Formation and catastrophic evolution of giant landslides in the alpine canyon area of western China
-
摘要: 中国西部水电工程大多位于高山峡谷内,复杂的工程地质条件导致峡谷库岸滑坡灾害分布广泛。基于西部高山峡谷水电工程区的工程地质特征,系统分析了地形、地质构造、滑体物质、坡体结构和水文地质条件与滑坡的成生发育关系,并总结了典型滑坡的类型、特征及其灾变演化的力学机制。研究结果表明:西部高山峡谷滑坡以坡度30°~50°、高程超过1000 m、体积超过100×104 m3的滑坡为主;三叠系、奥陶系和志留系为典型的易滑地层;降雨和水库蓄水导致侵蚀基准面抬升、侵蚀范围扩大,库区水位的反复升降导致涉水滑坡体前缘岩土体性质降低。西部高山峡谷区滑坡类型主要分为以牵引式滑坡、推移式滑坡和复合式滑坡为主的堆积层滑坡以及以顺层岩质滑坡、溃屈型岩质滑坡、反倾岩质滑坡和座落式滑坡为主的岩质滑坡,不同类型的滑坡其演化过程不同,滑坡灾变机理也有所差异。研究成果将对西部高山峡谷区的滑坡识别、监测、预警以及防治具有一定的指导意义。Abstract:
Objective Most hydroelectric projects in western China are located in alpine canyons. The intricate geological engineering conditions in this area have contributed to the widespread distribution of landslide disasters across the reservoir banks of hydroelectric projects. Methods Based on the engineering geological characteristics of western alpine canyons, correlations between topography, geological structure, landslide material, slope structure, hydrogeological conditions, and the formation and progression of landslides were analyzed. We also delineated the types and features of landslide development in the western region, as well as the mechanisms governing the evolution of typical landslide disasters. Results Results indicate that the landslides were characterized by slopes ranging from 30° to 50°, elevations exceeding 1000 m, and volumes surpassing one million cubic meters. Triassic, Ordovician, and Silurian strata were identified as the principal slippery strata in this area. Rainfall and reservoir impoundment significantly influenced landslide stability, leading to erosion, datum uplift, and range expansion. Water level fluctuations resulted in diminished rock and soil properties along the leading edge of advancing landslides. Conclusion The most frequent landslides in the western alpine region included accumulated landslides dominated by traction, thrust, and composite mechanisms and rock landslides dominated by bedding, buckling, anti-dip, and seating mechanisms. Significance This study elucidates landslide disaster mechanisms under varying evolutionary and mechanical failure processes, providing significant guidance for the identification, monitoring, early warning, and prevention of landslide disasters in the western region. -
图 5 复合式滑坡演化示意图(易志坚,2010)
Figure 5. Diagram of evolution of complex landslide(Yi,2010)
(a) Unoading bounce-slip-compression strain fracture deformation stage; (b) Step creep, sliding surface through stage (leading edge instability); (c) steep creep, sliding surface through stage (integral trailing edge slide); (d) Landslide classification sliding-river blocking stage
图 7 顺层岩质滑坡演化概念模型(Tang et al.,2015)
Figure 7. Conceptual model of the evolution of consequent bedding rockslides (Tang et al., 2015)
图 9 典型溃屈型滑坡演化示意图(闫国强等,2022)
Figure 9. Evolution diagram of typical buckling landslide (Yan et al., 2022)
(a) Slight flexural uplift ; (b) Strong uplift deformation; (c) Cutting through failure (slipping-fragmentation-dispersing)
图 11 反倾岩质边坡倾覆破坏力学模型(殷坤龙等,2014)
