Formation and evolution of the Yuncheng Salt Lake and sources of the saline ions
-
摘要: 运城盐湖位于汾渭地堑系的核心部位,是中国乃至世界上开发较早的盐湖,但对其基础地质背景的研究却相对薄弱,缺乏统一的认识。文章聚焦新生代地貌巨变过程与汾渭地堑系形成、黄河贯通三门峡峡谷东流入海与三门古湖消亡、汾河改道退出运城盆地与运城盐湖形成以及中条山北缘断裂持续活动形成山前凹陷4个主要阶段,探讨运城盐湖的形成演化过程,并结合区域上重点层位的地球化学元素分析,探讨盐湖盐类物质的主要来源。研究结果显示,古近纪至新近纪中新世中期,中国大陆东部的滨太平洋构造域和西部的青藏高原构造域共同开启了运城盐湖演化的序幕;距今约70万年的早—中更新世,黄河贯通三门峡峡谷东流入海,三门古湖消亡,运城盐湖的雏形开始形成;距今约7万年的晚更新世中期,汾河发生改道退出运城盆地,运城盐湖由开放体系进入封闭体系,运城盐湖最终形成;随后在中条山北缘断裂的持续活动作用下,形成了一个大面积的沉积洼地,大量的含盐类矿物质在这里汇集,经过长期的沉淀蒸发,最终形成了天然盐湖;运城盐湖的盐类物质主要来源于深部成矿盐层,控制盐湖的主要断裂提供了盐类物质的主要通道,中条山北缘中元古界蓟县系龙家园组海相高镁白云岩提供了镁离子来源。研究成果将为运城的生态保护与合理开发提供基础地质依据。Abstract:
Objective Yuncheng Salt Lake, located within the core area of the Fenwei Graben System in the south-central part of the North China Craton, is the earliest known salt lake in China and worldwide. The formation and evolution of the Yuncheng Salt Lake are closely related to the Cenozoic tectonic domains of the coastal Pacific in eastern China and the Qinghai-Tibet Plateau in western China. However, there are many debates regarding the spatiotemporal processes and key timing associated with these two domains in the Yuncheng Salt Lake. Additionally, the salt lake is rich in sodium, magnesium, chloride, and sulfate ions; however the sources of these saline ions remain unclear. Methods This study investigated the major changes in the Cenozoic tectonic geomorphology of the Yuncheng Basin and its surrounding areas, focusing on the evolution of the Cenozoic river-lake system to establish the formation and evolution stages of the Yuncheng Salt Lake. This study combined the tectonic background and geochemical element analysis of typical strata in the adjacent Zhongtiao Mountains to identify the main sources of saline ions in the Yuncheng Salt Lake. Results At the boundary between the Paleogene and Neogene, there was a widespread angular unconformity across the central and eastern parts of the North China Craton. This unconformity affected the Weihe Basin in the Fenwei Graben System to the west, and not the northeastern edge of the Qinghai-Tibet Plateau, which connects to the western North China Craton. This indicates that the tectonic forces during this period originated mainly from the coastal Pacific tectonic domain of the eastern North China Craton. In the mid-Miocene, a widespread unconformity along the northeastern edge of the Qinghai-Tibet Plateau connect to the western North China Craton. The northeastward uplift and expansion of the Qinghai-Tibet Plateau affected caused the Ordos Basin to rotate counterclockwise, initiating the formation of the Shanxi Graben System within the Fenwei Graben System. The Cenozoic evolution of the Yuncheng Salt Lake is the result of the interaction between the two major tectonic domains of eastern and western China. Before the mid-Miocene, the coastal Pacific tectonic domain predominantly controlled the region. Subsequently, the long-distance effects of northeastward uplift and expansion of the Qinghai-Tibet Plateau began to influence the Yuncheng Salt Lake. The Jixian System Longjiayuan Formation in the Zhongtiao Mountain area is composed of marine carbonate deposits that is the primary source of magnesium ions for the salt lake, with an average magnesium oxide content of 20.92%. The Paleogene Pinglu Group, an arid lake basin deposit rich in gypsum layers, provids sodium, chloride, and sulfate ions to the salt lake, with an average sodium oxide content of up to 2.6%. Conclusion This study suggested that approximatedly 700000 years ago, during the transition between the early and middle Pleistocene, the Yellow River flowed eastward into the sea through the Sanmenxia Gorge, leading to the disappearance of the Sanmen paleolake and the initial formation of the Yuncheng Salt Lake. Approximately 70000 years ago, during the mid-late Pleistocene, the Fen River changed its course and left the Yuncheng Basin, transforming the salt lake from an open to a closed system, ultimately forming the Yuncheng Salt Lake. Subsequently, under the continuous influence of the fault at the northern edge of the Zhongtiao Mountains, a large sedimentary depression formed, accumulating a large amount of saline minerals. Natural salt lake is formed over long periods of precipitation and evaporation. Currently, the saline ions of the