程地质学报,16(4):433-444. doi: 10.3969/j.issn.1004-9665.2008.04.001
    [68] 张铎,吴中海,李家存,等,2013. 国内外地震滑坡研究综述[J]. 地质力学学报,19(3):225-241. doi: 10.3969/j.issn.1006-6616.2013.03.001
    [69] 张龙飞,吴益平,苗发盛,等,2019. 推移式缓倾浅层滑坡渐进破坏力学模型与稳定性分析[J]. 岩土力学,40(12):4767-4776.
    [70] 张世殊,胡新丽,章广成,等,2018. 西部水电工程重大滑坡灾变演化及控制技术[M]. 北京:中国水利水电出版社.
    [71] 邹宗兴,唐辉明,熊承仁,等,2012. 大型顺层岩质滑坡渐进破坏地质力学模型与稳定性分析[J]. 岩石力学与工程学报,31(11):2222-2231. doi: 10.3969/j.issn.1000-6915.2012.11.010
  • 加载中
图(12) / 表(9)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  8
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-02
  • 修回日期:  2024-06-14
  • 录用日期:  2024-06-20
  • 预出版日期:  2024-09-26
  • 刊出日期:  2024-10-28

目录

    /

    返回文章
    返回