Figure 11. Mechanical model of counter-tilt rock slopes(Yin et al.,2014)
(a) Mechanical model of flexural slip deformation of superposed cantikver beam; (b) Bending deformation model of independent cantilever beam
表 1 中国西部地区地下水的主要类型
Table 1. Main classification of groundwater in the western region
类别 分布区域 补给方式 排泄方式 松散沉积物孔隙水 成都平原、断陷盆地、黄土高原 冰雪消融水、降水 河流外泄、蒸发排泄 基岩裂隙水 天山南麓、鄂尔多斯高原、黔北山地等高山丘陵区 降雨入渗、冰雪消融 泉水、蒸发、向山区河流的泻流 碳酸盐岩裂隙溶洞水 西南地区 降水、地表径流 泉水、泻流 冻土冻结水 阿尔泰山区及青藏高原地区 — — 表 2 滑坡发育流域统计
Table 2. Basin statistics of landslide development
流域 岷江 雅砻江 金沙江 大渡河 滑坡数量 20 36 13 8 占比/% 26 47 17 10 表 3 滑坡发育高程统计
Table 3. Elevation statistics of landslide development
高程/m 500~1000 1000~2000 >2000 滑坡数量 14 38 22 占比/% 19 51 30 表 4 滑坡发育体积分类统计
Table 4. Volume statistics of landslide development
体积/
×104m3小型
(<10)中型
(10~100)大型
(100~1000)特大型
(1000~10000)巨型
(>10000)滑坡数量 1 9 23 34 8 占比/% 1 12 31 45 11 表 5 滑坡发育岸别统计
Table 5. Bank statistics of landslide development
流域 岷江 雅砻江 金沙江 大渡河 左岸滑坡数量 11 9 6 5 右岸滑坡数量 9 27 7 3 表 6 滑坡发育坡度统计
Table 6. Slope gradient statistics of landslide development
坡度/(°) 10~20 20~30 30~40 40~50 50~60 滑坡数量 1 7 41 14 2 占比/% 1 11 63 22 3 表 7 滑坡发育坡高统计
Table 7. Slope height statistics of landslide development
坡高/m 0~200 200~400 400~600 600~800 800~1000 1000~1200 滑坡数量 11 27 15 14 2 5 占比/% 15 36 20 19 3 7 表 8 滑坡发育地层统计
Table 8. Stratigraphic unit statistics of landslide development
地层 元古界 寒武系 奥陶系、志留系 泥盆系 二叠系 三叠系 滑坡数量 2 2 27 3 1 34 占比/% 3 3 39 4 2 49 表 9 滑坡发育岸坡结构统计
Table 9. Bank slope structure statistics of landslide development
岸坡结构 顺向坡 逆向坡 斜向坡 滑坡数量 27 22 1 占比/% 54 44 2 -
[1] BELLONI L G, STEFANI R, 1987. The Vajont slide: instrumentation: past experience and the modern approach[J]. Engineering Geology, 24(1-4): 445-474. doi: 10.1016/0013-7952(87)90079-2 [2] CHEN Z L, ZHANG X Y, SHEN F, et al., 1999. GPS monitoring of the crustal motion in southwestern China[J]. Chinese Science Bulletin, 44(19): 1804-1807. (in Chinese with English abstract doi: 10.1007/BF02886164 [3] CHENG G D, JIN H J, 2013. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes[J]. Hydrogeology & Engineering Geology, 40(1): 1-11. (in Chinese with English abstract [4] China electricity council, 2007. Design specification for slope of hydropower and water conservancy project: DL/T 5353-2006[S]. Beijing: China Electric Power Press: 6-72. (in Chinese) [5] DU Y, YAN E C, CAI J S, et al., 2023. Mechanical discrimination of stability state of progressive failure of broken-line complex landslides[J]. Chinese Journal of Geotechnical Engineering, 45(6): 1151-1161. (in Chinese with English abstract [6] HU R J, FAN Z L, WANG Y J, et al., 2002. Groundwater resources and their characteristics in arid lands of northwestern China[J]. Journal of Natural Resources, 17(3): 321-326. (in Chinese with English abstract [7] HUANG R Q, 2007. large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454. (in Chinese with English abstract [8] HUANG R Q, 2009. Some catastrophic landslides since the twentieth century in the southwest of China[J]. Landslides, 6(1): 