Yuncheng Salt Lake mainly originate from adjacent sedimentary strata in the Zhongtiao Mountains and deep mineralization layers. The major fault controlling the salt lake provides the upward migration and injection of saline substances from deep mineralization layers into the salt lake. The marine high-magnesium dolomite of the Longjiayuan Formation of the Mesoproterozoic Jixian System in the Zhongtiao Mountains is a major source of magnesium ions for the salt lake. Significance The research findings provide fundamental geological evidence for the implementation of an ecological protection strategy to restore the lake by reducing salt levels in Yuncheng Salt Lake. -
Key words:
- geochemical elements /
- saline ions /
- Sanmen paleolake /
- Fenhe River diversion /
- Yuncheng Salt Lake /
- Cenozoic /
- lake landform
-
0. 引言
运城盐湖位于华北克拉通中部汾渭地堑系的核心部位,是典型的硫酸钠型盐湖,具有4600年的开发历史。因早期注重于盐类的工业开发,其研究主要关注矿床的类型、资源量及其分布(张永朝和贺春宝,2004;孙培霞,2007)。 近年来,在退盐还湖生态保护战略的实施中,查明盐湖的生态地质本底,以对其实施更为合理的保护与开发成为了运城盐湖工作的重心。其中,关于运城盐湖的形成演化及其盐类物质来源,引起了众多基础地质研究者的关注。
关于运城盐湖形成演化的认识主要存在以下2种观点:①运城盐湖形成于距今6500万年的喜马拉雅运动初期,与青藏高原隆升的远程效应密切相关(董江凯等,2006);②运城盐湖的形成演化历史可以追溯到上新世末期的三门古湖,并认为汾河改道和晚更新世气候的变化是运城盐湖最终形成的主要原因(李有利和杨景春,1994)。运城盐湖在大地构造位置上隶属于汾渭地堑系,因此其形成演化与汾渭地堑系的形成演化必然密切相关。近年来关于汾渭地堑系的形成与演化取得了较多新的认识。研究人员对运城盐湖相邻的中条山奇峰火山岩的测年及地球化学分析结果显示,汾渭地堑系最早形成于白垩纪与古近纪之交的6900万年左右,运城盐湖接受了汾渭地堑系最早的沉积(崔加伟等,2023);但更多的研究成果却认为其形成于古近纪时期,汾渭地堑系主要受控于东部古太平洋构造域向西的俯冲作用,造成俯冲影响范围内软流圈的大范围、大幅度上涌,新生代早期裂陷盆地形成,并接受了新生代最早的沉积(邢作云等,2005;Fan et al., 2019;Shi et al.,2020;董晓朋等,2023)。另有研究者认为,汾渭地堑系在中新世中晚期因青藏高原隆升扩展的远程作用而形成(王强等,2000;Chen et al.,2021;Su et al.,2021;魏荣珠等,2022;樊如意等,2023)。运城盆地的北部、临汾盆地、晋中盆地这一系列山西地堑系的新生代盆地的底界年龄大约都在10~8 Ma。根据汾渭地堑系新生代的形成演化及其地球动力学背景研究进展可以看出,汾渭地堑系并非统一构造应力背景的产物,因此运城盐湖作为汾渭地堑系的重要组成部分,其早期的形成演化过程也并非统一的应力场背景,不能仅仅用青藏高原隆升的远程效应来解释。另外,运城盐湖的前身三门古湖的消亡与黄河贯通三门峡东流入海的过程也密切相关。关于黄河何时贯通三门峡的过程也存在较大的争议,存在上新世、早更新世、中更新世以及晚更新世多种观点(吴锡浩等,1998;潘保田等,2005;Jiang et al.,2007;杨守业等,2001;Shang et al.,2018;闫纪元等,2021;胡健民等,2022)。同时,与运城盐湖最终形成息息相关的古汾河何时退出运城盆地也存在着中更新世末与晚更新世中期的争议(郭令智和薛禹群,1958;李有利和杨景春,1994;胡晓猛,1997;南德斌等,2023)。运城盐湖含有丰富的钠离子、镁离子、氯离子和硫酸根离子(李侠和李晶莹,1998),这些盐类离子来自于哪儿?运移的通道如何?这些问题也都需要依据运城盐湖及其周边的地质结构开展系统的分析。因此,此次研究聚焦运城盆地及其邻区新生代构造地貌系统的巨变过程,以新生代河湖体系演化为主线,综合梳理总结运城盐湖的形成演化过程,结合相邻中条山地区典型地层的地球化学元素分析,探讨运城盐湖盐类物质的来源。
1. 区域地质概况
汾渭地堑系位于华北克拉通中部,主要由近东西向的渭河盆地及近北东—南西向的山西地堑系共同组成。运城盆地地处山西地堑系的最南段,南依中条山,北接临汾盆地,西临渭河盆地,盆地内均被巨厚的第四系沉积所覆盖(图1;Bellier et al.,1988,1991;Xu et al., 1993; Zhang et al.,1998;邢作云等,2005; Mercier et al.,2013;Shi et al.,2015, 2020;Chen et al.,2021)。运城盐湖位于运城盆地的东南部(图1a),背靠中条山北缘,呈北东—南西向带状展布,其南北两侧均被正断裂所控制,为一地势低洼地带,湖面海拔324.5 m,海拔比周围高地低20 m左右。盐湖水质离子为SO4-C1-Na-Mg型,矿化度32.6~112.5 g/L。
运城盐湖南部的中条山因受区域构造隆升剥蚀差异性的影响,山体的南北缘地层出露不一,北缘出露有太古界涑水群、古元古界中条群、中元古界长城系和蓟县系、新元古界震旦系及古生界寒武系(图1b);南缘地层剥蚀程度相对较弱,还保留有下古生界奥陶系马家沟组、上古生界石炭系本溪组和太原组、二叠系山西组和下石盒子组、新生界古近系平陆群和新近系保德组(图2)。太古界涑水群和古元古界中条群主要为一套深成变质岩系,分布于中条山北缘(孙大中等,1991;赵斌等,2012;刘玄等,2015)。中元古界长城系和蓟县系发育一套海相碎屑岩和碳酸盐岩沉积,长城系以海相碎屑岩为主,局部夹白云质团块,蓟县系为一套厚层海相碳酸盐岩沉积,主体分布于中条山北麓(苏文博等,2012;李承东等,2017)。中元古界长城系与下伏不同时代地层之间呈角度不整合接触。新元古界仅沉积了上部的震旦系,为一套典型的冰水混合物沉积(张抗,1991)。寒武系下部以紫红色泥页岩发育为特征,中部以鲕粒灰岩、薄层灰岩为主,上部以竹叶状灰岩为主,含丰富的海相动物化石,表现出陆表浅海相的沉积特征(肖飞等,2017)。奥陶系总体上为一套浅海相碳酸盐岩沉积,全区地层分布稳定,横向可对比(常大宇等,2021)。石炭系为一套蕴藏着丰富煤、铝、黏土等沉积矿产和丰富的动植物化石的海陆交互相煤系沉积(陶明华等,2005;刘学飞等,2020)。二叠系下部为一套海陆交互相的煤系沉积,以含煤层系为特征,上部为一套河流−三角洲相沉积,发育巨厚的砂岩(王峰等,2023;吴芳等,2024)。古近系平陆群为一套典型的干旱湖盆沉积,以发育深灰色石膏层、灰岩为特征,纵向上构成了一个完整的湖盆从发展到消亡的过程,与下伏不同时代地层之间呈平行不整合接触(纪友亮等,2022)。新近系保德组为一套干旱环境下的河流相、河湖相堆积,与下伏古近系平陆群之间呈角度不整合接触。
2. 实验方法及结果
2.1 样品采集及实验方法
根据区域地质资料分析,中条山地区出露的各套地层中蓟县系白云岩可能为潜在的镁离子来源,而古近系厚度较大的干旱湖盆沉积可能富含了丰富的钠离子(图3)。此次研究在中条山北缘永济郭家窑蓟县系龙家园组剖面,采集了9件含硅质条带白云岩样品;在中条山南缘米汤沟古近系平陆群剖面,采集了8件粉砂岩和2件泥灰岩样品。样品碎样及测试工作均在河北省区域地质调查院实验室完成。具体测试方法参见黄婷等(2018)。
图 3 中条山地区蓟县系和古近系典型露头照片(剖面位置见图1)a—蓟县系、震旦系和寒武系接触关系; b—古近系平陆群深灰色泥质粉砂岩夹薄层泥灰岩Figure 3. Representative outcrop photos of Jixian and Paleogene in the Zhongtiao Mountain area (see Figure 1 for section locations)(a) Contact relationship between the Jixian, Sinian and Cambrian System ; (b) Paleogene Pinglu Group dark gray argillaceous siltstone with thin layers of marlstone2.2 样品测试结果
