留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沉积微相在致密砂岩可压裂性分析中的应用−以鄂尔多斯盆地陇东地区延长组7段为例

王冠民 祝新怡 刘海 陈帅 石晓明 胡津

王冠民,祝新怡,刘海,等,2024. 沉积微相在致密砂岩可压裂性分析中的应用:以鄂尔多斯盆地陇东地区延长组7段为例[J]. 地质力学学报,30(6):893−905 doi: 10.12090/j.issn.1006-6616.2024004
引用本文: 王冠民,祝新怡,刘海,等,2024. 沉积微相在致密砂岩可压裂性分析中的应用:以鄂尔多斯盆地陇东地区延长组7段为例[J]. 地质力学学报,30(6):893−905 doi: 10.12090/j.issn.1006-6616.2024004
WANG G M,ZHU X Y,LIU H,et al.,2024. The application of sedimentary microfacies on the fracability of tight sandstone reservoir in Chang 7 member of Longdong area in the Ordos Basin[J]. Journal of Geomechanics,30(6):893−905 doi: 10.12090/j.issn.1006-6616.2024004
Citation: WANG G M,ZHU X Y,LIU H,et al.,2024. The application of sedimentary microfacies on the fracability of tight sandstone reservoir in Chang 7 member of Longdong area in the Ordos Basin[J]. Journal of Geomechanics,30(6):893−905 doi: 10.12090/j.issn.1006-6616.2024004

沉积微相在致密砂岩可压裂性分析中的应用−以鄂尔多斯盆地陇东地区延长组7段为例

doi: 10.12090/j.issn.1006-6616.2024004
基金项目: 国家自然科学基金项目(41972131)
详细信息
    作者简介:

    王冠民(1969—) ,男,博士,教授,研究方向为沉积学与储层地质学。Email:wangguanmin@upc.edu.cn

  • 中图分类号: TE121

The application of sedimentary microfacies on the fracability of tight sandstone reservoir in Chang 7 member of Longdong area in the Ordos Basin

Funds: This research is financially supported by the National Natural Science Foundation of China (Grant No. 41972131).
  • 摘要: 沉积特征差异是控制储层非均质性的关键因素之一,利用沉积微相来分析储层的非均质性通常是油气田开发和储层甜点预测的重要手段,也可以尝试用其评价致密砂岩储层的可压裂性。以鄂尔多斯盆地陇东地区延长组7段(长7段)的致密砂岩为研究对象,在通过岩芯、测井等资料识别不同沉积微相类型基础上,利用全岩X射线衍射(XRD)分析、铸体薄片观察得到致密砂岩样品的矿物成分和结构参数,并结合岩石力学实验,采用脆性指数和三轴抗压强度的比值来表征岩石的可压裂性。将致密砂岩的沉积微相、成分结构和可压裂性进行对比分析后得到以下认识:长7段致密砂岩主要发育水下分流河道和席状砂2种沉积微相,不同沉积微相之间的矿物成分、结构存在明显差异;与席状砂相比,水下分流河道砂体的平均粒径更大,分选更好,碳酸盐矿物和黏土矿物含量更低,杂基含量更少;可压裂性指数与砂岩的石英含量、碳酸盐矿物含量、粒度分布标准偏差具有正相关性,与长石含量、平均粒径具有负相关性。灰色关联分析表明碳酸盐矿物含量、粒度分布标准偏差、粒径是影响长7段致密砂岩可压裂性的最主要因素,整体上席状砂的可压裂性指数要高于水下分流河道砂,更易于压裂。由于砂岩颗粒的粒度分布标准偏差、粒径受沉积微相控制,碳酸盐矿物含量受砂岩厚度直接控制、受沉积微相间接控制,故在致密砂岩油气储层压裂的实际工程中可以依据沉积微相差异来判断致密砂岩的可压裂性变化,简化可压裂性的评价流程。

     

  • 图  1  研究区具体位置

    Figure  1.  Location map of the study area

    图  2  不同沉积微相砂岩样品的显微镜下特征

    Figure  2.  The characteristics of different sandstone microfacies under the microscope