69-81. doi: 10.1007/s10346-009-0142-y [9] KENNEDY R, TAKE W A, SIEMENS G, 2021. Geotechnical centrifuge modelling of retrogressive sensitive clay landslides[J]. Canadian Geotechnical Journal, 58(10): 1452-1465. doi: 10.1139/cgj-2019-0677 [10] LEI Q X, 2017. Analysis of formation mechanism and environmental effects of collapses and landslides at Hanyuan-Tongjiezi in the Dadu River[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract [11] LIAN B Q, PENG J B, ZHAN H B, et al., 2020. Formation mechanism analysis of irrigation-induced retrogressive loess landslides[J]. CATENA, 195: 104441. doi: 10.1016/j.catena.2019.104441 [12] LIU G R, YAN E C, LIAN C, 2002. Discussion on classification of landslides[J]. Journal of Engineering Geology, 10(4): 339-342. (in Chinese with English abstract [13] LU S Q, YI Q L, YI W, et al. , 2014. Analysis of deformation and failure mechanism of Shuping landslide in Three Gorges reservoir area[J]. Rock and Soil Mechanics, 35(4): 1123-1130, 1202. (in Chinese with English abstract [14] LU Y F, 2015. Deformation and failure mechanism of slope in three dimensions[J]. Journal of Rock Mechanics and Geotechnical Engineering, 7(2): 109-119. doi: 10.1016/j.jrmge.2015.02.008 [15] PENG J B, LENG Y Q, ZHU X H, et al., 2016. Development of a loess-mudstone landslide in a fault fracture zone[J]. Environmental Earth Sciences, 75(8): 658. doi: 10.1007/s12665-016-5336-8 [16] ROSSO R, RULLI M C, VANNUCCHI G, 2006. A physically based model for the hydrologic control on shallow landsliding[J]. Water Resources Research, 42(6): W06410. [17] SUN G Z, 1988. Rock mass structure mechanics[M]. Beijing: Science Press. (in Chinese) [18] TANG H M, ZHANG G C, 2005. A study on slope stability during reservoir water level falling[J]. Rock and Soil Mechanics, 26(S2): 11-15. (in Chinese with English abstract [19] TANG H M, LI D W, HU X L, 2009. Faulting characteristics of Wenchuan earthquake and evaluation theory of regional crustal stability for engineering[J]. Journal of Engineering Geology, 17(2): 145-152. (in Chinese with English abstract [20] TANG H M, ZOU Z X, XIONG C R, et al., 2015. An evolution model of large consequent bedding rockslides, with particular reference to the Jiweishan rockslide in Southwest China[J]. Engineering Geology, 186: 17-27. doi: 10.1016/j.enggeo.2014.08.021 [21] TANG Y Y, 1992. The effect of neotectonic movement on formations of landslide and debris flow in Southern Gansu[J]. Journal of Lanzhou University (Natural Sciences), 28(4): 152-160. (in Chinese with English abstract [22] VARNES D J, 1978. Slope movement types and processes[R]. Washington: Transportation Research Board Special Report. [23] WANG F, TANG H M, ZHANG G C, et al., 2018. Development characteristics and evolution mechanism of the deep-seated toppling in the upstream of the Yalong River, China[J]. Mountain Research, 36(3): 411-421. (in Chinese with English abstract [24] WANG K W, DENG C J, ZHANG F, 2012. Formation process of Tanggudong landslide and Yuri accumulation body in Yalong river