表 1 中条山郭家窑剖面蓟县系白云岩地球化学元素分析表(%)Table 1. Geochemical elements analysis of dolomite from the Jixian System in Guojiayao section in the Zhongtiao Mountains (%)样品编号 岩性 SiO2 Al2O3 TiO2 Fe2O3 FeO CaO MgO K2O Na2O MnO P2O5 H2O+ H2O− SH-1 白云岩 0.08 0.22 0.00 0.03 0.09 30.94 22.38 0.01 0.05 0.01 0.01 0.04 0.20 SH-2 白云岩 4.60 0.10 0.00 0.03 0.08 29.91 21.40 0.01 0.07 0.01 0.00 0.02 0.20 SH-3 白云岩 0.54 0.10 0.00 0.03 0.08 31.30 22.37 0.01 0.03 0.01 0.00 0.00 0.20 SH-4 白云岩 0.04 0.13 0.00 0.01 0.07 31.34 22.37 0.01 0.05 0.01 0.00 0.00 0.30 SH-5 白云岩 6.98 0.11 0.00 0.06 0.08 29.34 20.18 0.01 0.05 0.01 0.00 0.00 0.21 SH-6 白云岩 3.35 0.15 0.00 0.05 0.38 29.82 20.75 0.01 0.04 0.06 0.00 0.02 0.22 SH-7 白云岩 17.28 0.12 0.00 0.08 0.07 26.97 16.88 0.01 0.04 0.01 0.00 0.03 0.20 SH-8 白云岩 4.00 0.08 0.00 0.05 0.07 31.15 20.39 0.00 0.04 0.01 0.00 0.05 0.19 SH-9 白云岩 3.76 0.10 0.00 0.02 0.08 30.12 21.58 0.00 0.03 0.01 0.00 0.00 0.15 表 2 中条山米汤沟剖面古近系碎屑岩地球化学元素分析表(%)Table 2. Geochemical elements analysis of Paleogene clastic rocks in Mitanggou section in the Zhongtiao Mountains (%)样品编号 岩性 SiO2 Al2O3 TiO2 Fe2O3 FeO CaO MgO K2O Na2O MnO P2O5 H2O+ H2O− MTG-1 粉砂岩 52.04 18.61 0.69 5.43 0.50 3.14 3.61 3.30 3.49 0.06 0.14 5.96 4.04 MTG-2 粉砂岩 47.62 18.89 0.68 5.46 0.74 4.07 4.98 3.63 2.94 0.14 0.18 6.56 4.59 MTG-3 粉砂岩 48.90 16.70 0.64 5.29 0.58 6.09 4.37 3.36 2.49 0.11 0.14 6.73 4.98 MTG-4 粉砂岩 46.23 15.29 0.63 5.21 0.64 8.96 4.19 3.16 2.40 0.10 0.15 6.71 5.17 MTG-5 粉砂岩 50.01 17.41 0.65 5.08 0.72 5.81 4.03 3.51 2.68 0.06 0.17 5.78 5.06 MTG-6 粉砂岩 55.69 18.65 0.75 4.48 0.31 2.21 3.33 3.73 2.39 0.02 0.04 6.48 7.55 MTG-7 粉砂岩 51.61 18.06 0.69 5.89 0.62 2.87 4.36 3.43 2.38 0.07 0.13 6.93 6.83 MTG-8 泥灰岩 33.46 11.84 0.47 3.59 0.20 26.31 2.21 2.53 2.33 0.03 0.06 7.30 12.64 MTG-9 粉砂岩 49.82 16.99 0.67 4.82 0.36 5.28 3.13 3.52 2.42 0.04 0.07 7.66 7.82 MTG-10 泥灰岩 14.12 5.71 0.20 1.97 0.56 23.24 15.16 0.98 2.64 0.26 0.14 3.23 2.01 中条山北缘永济郭家窑剖面蓟县系龙家园组9个样品除SH7外(17.28%),其他样品的二氧化硅(SiO2)含量均小于10%,部分样品的SiO2含量小于0.1%(SH-1和SH-4),SiO2含量的变化主要受到硅质条带的影响,有硅质条带参与分析的样品其SiO2含量相对越高。样品中三氧化铝(Al2O3)的含量均较低,介于0.08%~0.22%之间,平均仅为0.12%。所有分析样品中均不含二氧化钛(TiO2)。样品中氧化钙(CaO)和氧化镁(MgO)的含量最高,CaO含量介于26.97%~31.34%之间,平均30%;MgO含量介入16.88%~22.38%之间,平均20.92%,MgO含量的变化主要受到沉积环境的影响,MgO含量越高,白云岩的纯度越大,沉积时水体越清浅,越有利于镁离子和钙离子之间的交换(朱光有和李茜,2023)。样品中氧化钾(K2O)和氧化钠(Na2O)的含量比较低,K2O含量几乎都在0.1%左右,部分样品没有检测出(SH-8和SH-9);Na2O含量介于0.03%~0.07%之间,全部都小于0.1%。K2O和Na2O含量较低,也反应了当时沉积时水体含盐度整体较低,与MgO含量较高反应的水体清浅的沉积背景是基本一致的。样品中三氧化二铁(Fe2O3)和氧化铁(FeO)含量均较低,除SH-6(0.43%)外,含量均在0.08%~0.15%之间。同时样品中仅含微量的氧化锰(MnO)和五氧化二磷(P2O5)。
中条山南缘平陆米汤沟古近系剖面10个样品除个别样品(MTG-10)外,SiO2含量相对较高,介于33.46%~55.69%之间,平均含量48.37%,样品MTG-10为泥灰岩夹层,SiO2含量较低,反映了一套湖相沉积的特征。Al2O3的含量反应了泥质含量较高的湖相沉积特征,介于11.84%~18.89%之间,平均16.93%。TiO2含量较低,介于0.2%~0.75%之间,平均0.6%。FeO含量介于0.20%~0.74%之间,平均为0.523%。Fe2O3含量较高,介于1.79%~5.89%之间,平均为4.7%,反应了干旱封闭湖盆的特征。CaO和MgO的含量较蓟县系海相沉积明显降低,而K2O和Na2O含量明显增高。CaO除个别样品(MTG-8和MTG-10)外,含量介于2.21%~8.96%,平均为4.8%;MTG-8和MTG-10样品均为泥质灰岩,但前者SiO2含量低,Al2O3含量高,明显的具有更高的泥质成分,水体明显加深。Na2O含量介于2.33%~3.49%之间,平均为2.6%,泥质灰岩样品(MTG-8和MTG-10)的含量也分别达到了2.33%和2.64%,显示了干旱湖盆湖相沉积含盐度较高的沉积特征。含有微量MnO和P2O5,其中MnO含量介于0.02%~0.26%之间,平均为0.1%,P2O5含量介于0.04%~0.18%之间,平均为0.14%。野外该套样品中含有大量的石膏层也反应了宏观干旱湖盆的沉积特征。
3. 讨论
3.1 运城盐湖形成与演化
3.1.1 汾渭地堑系形成
新生代时期,中国大陆处于东部滨太平洋构造域与西部青藏构造域联合作用的过程,地貌格局由原来的东高西低逐步过渡为西高东低,现今的三级地貌台阶最终形成(索艳慧等,2012,2017;李三忠等,2013,2019;方小敏,2017;董晓朋等,2023)。
古近纪时期,华北克拉通和青藏高原东北缘不同构造位置新生代盆地地层接触关系,对于探讨盆地的形成演化提供了新的沉积学依据。华北东部的渤海湾盆地,古近系东营组与新近系馆陶组之间表现为区域性角度不整合接触(冯有良等,2010)。在华北克拉通中部的汾渭地堑系内,古近系平陆群刘林河组与上覆新近系保德组之间该套角度不整合同样存在(崔加伟等,2023)。在华北克拉通西北部的河套盆地内,该套区域角度不整合处于古近系临河组与新近系五原组之间(董晓朋等,2023)。然而,在青藏高原东北缘的兰州、宁南−银川盆地在该时期地层之间却表现为整合接触,说明在该时期青藏高原的隆升扩展还没有影响到青藏高原东北部,这时期的构造作用力主要来自于华北克拉通东部,与滨太平洋构造域俯冲作用息息相关(冯有良等,2010;董晓朋等,2023;图4)。另外,在华北克拉通乃至青藏高原东北缘的宁南盆地、陇中盆地古近纪地层中,均发育一系列小型层间正断层,它们并未断穿上覆的新近纪地层,而仅仅发育于古近纪地层内部,断层擦痕反演其古构造应力主要为北西—南东向伸展作用(Shi et al.,2015,2020; Fan et al.,2019)。根据区域地层接触关系推测包括汾渭地堑系在内的一系列盆地,在古近纪时期主要受控于东部的滨太平洋构造域向华北克拉通东部的俯冲后撤作用(图5a)。古近纪时期,受东部滨太平洋俯冲后撤作用的控制,鄂尔多斯盆地周缘新生代断陷盆地仅仅在汾渭地堑系的运城盆地、渭河盆地、三门峡盆地等局部地区形成巨厚的干旱湖盆沉积,现今的运城盐湖就叠加在这个古老的含盐盆地之上(图5a)。
新近纪中新世中期,约10~8 Ma期间,青藏高原的隆升扩展影响到了鄂尔多斯西缘的宁南盆地一线,在该地区新近系彰恩堡组与干河沟组之间普遍发育一期区域不整合面,响应了该期构造运动(寇琳琳等,2021;Kou et al.,2022;董晓朋等,2023)。受到该期强烈构造运动的影响,鄂尔多斯盆地整体发生了逆时针旋转(图5b),汾渭地堑系在古近系沉积基础上被改造,运城盆地大部分地区、临汾盆地、太原盆地都在该时期开始发育。运城盆地峨眉台地的上郭1井显示新近系直接与寒武系接触,新生代地层底界年龄为9.1 Ma;太原盆地新近系直接与三叠系接触,新生代底界年龄为8.1 Ma(Shi et al.,2020;闫纪元,2021;魏荣珠等,2022;图6)。中新世末期,约5 Ma左右,青藏高原向东北方向的隆升扩展进入了强烈期,青藏高原东北缘的大罗山、六盘山开始快速隆升(Kou et al.,2022;董晓朋等,2023)。在该期强烈隆升的作用下,汾渭地堑系进一步扩张,在如今的运城−关中盆地一带形成了面积达30000 km2的三门古湖(王书兵等,2004)。
图 6 青藏高原东北缘和山西地堑系新生代地层年代格架对比图(剖面位置见图5)Figure 6. Cenozoic stratigraphic age framework correlation map of northeastern Qinghai-Tibet Plateau and the Shanxi Graben System (see Figure 5 for section locations)3.1.2 黄河贯通三门峡峡谷与三门古湖消亡