    (a) Underwater distributary channel microfacies of sandstone, with good sorting, sub-angular, well Y24 at 2150.7 m, under monochromatic polarized light; (b) Sheet sand microfacies of fine sandstone, poor sorting, sub-angular, well Y24 at 2141.6 m, under monochromatic polarized light

    图  3  岩芯中典型的沉积相标志

    Figure  3.  Typical sedimentary phenomena in rock cores

    (a) Fluvial cross-bedding, well Y16 at 2040.7 m; (b) Flaser bedding, well Y24 at 2145.2 m; (c) Intact carbon debris in sandstone, well Y16 at 2026.7 m; (d) Disc-shaped mud chips in sandstone with oxidation halo, well Y24 at 2143.8 m; (e) Muddy rip-up clasts in sandstone, well Y24 at 2150.7 m; (f) Flame structure at the base of sandstone, well Y24 at 2161.8 m

    图  4  水下分流河道和席状砂微相的测井曲线特征

    Figure  4.  Logging curve characteristics of underwater distributary channels and sheet-like sand microfacies

    (a) The logging curve morphology of underwater distributary channels, Y16 well; (b) The logging curve morphology of sheet sand, Y24 well

    图  5  不同沉积微相砂岩的矿物成分对比

    Figure  5.  Comparison of mineral composition of sandstones with different sedimentary microfacies

    (a) Quartz content comparison bar chart; (b) Feldspar content comparison bar chart; (c) Carbonate minerals content comparison bar chart; (d) Clay mineral content comparison bar chart

    图  6  不同沉积微相砂岩的结构对比

    Figure  6.  Comparison of sandstone structures between different sedimentary microfacies

    (a) Average particle size comparison bar chart; (b) Particle size distribution standard deviation comparison bar chart

    图  7  砂岩各种矿物成分与可压裂性之间的关系

    Figure  7.  The correlation between mineral composition and fracturing ability

    (a) Fracability index-quartz content; (b) Fracability index-feldspar content; (c) Fracability index-carbonate mineral content; (d) Fracability index-clay mineral content

    图  8  砂岩结构与可压裂性之间的关系

    Figure  8.  The relationship between sandstone structure and fracturing ability

    (a) Fracability index-average particle size; (b) Fracability index-grain size distribution standard deviation

    图  9  不同沉积微相砂岩的可压裂性参数对比图

    Figure  9.  Comparison of fracturability parameters for different sedimentary microfacies

    (a) Brittleness index comparison bar chart; (b) Compressive strength comparison bar chart; (c) Fracability index comparison bar chart

    图  10  砂岩成分和结构参数与可压裂性指数的关联度

    Figure  10.  The correlation between component or structure parameters and fracability index

    表  1  陇东地区延长组地层划分及岩性特征

    Table  1.   Stratigraphic division and lithological characteristics of the Yanchang Formation in the Longdong region