valley in southwest China[J]. Journal of Engineering Geology, 20(6): 955-970. (in Chinese with English abstract [25] WANG G X, 2005. Key technique in landslide control and its handling measures[J]. Chinese Journal of Rock Mechanics and Engineering, 24(21): 3818-3827. (in Chinese with English abstract [26] WANG L S, ZHANG Z Y, 1979. Basic geomechanic model of slope deformation[C]//Proceedings of the First Engineering Geology Congress. Suzhou. (in Chinese) [27] WANG Q Z, LI Z Q, YIN Y, et al., 2020. Distribution characteristics of typical geological relics in the Western Sichuan Plateau[J]. Open Geosciences, 12(1): 307-323. doi: 10.1515/geo-2020-0104 [28] WANG S J, 1966. An engineering geological study on the mechanical behaviour of a rock mass[J]. Chinese Journal of Geology, 7(1): 64-78. (in Chinese with English abstract [29] XU J R, ZHAO Z X, ISHIKAWA Y, 2008. Regional characteristics of crustal stress field and tectonic motions in and around Chinese mainland[J]. Chinese Journal of Geophysics, 51(3): 770-781. (in Chinese with English abstract [30] XU L, DAI F C, CHEN J, et al., 2014. Analysis of a progressive slope failure in the Xiangjiaba reservoir area, Southwest China[J]. Landslides, 11(1): 55-66. doi: 10.1007/s10346-012-0373-1 [31] XU Q, HUANG R Q, LI X Z, 2004. Research progress in time forecast and prediction of landslides[J]. Advance in Earth Sciences, 19(3): 478-483. (in Chinese with English abstract [32] XU Q, HUANG R Q, 2008. Kinetics characteristics of large landslides triggered by May 12th Wenchuan earthquake[J]. Journal of Engineering Geology, 16(6): 721-729. (in Chinese with English abstract [33] YAN G Q, YIN Y P, HUANG B L, et al., 2022. Deterioration-buckling failure mechanism of consequent bedding limestone bank slope in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 43(9): 2568-2580. (in Chinese with English abstract [34] YI Z J, 2010. Research on formation mechanism and stability of Tanggudong giant landslide of Lenggu hydropower station[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract [35] YIN K L, ZHOU C M, CHAI B, 2014. Reservoir area failure mechanism and criterion of counter-tilt rock slopes at Wuxia gorge section in three gorges[J]. Chinese Journal of Rock Mechanics and Engineering, 33(8): 1635-1643. (in Chinese with English abstract [36] YIN Y P, PENG X M, 2007. Failure mechanism on Qianjiangping landslide in the three gorges reservoir region[J]. Hydrogeology & Engineering Geology, 34(3): 51-54. (in Chinese with English abstract [37] YIN Y P, 2008. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 16(4): 433-444. (in Chinese with English abstract [38] ZHANG D, WU Z H, LI J C, et al., 2013. An overview on earthquake-induced landslide research[J]. Journal of Geomechanics, 19(3): 225-241. (in Chinese with English abstract [39] ZHANG L F, WU Y P, MIAO F S, et al., 2019. Mechanical model and stability analysis of progressive failure for thrust-type gently inclined shallow landslide[J]. Rock and Soil Mechanics, 40(12): 4767-4776. (in Chinese with