黄河何时贯通三门峡东流入海与三门古湖的消亡紧密相关(吴锡浩等,1998;杨守业等,2001;潘保田等,2005;张磊等,2018;闫纪元等,2021;胡健民等,2022)。黄河三角洲钻孔元素地球化学综合分析表明,钻孔埋深233 m之上的沉积物中大多数元素含量及元素之比与现代黄河三角洲地区接近,而233 m之下的沉积物元素组成则明显偏离现代黄河物质的化学组成,233 m的沉积深度约相当于早更新世,推测大致在早更新世时黄河贯通三门峡峡谷并流进华北平原的现代黄河三角洲地区(杨守业等,2001)。通过对汾渭平原和河南平原更新统介形类化石组合特征的对比发现,至早更新世晚期,汾渭盆地介形类组合中的多数类型在河南平原地区也有出现,这表明汾渭盆地与河南平原之间的水系联系在早更新世晚期(薛铎,1996)。对三门峡峡谷入口及洛阳—郑州黄河南岸阶地、河南扣马黄河最高级阶地上覆黄土进行磁性地层学分析、黄土−古土壤定年及热释光测年等得出,黄河最老的阶地形成的时间为早更新世晚期—末期,说明黄河东流入海的格局在此时形成(潘保田等,2005)。渭河盆地新生代岩相古地理演化特征表明,早更新世三门组沉积时期,区域上以湖相沉积为主,中更新世泄湖组沉积时期,盆地内湖泊萎缩成区域上的小型洼地,沉积类型以风成沉积、河流沉积和冲积扇沉积为主,说明在中更新世泄湖组沉积时期,黄河已贯通三门峡,渭河盆地古湖消亡,随之发育了河流沉积体系(李智超等,2015)。黄河下游第四纪河湖系统的演化过程也证实在早中更新世之交黄河贯通了三门峡峡谷,早更新世如今的黄河冲积扇发育区主要为一套封闭的湖盆沉积,早中更新世之交湖盆消亡被冲积扇替代,预示着黄河贯通了三门峡,早期的湖盆体系被打破,随之而取代的是与河流体系相关的冲积扇体系(刘书丹等,1988)。所以,对于三门古湖消亡的时间存在争议,影响了对运城盐湖演化的研究。
为了查明三门古湖消亡的过程,系统建立起三门古湖与黄河贯通演化之间的内在关系,此次研究在晋陕豫黄河三角区吴王古渡一带开展了详细的大比例尺填图工作,搭建了黄河西岸北顺村、南顺村、申西村、申东村与黄河东岸吴王古渡剖面第四纪地层之间的对比格架(图1a,图7)。通过黄河两岸第四纪地层对比格架,可以看出第四纪地层序列主要由下部的三门古湖河湖体系和上部的离石黄土风成体系组成,二者的接触部位界限清晰。离石黄土S8古土壤的出现,说明三门古湖在S8古土壤发育之前就已经彻底消亡,时间大约为70万年前(图8)。基于大比例尺填图建立起的第四纪地层格架,综合已有研究成果,分析认为黄河在早更新世时期初始开始贯通三门峡,至早中更新世之交完全贯通,三门古湖随之消亡,运城盐湖的雏形开始形成。
3.1.3 汾河改道与运城盐湖形成
三门古湖消亡后,运城盐湖的湖盆范围已经消退至现今的位置,但由于此时的汾河仍流经运城盆地注入黄河,运城盐湖仍处于一个相对开放的体系,运城盐湖仍未形成。古汾河退出运城盆地经现今的河津一带注入黄河,这一流路的变化是运城盐湖由开放体系向封闭体系过渡,形成运城盐湖的主要原因(胡小猛等,2010,2012;索艳慧等,2012,2017;李三忠等,2013,2019)。中更新世时期,古汾河的一支从汾河流域经峨眉台地东北部隘口—礼元一带流入运城盆地,最终从永济的尊村一带注入黄河(李有利和杨景春,1994;胡晓猛,1997;南德斌等,2023)。运城盆地永济尊村晚更新世剖面主要由上覆的马兰黄土和下覆的河流相沉积组成,经光释光测年,将该界面限定为7万年左右(南德斌等,2023)。同时,该时期的古河道中均含有1套稳定的厚蚌壳层,可以作为区域对比的标志层,在运城盆地景化堡、北杨姚、魏家园、上院桥一带的晚更新世剖面中都有该套蚌壳化石的存在。这些蚌壳化石排列规则,仍保存其生活时的形态,多数个体还是左右壳完整的咬合在一起,没有人为弃置和自然营力扰动的迹象,属于原生堆积,推测其是由于河流的突然断流而引起的大规模突然死亡,也可以称为生物界的环境灾变(朱晓东,1996)。晚更新世中期,运城盆地整体发生区域性抬升,汾河退出运城盆地,河流逐渐干涸,风成马兰黄土得以在先期的河道中的得以保存,在垂向上形成了风成黄土和河流相的双层结构。汾河退出运城盆地,运城盐湖的地表水补给明显减少,中条山山前汇水盆地逐渐进入封闭体系,盐类矿物密度增大,运城盐湖最终形成。运城盐湖在纵向上主要存在2套盐矿层,第1套盐矿层的成矿时限大约就在晚更新世中期,与汾河退出运城盆地的时限具有较好耦合性(李有利和杨景春,1994)。
3.1.4 运城盐湖演化
自晚更新世中期,汾河退出运城盆地,运城盐湖在构造和气候的双重作用下,逐步进入成盐湖盆的演化阶段。
在构造方面,主要表现为受断裂活动的控制,中条山山前持续沉降,成盐凹陷最终定型。晚更新世时期,受中条山北缘断裂、盐湖南缘断裂和盐湖北缘断裂3条主要断裂的控制,在中条山北缘山前形成了以盐湖和硝湖为中心的沉积凹陷,但当时的运城盐湖远远超过现今的范围,在卿头—运城—陶村一线的西北方向仍存在1个局部的残留凹陷(图9a)。全新世时期,中条山北缘断裂活动性持续增强,硝湖和盐湖一线的沉积速率远远大于晚更新世时期,沉积速率从晚更新世时期的0.35 m/ka转变为全新世时期的2 m/ka,沉积速率扩大了将近6倍。随着中条山山前的强烈持续沉降,运城盆地整体处于相对的抬升阶段,卿头—运城—陶村一线西北方向的残留湖盆逐步消亡,运城盐湖最终进入了现代体系的演化阶段(图9b)。运城盐湖从晚更新世时期的河湖共存转变为全新世时期的断陷湖盆演化阶段,在整个成盐湖盆的演化过程中,沉积中心表现出了由早期区域上多个凹陷,逐步集中在中条山北缘发育,山前凹陷的沉积中心也表现出了自南西向北东方向迁移的特征(图9c)。
图 9 运城盐湖及邻区晚更新世—全新世地层厚度及地质剖面图a—运城盐湖及邻区晚更新世地层厚度等值线图;b—运城盐湖及邻区全新世地层厚度等值线图;c—运城盐湖及邻区晚更新世地质剖面图Figure 9. Late Pleistocene-Holocene stratigraphic thickness and geological profile of the Yuncheng Salt Lake and adjacent areas(a) Contour map of late Pleistocene stratigraphic thickness of the Yuncheng Salt Lake and adjacent areas; (b) Contour map of Holocene stratigraphic thickness of the Yuncheng Salt Lake and adjacent areas; (c) Late Pleistocene geologic profile of the Yuncheng Salt Lake and adjacent areas气候变化是影响盐湖成矿层形成的主要原因,气候变的干冷,盐类物质不断从湖水中析出,最终结晶形成石盐。运城盐湖盐矿层的主要成矿期与晚更新世以来的气候波动具有较好的相关性(李有利和杨景春,1994)。晚更新世与全新世之交,区域上气候干冷,该时期是盐湖的主要成矿时期,已形成了工业矿床,平均厚度约1 m。同时,区域上岩矿层厚度的差异,又受到湖盆古地形的控制,在地形相对低洼处,盐层的厚度明显大于地势相对高的地方。在中全新世,区域上气候变得温暖湿润,沉积物中可见富含瓣鳃类和腹足类化石,盐类矿物的含量明显减少。
从隋唐以来,人类活动开始干预盐湖,修建以姚选渠为代表的水利工程,引导盐湖地表水绕过盐湖注入黄河,减少了盐湖地表水的来源,增加了湖水的浓缩和沉淀,直到今天运城盐湖依然存在(李有利和杨景春,1994)。
综上所述,运城盐湖的形成演化过程先后经历了汾渭地堑系的形成、黄河贯通三门峡与三门古湖的消亡、汾河改道退出运城盆地,以及中条山北缘断裂持续活动引起局部断陷加剧4个重要的演化阶段(图10)。距今6000~1000万年,运城盐湖及邻区主要受控东部滨太平洋构造域的俯冲后撤而引起的局部坳陷,以发育1套干旱湖盆的古老盐湖为特征(图10a)。距今1000~500万年,受青藏高原隆升扩展远程效应的影响,鄂尔多斯盆地发生逆时针旋转,在区域伸展应力场的作用下运城盐湖及邻区湖盆范围不断扩大(图10b)。距今500~70万年,随着青藏高原隆升扩展远程效应作用力的不断加强,湖盆范围不断扩大,运城盐湖的前身三门古湖形成发育(图10c)。距今70~7万年,黄河贯通三门峡东流入海,三门古湖消亡,由于汾河尚未退出运城盆地,运城盐湖尚处于相对开放的湖盆体系(图10d)。距今7~1万年,汾河退出运城盆地,运城盐湖由开放体系进入封闭体系演化阶段(图10e),加之寒冷气候的叠加,盐湖中盐类矿物出现显著的富集。距今1万年以来,运城盐湖在中条山北缘断裂的持续活动下形成了现今的含盐封闭湖泊(图10f)。
3.2 运城盐湖盐类物质来源
运城盐湖为典型的硫酸钠型盐湖,湖水中的盐类物质主要包括钠离子、镁离子、硫酸根离子和氯离子,这些盐类物质的来源存在2种认识:①盐类来自于相邻的中条山;②由运城盆地下伏岩层提供(董江凯等,2006;李国英,2008)。运城盐湖紧邻中条山北缘,现今的山脉主体以出露太古界、古元古界、中元古界和古生界寒武系为主,其他地层均已在地质演化过程中剥蚀殆尽。现存的地层中除了中元古界蓟县系外,其他地层对于盐湖盐类物质的贡献均较小。中元古界蓟县系含硅质条带白云岩,MgO含量介于16.88%~22.38%之间,平均20.92%,该套白云岩结晶孔隙度好,是良好的储水层,也是中条山的天然储水库,经过水岩反应,大量的镁离子可以被带到盐湖中,成为镁离子的主要来源。中条山北缘造山带现今出露的地层中不提供钠离子、硫酸根离子及氯离子。根据地热钻井资料表明,运城盐湖所在的盆地范围内仍保留有巨厚的古近纪平陆群地层(樊如意等,2023),在中条山南缘该套地层地球化学元素分析表明Na2O含量介于2.33%~3.49%之间,平均为2.6%,并且富含有大量以硫酸根离子为主的石膏矿。运城盐湖东北方向的夏县温泉水分析资料表明,钠离子、氯离子和硫酸根离子含量却相当高,钾离子和钠离子为678.5 mg/L,钙离子为61.7 mg/L,镁离子为1.0 mg/L,氯离子为758.0 mg/L,硫酸根离子为345.7 mg/L,碳酸根离子为6.0 mg/L,碳酸氢根离子为 92.7 mg/L,这些水质应属硫酸氯化物钠型水,说明在运城盐湖及邻近区域地下地层中富含丰富的盐离子来源(杨静等,2019)。这些离子可以沿着盐湖南缘断裂、北缘断裂以及中条山北缘3条主要的活动断裂向上运移到现今的盐湖中,为盐湖提供钠离子、硫酸根离子及氯离子。另外,运城盐湖100 m以浅含有2套主要的盐类成矿层,呈现层状、似层状和透镜状产出(图11)。运城盐湖深部厚度巨大的古近纪干旱含盐类物质湖盆以及浅部的2个重要成矿层,在中条山北缘断裂、盐湖南缘断裂、盐湖北缘断裂3条活动断裂的控制下,活动断裂的周期性活动,将深部的盐类物质源源不断的向上输送到运城盐湖中,成为盐湖目前盐类物质的主要来源(王怡然等,2015)。同时,中条山蓟县系白云岩中的镁离子在大气降水的作用下,通过地表水不断的进入盐湖,为现代盐湖提供了充足的镁离子来源(图11)。