    地层时代 地层岩性
    上三叠统 延长组 1 深灰色泥、页岩夹煤层,局部为厚层块砂
    2 灰绿色中—细砂岩夹灰色—深灰色泥岩、黑褐色炭质泥岩
    3
    4+5 深灰色—灰黑色泥、页岩与灰色—灰绿色粉砂岩互层,下部发育一套油页岩、泥岩夹薄层凝灰岩
    6
    7
    8 深灰色—灰黑色泥岩与浅灰绿色—褐灰色中—细砂岩互层
    9
    10 灰绿色厚层块中—粗长石砂岩夹深灰色及暗紫色泥岩
    下载: 导出CSV
  • [1] BAI M, 2016. Why are brittleness and fracability not equivalent in designing hydraulic fracturing in tight shale gas reservoirs[J]. Petroleum, 2(1): 1-19. doi: 10.1016/j.petlm.2016.01.001
    [2] CAO Y, LIU Y Z, DUAN X T, et al., 2018. Sedimentary geological significance of reservoir in the lower Member of Yanchang Formation in Dingbian Area[J]. Journal of Xi'an University of Science and Technology, 38(1): 137-144. (in Chinese with English abstract
    [3] ESTUPIÑAN J, MARFIL R, DELGADO A, et al., 2007. The impact of carbonate cements on the reservoir quality in the Napo Fm sandstones (Cretaceous Oriente Basin, Ecuador)[J]. Geologica Acta, 5(1): 89-108.
    [4] FAN H, ZHANG S, GOU X P, et al., 2011. A new numerical calibration of the critical stress intensity factor for the CCNBD specimens used in rock fracture toughness test[J]. Chinese Journal of Applied Mechanics, 28(4): 416-422. (in Chinese with English abstract
    [5] FOWELL R J, 1995. Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(1): 57-64.
    [6] Frankie M A, Mohd K A K, Mohd E T, et al. , 2016 Sediment Classification using Envirometric Technique: A Study Case in Pahang River, Malaysia[J]. The Malaysian Journal of Analytical Sciences, 20 (5): 1171-1180.
    [7] FU J H, LUO S S, NIU X B, et al., 2015. Sedimentary characteristics of channel Type Gravity Flow of the member 7 of Yanchang Formation in the Longdong area, Ordos Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 34(1): 29-37. (in Chinese with English abstract
    [8] FU J H, WANG X Z, ZHANG L X, 2015. Geological controls on artificial fracture networks in continental shale and its fracability evaluation: a case study in the Yanchang Formation, Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 26: 1285-1293. doi: 10.1016/j.jngse.2015.08.034
    [9] HE R, YANG Z Z, LI X G, et al., 2019. A comprehensive approach for fracability evaluation in naturally fractured sandstone reservoirs based on analytical hierarchy process method[J]. Energy Science & Engineering, 7(2): 529-545.
    [10] HOLT R M, FJÆR E, STENEBRÅTEN J F, et al., 2015. Brittleness of shales: relevance to borehole collapse and hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 131: 200-209. doi: 10.1016/j.petrol.2015.04.006
    [11] JIA X M, WANG Q Z, 2003. Wide range calibration of the stress intensity factor for the fracture toughness specimen CCNBD[J]. Rock and Soil Mechanics, 24(6): 907-912. (in Chinese with English abstract
    [12] JIN X C, SHAH S N, ROEGIERS J C, et al., 2015. An integrated petrophysics and geomechanics approach for fracability evaluation in shale reservoirs[J]. SPE Journal, 20(3): 518-526. doi: 10.2118/168589-PA
    [13] KIVI I R, AMERI M, MOLLADAVOODI H, 2018. Shale brittleness evaluation based on energy balance analysis of stress-strain curves[J]. Journal of Petroleum Science and Engineering, 167: 1-19. doi: 10.1016/j.petrol.2018.03.061
    [14] LI J B, LU S F, CHEN G H, et al., 2015. Friability evaluation for the mud shale reservoirs based on the mineralogy and rock mechanics[J]. Petroleum Geology and Oilfield Development in Daqing, 34(6): 159-164. (in Chinese with English abstract