English abstract [40] ZHANG S S, HU X L, ZHANG G C, et al. , 2018. Catastrophic evolution and control technology of major landslides in western hydropower project[M]. Beijing: China Water & Power Press. (in Chinese) [41] ZOU Z X, TANG H M, XIONG C R, et al., 2012. Geomechanical model of progressive failure for large consequent bedding rockslide and its stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 31(11): 2222-2231. (in Chinese with English abstract [42] 中国电力企业联合会,2007. 水电水利工程边坡设计规范:DL/T 5353—2006[S]. 北京:中国电力出版社:6-72. [43] 陈智梁,张选阳,沈凤,等,1999. 中国西南地区地壳运动的GPS监测[J]. 科学通报,44(8):851-854. doi: 10.3321/j.issn:0023-074X.1999.08.015 [44] 程国栋,金会军,2013. 青藏高原多年冻土区地下水及其变化[J]. 水文地质工程地质,40(1):1-11. [45] 杜毅,晏鄂川,蔡静森,等,2023. 折线型复合式滑坡渐进破坏稳定性状态的力学判别[J]. 岩土工程学报,45(6):1151-1161. doi: 10.11779/CJGE20220184 [46] 胡汝骥,樊自立,王亚俊,等,2002. 中国西北干旱区的地下水资源及其特征[J]. 自然资源学报,17(3):321-326. doi: 10.3321/j.issn:1000-3037.2002.03.012 [47] 黄润秋,2007. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,26(3):433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001 [48] 雷清雄,2017. 大渡河汉源—铜街子段崩、滑灾害成因机制及环境效应研究[D]. 成都:成都理工大学. [49] 刘广润,晏鄂川,练操,2002. 论滑坡分类[J]. 工程地质学报,10(4):339-342. doi: 10.3969/j.issn.1004-9665.2002.04.001 [50] 卢书强,易庆林,易武,等,2014. 三峡库区树坪滑坡变形失稳机制分析[J]. 岩土力学,35(4):1123-1130,1202. [51] 孙广忠,1988. 岩体结构力学[M]. 北京:科学出版社. [52] 唐辉明,章广成,2005. 库水位下降条件下斜坡稳定性研究[J]. 岩土力学,26(S2):11-15. [53] 唐辉明,李德威,胡新丽,2009. 龙山门断裂带活动特征与工程区域地壳稳定性评价理论[J]. 工程地质学报,17(2):145-152. doi: 10.3969/j.issn.1004-9665.2009.02.001 [54] 唐永仪,1992. 新构造运动在陇南滑坡泥石流形成中的作用[J]. 兰州大学学报(自然科学版),28(4):152-160. doi: 10.3321/j.issn:0455-2059.1992.04.027 [55] 王飞,唐辉明,章广成,等,2018. 雅砻江上游深层倾倒体发育特征及形成演化机制[J]. 山地学报,36(3):411-421. [56] 王恭先,2005. 滑坡防治中的关键技术及其处理方法[J]. 岩石力学与工程学报,24(21):3818-3827. doi: 10.3321/j.issn:1000-6915.2005.21.003 [57] 王兰生,张倬元,1979. 斜坡岩体变形破坏的基本模式[C]//第一届工程地质大会论文. 苏州. [58] 王孔伟,邓成进,张帆,2012. 中国西南雅砻江流域唐古栋滑坡及雨日堆积体形成机理分析. 工程地质学报,20(06):955-970. [59] 王思敬,1966. 以工程地质观点探讨岩体的力学属性[J]. 地质科学,7(1):64-78. [60] 徐纪人,赵志新,石川有三,2008. 中国大陆地壳应力场与构造运动区域特征研究[J]. 地球物理学报,51(3):770-781. doi: 10.3321/j.issn:0001-5733.2008.03.018 [61] 许强,黄润秋,李秀珍,2004. 滑坡时间预测预报研究进展[J]. 地球科学进展,19(3):478-483. doi: 10.3321/j.issn:1001-8166.2004.03.021 [62] 许强,黄润秋,2008. 5.12汶川大地震诱发大型崩滑灾害动力特征初探[J]. 工程地质学报,16(6):721-729. doi: 10.3969/j.issn.1004-9665.2008.06.001 [63] 闫国强,殷跃平,黄波林,等,2022. 三峡库区顺层灰岩岸坡劣化-溃屈灾变机制研究[J]. 岩土力学,43(9):2568-2580. [64] 易志坚,2010. 楞古水电站唐古栋巨型滑坡成因机制及稳定性研究[D]. 成都:成都理工大学. [65] 殷坤龙,周春梅,柴波,2014. 三峡库区巫峡段反倾岩石边坡的破坏机制及判据[J]. 岩石力学与工程学报,33(8):1635-1643. [66] 殷跃平,彭轩明,2007. 三峡库区千将坪滑坡失稳探讨[J]. 水文地质工程地质,34(3):51-54. doi: 10.3969/j.issn.1000-3665.2007.03.013 [67] 殷跃平,2008. 汶川八级地震地质灾害研究[J]. 工程地质学报,16(4):433-444. doi: 10.3969/j.issn.1004-9665.2008.04.001 [68] 张铎,吴中海,李家存,等,2013. 国内外地震滑坡研究综述[J]. 地质力学学报,19(3):225-241. doi: 10.3969/j.issn.1006-6616.2013.03.001 [69] 张龙飞,吴益平,苗发盛,等,2019. 推移式缓倾浅层滑坡渐进破坏力学模型与稳定性分析[J]. 岩土力学,40(12):4767-4776. [70] 张世殊,胡新丽,章广成,等,2018. 西部水电工程重大滑坡灾变演化及控制技术[M]. 北京:中国水利水电出版社. [71] 邹宗兴,唐辉明,熊承仁,等,2012. 大型顺层岩质滑坡渐进破坏地质力学模型与稳定性分析[J]. 岩石力学与工程学报,31(11):2222-2231. doi: 10.3969/j.issn.1000-6915.2012.11.010