图 11 运城盐湖盐离子运聚模式图a—运城盐湖晚更新世—全新世地层综合柱状图;b—运城盐湖盐离子运聚模式图Figure 11. Salt ion migration and accumulation pattern diagram in the Yuncheng Salt Lake(a) Late Pleistocene-Holocene stratigraphic composite column diagram of the Yuncheng Salt Lake; (b) Salt ion migration and accumulation pattern diagram of the Yuncheng Salt Lake4. 结论
(1)运城盐湖形成演化主要经历了新生代地貌巨变与汾渭地堑系的形成、黄河贯通三门峡峡谷东流入海与三门古湖消亡、汾河改道退出运城盆地以及中条山北缘断裂持续活动形成山前凹陷4个重要的演化阶段。古近纪时期,运城盐湖主要受到东部滨太平洋构造域的控制,新近纪中新世中期以来主要受到青藏高原隆升远程效应的影响。
(2)黄河贯通三门峡峡谷东流入海,三门古湖消亡,奠定了运城盐湖形成的雏形。汾河改道退出运城盆地,运城盐湖由开放体系转变为完全封闭体系,是运城盐湖形成的主要地质控制因素。
(3)运城盐湖盐类物质主要来源于盆地深部的古近纪干旱盐盆以及浅部的2套主要含矿层。中条山北缘断裂、盐湖南缘断裂、盐湖北缘断裂是盐类物质向上运移注入盐湖的主要通道,中条山蓟县系高镁白云岩可以为现代盐湖提供一定的镁离子来源。
-
图 3 中条山地区蓟县系和古近系典型露头照片(剖面位置见图1)
a—蓟县系、震旦系和寒武系接触关系; b—古近系平陆群深灰色泥质粉砂岩夹薄层泥灰岩
Figure 3. Representative outcrop photos of Jixian and Paleogene in the Zhongtiao Mountain area (see Figure 1 for section locations)
(a) Contact relationship between the Jixian, Sinian and Cambrian System ; (b) Paleogene Pinglu Group dark gray argillaceous siltstone with thin layers of marlstone
图 6 青藏高原东北缘和山西地堑系新生代地层年代格架对比图(剖面位置见图5)
Figure 6. Cenozoic stratigraphic age framework correlation map of northeastern Qinghai-Tibet Plateau and the Shanxi Graben System (see Figure 5 for section locations)
图 9 运城盐湖及邻区晚更新世—全新世地层厚度及地质剖面图
a—运城盐湖及邻区晚更新世地层厚度等值线图;b—运城盐湖及邻区全新世地层厚度等值线图;c—运城盐湖及邻区晚更新世地质剖面图
Figure 9. Late Pleistocene-Holocene stratigraphic thickness and geological profile of the Yuncheng Salt Lake and adjacent areas
(a) Contour map of late Pleistocene stratigraphic thickness of the Yuncheng Salt Lake and adjacent areas; (b) Contour map of Holocene stratigraphic thickness of the Yuncheng Salt Lake and adjacent areas; (c) Late Pleistocene geologic profile of the Yuncheng Salt Lake and adjacent areas
图 11 运城盐湖盐离子运聚模式图
a—运城盐湖晚更新世—全新世地层综合柱状图;b—运城盐湖盐离子运聚模式图
Figure 11. Salt ion migration and accumulation pattern diagram in the Yuncheng Salt Lake
(a) Late Pleistocene-Holocene stratigraphic composite column diagram of the Yuncheng Salt Lake; (b) Salt ion migration and accumulation pattern diagram of the Yuncheng Salt Lake
表 1 中条山郭家窑剖面蓟县系白云岩地球化学元素分析表(%)
Table 1. Geochemical elements analysis of dolomite from the Jixian System in Guojiayao section in the Zhongtiao Mountains (%)
样品编号 岩性 SiO2 Al2O3 TiO2 Fe2O3 FeO CaO MgO K2O Na2O MnO P2O5 H2O+ H2O− SH-1 白云岩 0.08 0.22 0.00 0.03 0.09 30.94 22.38 0.01 0.05 0.01 0.01 0.04 0.20 SH-2 白云岩 4.60 0.10 0.00 0.03 0.08 29.91 21.40 0.01 0.07 0.01 0.00 0.02 0.20 SH-3 白云岩 0.54 0.10 0.00 0.03 0.08 31.30 22.37 0.01 0.03 0.01 0.00 0.00 0.20 SH-4 白云岩 0.04 0.13 0.00 0.01 0.07 31.34 22.37 0.01 0.05 0.01 0.00 0.00 0.30 SH-5 白云岩 6.98 0.11 0.00 0.06 0.08 29.34 20.18 0.01 0.05 0.01 0.00 0.00 0.21 SH-6 白云岩 3.35 0.15 0.00 0.05 0.38 29.82 20.75 0.01 0.04 0.06 0.00 0.02 0.22 SH-7 白云岩 17.28 0.12 0.00 0.08 0.07 26.97 16.88 0.01 0.04 0.01 0.00 0.03 0.20 SH-8 白云岩 4.00 0.08 0.00 0.05 0.07 31.15 20.39 0.00 0.04 0.01 0.00 0.05 0.19 SH-9 白云岩 3.76 0.10 0.00 0.02 0.08 30.12 21.58 0.00 0.03 0.01 0.00 0.00 0.15 表 2 中条山米汤沟剖面古近系碎屑岩地球化学元素分析表(%)
Table 2. Geochemical elements analysis of Paleogene clastic rocks in Mitanggou section in the Zhongtiao Mountains (%)
样品编号 岩性 SiO2 Al2O3 TiO2 Fe2O3 FeO CaO MgO K2O Na2O MnO P2O5 H2O+ H2O− MTG-1 粉砂岩 52.04 18.61 0.69 5.43 0.50 3.14 3.61 3.30 3.49 0.06 0.14 5.96 4.04 MTG-2 粉砂岩 47.62 18.89 0.68 5.46 0.74 4.07 4.98 3.63 2.94 0.14 0.18 6.56 4.59 MTG-3 粉砂岩 48.90 16.70 0.64 5.29 0.58 6.09 4.37 3.36 2.49 0.11 0.14 6.73 4.98 MTG-4 粉砂岩 46.23 15.29 0.63 5.21 0.64 8.96 4.19 3.16 2.40 0.10 0.15 6.71 5.17 MTG-5 粉砂岩 50.01 17.41 0.65 5.08 0.72 5.81 4.03 3.51 2.68 0.06 0.17 5.78 5.06 MTG-6 粉砂岩 55.69 18.65 0.75 4.48 0.31 2.21 3.33 3.73 2.39 0.02 0.04 6.48 7.55 MTG-7 粉砂岩 51.61 18.06 0.69 5.89 0.62 2.87 4.36 3.43 2.38 0.07 0.13 6.93 6.83 MTG-8 泥灰岩 33.46 11.84 0.47 3.59 0.20 26.31 2.21 2.53 2.33 0.03 0.06 7.30 12.64 MTG-9 粉砂岩 49.82 16.99 0.67 4.82 0.36 5.28 3.13 3.52 2.42 0.04 0.07 7.66 7.82 MTG-10 泥灰岩 14.12 5.71 0.20 1.97 0.56 23.24 15.16 0.98 2.64 0.26 0.14 3.23 2.01 -