    [15] LI N Y, DAI J X, LIU C, et al., 2016. Feasibility research on volume acid fracturing to tight carbonate gas reservoir and its construction effect: a case study of lower Paleozoic carbonate gas reservoir in Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 23(3): 120-126. (in Chinese with English abstract
    [16] LI X B, LIU H Q, CHEN Q L, et al., 2010. Characteristics of slope break Belt in large Depression lacustrine basin and its controlling effect on Sandbody and petroleum: taking the Triassic Yanchang Formation in the Ordos Basin as an example[J]. Acta Sedimentologica Sinica, 28(4): 717-729. (in Chinese with English abstract
    [17] LI Z Y, FAN M M, MA Y, et al.,2012. Depositional facies of Chang 7 oil formation of the Triassic Yanchang formation in southeast Ordos Basin[J]. Journal of Shaanxi University of Science & Technology,30(1):106-110+121. (in Chinese with English abstract
    [18] LIAO J J, ZHU X M, DENG X Q, et al., 2013. Sedimentary characteristics and model of gravity flow in Triassic Yanchang Formation of Longdong area in Ordos Basin[J]. Earth Science Frontiers, 20(2): 29-39. (in Chinese with English abstract
    [19] LIU F, ZHU X M, LI Y, et al., 2015. Sedimentary characteristics and facies model of gravity flow deposits of Late Triassic Yanchang Formation in southwestern Ordos Basin, NW China[J]. Petroleum Exploration and Development, 42(5): 577-588. (in Chinese with English abstract
    [20] LIU J, HUI C, FAN J M, et al., 2021. Distribution characteristics of the present-day in-situ stress in the Chang 6 tight sandstone reservoirs of the Yanchang Formation in the Heshui Area, Ordos Basin, China and suggestions for development[J]. Journal of Geomechanics, 27(1): 31-39. (in Chinese with English abstract
    [21] LIU L Q, LI Y, KANG L M, et al., 2010. Mudstone distribution features of maximum flooding time in late Triassic in Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 40(5): 866-871. (in Chinese with English abstract
    [22] LONG Z L, WEN Z T, LI H, et al., 2020. An evaluation method of shale reservoir crushability based on grey correlation analysis[J]. Reservoir Evaluation and Development, 10(1): 37-42. (in Chinese with English abstract
    [23] MU L J, ZHAO Z F, LI X W, et al., 2019. Fracturing technology of stimulated reservoir volume with subdivision cutting for shale oil horizontal wells in Ordos Basin[J]. Oil & Gas Geology, 40(3): 626-635. (in Chinese with English abstract
    [24] REN Y, CAO H, YAO F C, et al., 2018. Brittleness and fracability prediction for tight oil reservoir in Jimsar Sag, Junggar Basin[J]. Oil Geophysical Prospecting, 53(3): 511-519. (in Chinese with English abstract
    [25] RICKMAN R, MULLEN M, PETRE E, et al. , 2008. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale[C]//SPE annual technical conference and exhibition. Denver: SPE: 21-24.
    [26] SUN Y,JIANG Y Q,XIONG X Y,et al.,2022. Lithofacies and sedimentary environment evolution of the Shan2 3 Sub-member transitional shale of the Shanxi Formation in the Daning-Jixian area, eastern Ordos Basin[J]. Coal Geology & Exploration,50(9):104-114.(in Chinese with English abstract