[1] BELLIER O, MERCIER J L, VERGELY P, et al., 1988. Evolution sédimentaire et tectonique du graben cénozoïque de la Wei he (province du Shaanxi, Chine du Nord)[J]. Bulletin de la Société Géologique de France, 4(6): 979-994. [2] BELLIER O, VERGELY P, MERCIER J L, et al., 1991. Analyse tectonique et sédimentaire dans les monts Li Shan (province du Shaanxi, Chine du Nord): datation des régimes tectoniques extensifs dans le graben de la Wei he[J]. Bulletin de la Société Géologique de France, 162(1): 101-112. [3] CHANG D Y, ZHANG C L, CHEN Y P, et al., 2021. Study of sequence stratigraphy of Majiagou Formation in Xunyi area and its periphery, South Ordos Basin[J]. Mineral Resources and Geology, 35(5): 901-908. (in Chinese with English abstract [4] CHEN X Q, DONG S W, SHI W, et al., 2021. Magnetostratigraphic ages of the Cenozoic Weihe and Shanxi Grabens in North China and their tectonic implications[J]. Tectonophysics, 813: 228914. doi: 10.1016/j.tecto.2021.228914 [5] CUI J W, LI Z H, JING X H, et al., 2023. The initial time of the Fen–Wei graben system: constraints from geochronology of the Qifeng granite porphyry dikes in the Zhongtiaoshan Mountains[J]. Journal of Geomechanics, 29(4): 485-496. (in Chinese with English abstract [6] DONG J K, ZHAO Y, CHENG F Q, et al., 2006. Formation and development utilization of Yuncheng salt lake[J]. Journal of Salt Science and Chemical Industry, 35(4): 37-39. (in Chinese with English abstract [7] DONG X P, LI Z H, JING X H, et al., 2023. Stratigraphic sequence characteristics and geochronology research progress of the Cenozoic in the arcuate tectonic belt on the northeastern margin of the Tibet Plateau[J]. Journal of Geomechanics, 29(4): 465-484. (in Chinese with English abstract [8] FAN L G, MENG Q R, WU G L, et al., 2019. Paleogene crustal extension in the eastern segment of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 514: 62-74. doi: 10.1016/j.jpgl.2019.02.036 [9] FAN R Y, YANG M M, ZHOU J P, et al., 2023. The spore-pollen assemblages of the Miocene Baode Formation from Borehole ZK301 in the Yuncheng Basin and its geological significance[J]. Journal of Geomechanics, 29(4): 543-554. (in Chinese with English abstract [10] FANG X M, 2017. Phased uplift of the Tibetan Plateau[J]. Science & Technology Review, 35(6): 42-50. (in Chinese with English abstract [11] FENG Y L, ZHOU H M, REN J Y, et al., 2010. Paleogene sequence stratigraphy in the east of the Bohai Bay Basin and its response to structural movement[J]. Scientia Sinica: Terrae, 40(10): 1356-1376. (in Chinese) doi: 10.1360/zd2010-40-10-1356 [12] FU S T, FU J H, YU J, et al,2018. Petroleum geological features and exploration prospect of Linhe Depression in Hetao Basin, China[J]. Petroleum Exploration and Development,45(5):749-762. (in Chinese with English abstract [13] GUO L Z, XUE Y Q, 1958. The pleistocene sediments of the lower reaches of the Fenho and the Sushui: their origin and bearings on the geomorphological evolution of these two rivers[J]. Quaternary Sciences, 1(1): 107-117. (in Chinese) [14] HU J M, YAN J Y, CHENG Y, et al., 2022. Geological records of late Cenozoic tectono-sedimentary-paleoclimatic events in China[J]. Geology and Resources, 31(3): 303-330. (in Chinese with English abstract [15] HU X M, 1997. The change of former fen river on Emei platform[J]. Journal of Anhui Normal University (Natural Science), 20(2): 154-158. (in Chinese with English abstract [16] HU X M, GUO J X, HU X Y, 2010. The development of Morpho-sediment of Quaternary in Fenhe River graben basins and the neotectonic movement[J]. Acta Geographica Sinica, 65(1): 73-81. (in Chinese with English abstract [17] HU X M, CHEN M J, WANG D T, et al., 2012. The sequence difference in the times in the geomorphic-sedimentary evolution in the Fenwei graben basins during the middle-late quaternary and its tectonic significance[J]. Quaternary Sciences, 32(5): 849-858. (in Chinese with English abstract [18] HUANG T, LI Z H, LIU F, et al., 2018. The current situation of desertification in the Hongsibu Basin, Ningxia, and its main geological controlling factors[J]. Journal of Geomechanics, 24(4): 505-514. (in Chinese with English abstract [19] JI Y L, REN H Y, ZHANG S Q, et al., 2022. Paleogene palaeogeography and oil and gas distribution in Bohai Bay Basin[J]. Journal of Palaeogeography (Chinese Edition), 24(4): 611-633. (in Chinese with English abstract [20] JIANG F C, FU J L, WANG S B, et al., 2007. Formation of the Yellow River, inferred from loess-palaeosol sequence in Mangshan and lacustrine sediments in Sanmen Gorge, China[J]. Quaternary International, 175(1): 62-70. doi: 10.1016/j.quaint.2007.03.022 [21] KOU L L, LI Z H, DONG X P, et al., 2021. The age sequence of the detrital zircons from the Guanyindian section in Longde, the northeastern margin of the Tibetan Plateau, and its geological significance[J]. Journal of Geomechanics, 27(6): 1051-1064. (in Chinese with English abstract [22] KOU L L, DONG X P, LI Z H, et al., 2022. Initiation and development of the Late Cenozoic uplift of Daluo Mountains, northeastern margin of the Tibetan Plateau[J]. Acta Geologica Sinica (English Edition), 96(6): 1917-1931. doi: 10.1111/1755-6724.14891 [23] LI C D, ZHAO L G, CHANG Q S, et al., 2017. Zircon U-Pb dating of tuff bed from Luoyukou Formation in western Henan Province on the southern margin of the North China Craton and its stratigraphic attribution discussion[J]. Geology in China, 44(3): 511-525. (in Chinese with English abstract [24] LI G Y, 2008. Research about formation of nitrate mine in Yuncheng salt lake[J]. Shandong Chemical Industry(3): 21-23. (in Chinese with English abstract [25] LI S Z, YU S, ZHAO S J, et al., 2013. Tectonic transition and plate reconstructions of the East Asian Continental Magin[J]. Marine Geology & Quaternary Geology, 33(3): 65-94. (in Chinese with English abstract [26] LI S Z, CAO X Z, WANG G Z, et al., 2019. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific Plate[J]. Journal of Geomechanics, 25(5): 642-677. (in Chinese with English abstract [27] LI X, LI J Y, 1998. The research for the characteristics and origin of the salt deposit in Yuncheng salt lake, Shanxi, China[J]. Journal of Xi’an Engineering University, 20(1): 6-9. (in Chinese with English abstract [28] LI Y L, YANG J C, 1994. Environmental evolution of Yuncheng daline lake (Shanxi, China)[J]. Geographical Research, 13(1): 70-74. (in Chinese with English abstract [29] LI Z C, LI W H, LI Y X, et al., 2015. Sedimentary facies of the Cenozoic in Weihe Basin[J]. Journal of Palaeogeography, 17(4): 529-540. (in Chinese with English abstract [30] LIU S D, LI G K, LI Y X, et al., 1988. Discussion on the formation and evolution of the Yellow River from the characteristics of Quaternary sediments in the eastern plain of Henan Province[J]. Henan Geology, 6(2): 20-24. (in Chinese) [31] LIU T., 2020. Sedimentology and Provenance Analysis of Paleogene- Neogene strata in the Eastern Bohai Bay Basin[D]. China University of Geosciences(Beijing). (in Chinese with English abstract [32] LIU X, FAN H R, QIU Z J, et al., 2015. Formation ages of the Jiangxian and Zhongtiao groups in the Zhongtiao Mountain region, North China Craton: insights from SIMS U-Pb dating on zircons of intercalated plagioclase amphibolites[J]. Acta Petrologica Sinica, 31(6): 1564-1572. (in Chinese with English abstract [33] LIU X B, SHI W, HU J M, et al., 2019. Magnetostratigraphy and tectonic implications of Paleogene-Neogene Sediments in the Yinchuan Basin, western North China Craton[J]. Journal of Asian Earth Sciences, 173: 61-69. doi: 10.1016/j.jseaes.2019.01.016 [34] LIU X F, WANG Q F, MA Y, et al., 2020. Provenance of iron, bauxite and clay deposits of the Carboniferous Benxi Formation in southern margin of North China Craton: an example from Da'an bauxite and clay deposit of Sanmenxia area, Henan Province[J]. Journal of Palaeogeography (Chinese Edition), 22(5): 965-976. (in Chinese with English abstract [35] MERCIER J L, VERGELY P, ZHANG Y Q, et al., 2013. Structural records of the Late Cretaceous-Cenozoic extension in Eastern China and the kinematics of the Southern Tan-Lu and Qinling Fault Zone (Anhui and Shaanxi provinces, PR China)[J]. Tectonophysics, 582: 50-75. doi: 10.1016/j.tecto.2012.09.015 [36] NAN D B, LI Z H, DONG X P, et al., 2023. Late Pleistocene stratigraphic sequence and geologic significance of the Kaolao Tableland in the Yuncheng Basin[J]. Journal of Geomechanics, 29(4): 497-511. (in Chinese with English abstract [37] PAN B T, WANG J P, GAO H S, et al., 