    [27] SUI L L, JU Y, YANG Y M, et al., 2016. A quantification method for shale fracability based on analytic hierarchy process[J]. Energy, 115: 637-645. doi: 10.1016/j.energy.2016.09.035
    [28] WANG D B, GE H K, WANG X Q, et al., 2015. A novel experimental approach for fracability evaluation in tight-gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 23: 239-249. doi: 10.1016/j.jngse.2015.01.039
    [29] WANG Q Z, 1998. Stress intensity factors of the ISRM suggested CCNBD specimen used for mode-I fracture toughness determination[J]. International Journal of Rock Mechanics and Mining Sciences, 35(7): 977-982. doi: 10.1016/S0148-9062(98)00010-2
    [30] WU J J, ZHANG S H, CAO H, et al., 2018. Fracability evaluation of shale gas reservoir-A case study in the Lower Cambrian Niutitang formation, northwestern Hunan, China[J]. Journal of Petroleum Science and Engineering, 164: 675-684. doi: 10.1016/j.petrol.2017.11.055
    [31] YANG F,MEI W B,LI L,et al.,2023. Propagation of hydraulic fractures in thin interbedded tight sandstones[J]. Coal Geology & Exploration,51(7):61-71. (in Chinese with English abstract
    [32] YANG H, DOU W T, LIU X Y, et al., 2010. Analysis on sedimentary facies of Member 7 in Yanchang formation of Triassic in Ordos Basin[J]. Acta Sedimentologica Sinica, 28(2): 254-263. (in Chinese with English abstract
    [33] YAO J L, DENG X Q, ZHAO Y D, et al., 2013. Characteristics of Tight oil in triassic Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 40(2): 150-158. (in Chinese with English abstract doi: 10.1016/S1876-3804(13)60018-X
    [34] YUAN J L, DENG J G, ZHANG D Y, et al., 2013. Fracability evaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica, 34(3): 523-527. (in Chinese with English abstract
    [35] ZHANG H L, DENG N T, ZHANG Z H, et al. , 2014. Geochemical characteristics and oil-source correlation of the Mesozoic Crude Oils in the Southern Ordos Basin[J]. Geological Journal of China Universities, 20(2): 309-316. (in Chinese with English abstract
    [36] ZHANG X H, FENG S Y, LIANG X W, et al., 2020. Sedimentary microfacies identification and inferred evolution of the Chang 7 member of Yanchang Formation in the Longdong area, Ordos Basin[J]. Acta Geologica Sinica, 94(3): 957-967. (in Chinese with English abstract
    [37] ZHANG Z H, WEI X S, GONG H J, et al., 2020. Diagenesis characteristics and evolution of porosity of Chang7 tight sandstone reservoir in Dingbian oilfield, Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 27(2): 43-52. (in Chinese with English abstract
    [38] ZHAO J Y, JI D S, WU J, et al., 2022. Research on rock mechanics parameters of the Jurassic-Cretaceous reservoir in the Sikeshu sag, Junggar Basin, China[J]. Journal of Geomechanics, 28(4): 573-582. (in Chinese with English abstract
    [39] ZHONG D K, ZHU X M, LI S J, et al., 2007. Influence of early carbonate cementation on the evolution of sandstones: a case study from Silurian sandstones of Manjiaer depression, Tarim basin[J]. Acta Sedimentologica Sinica, 25(6): 885-890. (in Chinese with English abstract
    [40] TANG S H, LUO Y S, ZHOU Z B, 2008. Plastic variational principle based on the least work consumption principle[J]. Journal of Central South University of Technology, 15(S1): 39-42. doi: 10.1007/s11771-008-0310-6
    [41] ZOU C N, ZHAO Z Z, YANG H, et al., 2009. Genetic mechanism and Distribution of sandy Debris flows in Terrestrial lacustrine basin[J]. Acta Sedimentologica Sinica, 27(6): 1065-1075. (in Chinese with English abstract
    [42] ZOU C N, YANG Z, ZHANG G S, et al., 2014. Conventional and unconventional petroleum "Orderly accumulation": concept and practical significance[J]. Petroleum Exploration and Development, 41(1): 14-27. (in Chinese with English abstract doi: 10.1016/S1876-3804(14)60002-1
    [43] 曹跃,刘延哲,段昕婷,等,2018. 定边地区延长组下部储层的沉积地质意义[J]. 西安科技大学学报,38(1):137-144.
    [44] 樊鸿,张盛,苟小平,等,2011. 岩石断裂韧度试样CCNBD临界应力强度因子的全新数值标定[J]. 应用力学学报,28(4):416-422.
    [45] 付金华,罗顺社,牛小兵,等,2015. 鄂尔多斯盆地陇东地区长7段沟道型重力流沉积特征研究[J]. 矿物岩石地球化学通报,34(1):29-37. doi: 10.3969/j.issn.1007-2802.2015.01.003
    [46] 贾学明,王启智,2003. 断裂韧度试样CCNBD宽范围应力强度因子标定[J]. 岩土力学,24(6):907-912. doi: 10.3969/j.issn.1000-7598.2003.06.007
    [47] 李进步,卢双舫,陈国辉,等,2015. 基于矿物学和岩石力学的泥页岩储层可压裂性评价[J]. 大庆石油地质与开发,34(6):159-164. doi: 10.3969/J.ISSN.1000-3754.2015.06.029
    [48] 李年银,代金鑫,刘超,等,2016. 致密碳酸盐岩气藏体积酸压可行性研究及施工效果:以鄂尔多斯盆地下古生界碳酸盐岩气藏为例[J]. 油气地质与采收率,23(3):120-126. doi: 10.3969/j.issn.1009-9603.2016.03.022
    [49] 李相博,刘化清,陈启林,等,2010. 大型坳陷湖盆沉积坡折带特征及其对砂体与油气的控制作用:以鄂尔多斯盆地三叠系延长组为例[J]. 沉积学报,28(4):717-729.
    [50] 李兆扬,范萌萌,马瑶,等,2012,鄂尔多斯盆地东南部长7油层组沉积相研究[J]. 陕西科技大学学报(自然科学版),30(01):106-110+121.
    [51] 廖纪佳,朱筱敏,邓秀芹,等,2013. 鄂尔多斯盆地陇东地区延长组重力流沉积特征及其模式[J]. 地学前缘,20(2):29-39.
    [52] 刘芬,朱筱敏,李洋,等,2015. 鄂尔多斯盆地西南部延长组重力流沉积特征及相模式[J]. 石油勘探与开发,42(5):577-588.
    [53] 刘建,惠晨,樊建明,等,2021. 鄂尔多斯盆地合水地区长6致密砂岩储层现今地应力分布特征及其开发建议[J]. 地质力学学报,27(1):31-39. doi: 10.12090/j.issn.1006-6616.2021.27.01.004
    [54] 刘联群,李勇,康立明,等,2010. 鄂尔多斯盆地晚三叠世最大湖泛泥岩分布特征[J]. 西北大学学报(自然科学版),40(5):866-871.
    [55] 龙章亮,温真桃,李辉,等,2020. 一种基于灰色关联分析的页岩储层可压性评价方法[J]. 油气藏评价与开发,10(1):37-42.
    [56] 慕立俊,赵振峰,李宪文,等,2019. 鄂尔多斯盆地页岩油水平井细切割体积压裂技术[J]. 石油与天然气地质,40(3):626-635. doi: 10.11743/ogg20190317
    [57] 孙越,蒋裕强,熊先钺,等,2022. 鄂尔多斯盆地东缘大宁–吉县地区山西组山2 3亚段海陆过渡相页岩岩相与沉积环境变化[J]. 煤田地质与勘探,50(9):104-114.
    [58] 杨帆,梅文博,李亮,等, 2023. 薄互层致密砂岩水力压裂裂缝扩展特征研究[J]. 煤田地质与勘探,51(7):61-71.
    [59] 杨华,窦伟坦,刘显阳,等,2010. 鄂尔多斯盆地三叠系延长组长7沉积相分析[J]. 沉积学报,28(2):254-263.
    [60] 姚泾利,邓秀芹,赵彦德,等,2013. 鄂尔多斯盆地延长组致密油特征[J]. 石油勘探与开发,40(2):150-158. doi: 10.11698/PED.2013.02.03
    [61] 袁俊亮,邓金根,张定宇,等,2013. 页岩气储层可压裂性评价技术[J]. 石油学报,34(3):523-527. doi: 10.7623/syxb201303015
    [62] 张海林,邓南涛,张枝焕,等,2014. 鄂尔多斯盆地南部中生界原油地球化学特征及油源分析[J]. 高校地质学报,20(2):309-316. doi: 10.3969/j.issn.1006-7493.2014.02.016
    [63] 张晓辉,冯顺彦,梁晓伟,等,2020. 鄂尔多斯盆地陇东地区延长组长7段沉积微相及沉积演化特征[J]. 地质学报,94(3):957-967. doi: 10.3969/j.issn.0001-5717.2020.03.020
    [64] 张哲豪,魏新善,弓虎军,等,2020. 鄂尔多斯盆地定边油田长7致密砂岩储层成岩作用及孔隙演化规律[J]. 油气地质与采收率,27(2):43-52.
    [65] 赵进雍,冀冬生,吴见,等,2022. 准噶尔盆地四棵树凹陷侏罗系—白垩系储层岩石力学参数研究[J]. 地质力学学报,28(4):573-582. doi: 10.12090/j.issn.1006-6616.2021158
    [66] 钟大康,朱筱敏,李树静,等,2007. 早期碳酸盐胶结作用对砂岩孔隙演化的影响:以塔里木盆地满加尔凹陷志留系砂岩为例[J]. 沉积学报,25(6):885-890. doi: 10.3969/j.issn.1000-0550.2007.06.010
    [67] 邹才能,赵政璋,杨华,等,2009. 陆相湖盆深水砂质碎屑流成因机制与分布特征:以鄂尔多斯盆地为例[J]. 沉积学报,27(6):1065-1075.
    [68] 邹才能,杨智,张国生,等,2014. 常规-非常规油气“有序聚集”理论认识及实践意义[J]. 石油勘探与开发,41(1):14-27. doi: 10.11698/PED.2014.01.02
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  21
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-01
  • 修回日期:  2024-01-15
  • 录用日期:  2024-07-11
  • 预出版日期:  2024-11-29
  • 刊出日期:  2024-12-27

目录

    /

    返回文章
    返回