2005. Paleomagnetic dating of the topmost terrace in Kouma, Henan and its indication to the Yellow River’s running through Sanmen Gorges[J]. Chinese Science Bulletin, 50(7): 657-664. doi: 10.1360/03wd0290 [38] SHANG Y, PRINS M A, BEETS C J, et al., 2018. Aeolian dust supply from the Yellow River floodplain to the Pleistocene loess deposits of the Mangshan Plateau, central China: evidence from zircon U-Pb age spectra[J]. Quaternary Science Reviews, 182: 131-143. doi: 10.1016/j.quascirev.2018.01.001 [39] SHEN X H, TIAN Q J, DING G Y, et al., 2001. The late Cenozoic stratigraphic sequence and its implication to tectonic evolution, Hejiakouzi Area, Ningxia Hui autonomous region[J]. Earthquake Research in China, 17(2): 156-166. (in Chinese with English abstract [40] SHI W, DONG S W, LIU Y, et al., 2015. Cenozoic tectonic evolution of the South Ningxia region, northeastern Tibetan Plateau inferred from new structural investigations and fault kinematic analyses[J]. Tectonophysics, 649: 139-164. doi: 10.1016/j.tecto.2015.02.024 [41] SHI W, DONG S W, HU J M, 2020. Neotectonics around the Ordos Block, North China: a review and new insights[J]. Earth-Science Reviews, 200: 102969. doi: 10.1016/j.earscirev.2019.102969 [42] SU P, HE H L, TAN X B, et al., 2021. Initiation and evolution of the Shanxi rift system in North China: evidence from low-temperature thermochronology in a plate reconstruction framework[J]. Tectonics, 40(3): e2020TC006298. doi: 10.1029/2020TC006298 [43] SU W B, LI H K, XU L, et al., 2012. Luoyu and Ruyang group at the South Margin of the North China Craton (NCC) should belong in the mesoproterozoic Changchengian system: direct constraints from the LA-MC-ICPMS U-Pb age of the tuffite in the Luoyukou Formation, Ruzhou, Henan, China[J]. Geological Survey and Research, 35(2): 96-108. (in Chinese with English abstract [44] SUN D Z, LI H M, LIN Y X, et al. , 1991. Precambrian geochronology, chronotectonic framework and model of chronocrustal structure of the Zhongtiao Mountains[J]. Acta Geologica Sinica(3): 216-231. (in Chinese with English abstract [45] SUN P X, 2007. The exploitation and utilization of Yuncheng salt lake resources[J]. Journal of Salt Lake Research, 15(2): 38-41, 49. (in Chinese with English abstract [46] SUO Y H, LI S Z, DAI L M, et al., 2012. Cenozoic tectonic migration and basin evolution in East Asia and its continental margins[J]. Acta Petrologica Sinica, 28(8): 2602-2618. (in Chinese with English abstract [47] SUO Y H, LI S Z, CAO X Z, et al., 2017. Mesozoic- Cenzoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate[J]. Earth Science Frontiers, 2017, 24(4): 249-267. (in Chinese with English abstract [48] TAO M H, ZHAO L M, TAO L, 2005. The important inflections of the geological process in the carboniferous and Permian systems of the Pan-North China region[J]. Journal of Stratigraphy, 29(S1): 534-540. (in Chinese with English abstract [49] WANG F, LIU X S, ZHAO W B, et al., 2023. Detrital zircon U-Pb geochronology characteristics of Permian sandstone and its constraints on the tectonic evolution of the southern Ordos Basin[J]. Acta Sedimentologica Sinica, 41(5): 1396-1413. (in Chinese with English abstract [50] WANG Q, LI C G, TIAN G Q, et al., 2002. Tremendous change of the earth surface system and tectonic setting of salt-lake formation in Yuncheng Basin since 7.1 Ma[J]. Science in China Series D: Earth Sciences, 45(2): 110-122. doi: 10.1007/BF02879788 [51] WANG S B, JIANG F C, WU X H, et al., 2004. The connotation and significance of sanmen Formation[J]. Quaternary Sciences, 24(1): 116-123. (in Chinese with English abstract [52] WANG W T, ZHENG D W, PANG J Z, 2013. Provenancial tracing for the Cenozoic Sikouzi section in the northeastern margin of the Tibetan Plateau and its tectonic Implications[J]. Acta Geologica Sinica, 87(10): 1551-1569. (in Chinese with English abstract [53] WANG Y R, LI Y L, YAN D D, et al., 2015. Holocene paleoseismology of the middle and south segments of the north Zhongtiaoshan fault zone, Shanxi[J]. Seismology and Geology, 37(1): 1-12. (in Chinese with English abstract [54] WEI R Z, ZHUANG Q T, YAN J Y, et al., 2022. Late Cenozoic stratigraphic division and sedimentary environment of Jinzhong Basin in Shanxi Province, with the climate and lake evolution since the pre-Qin period (2500 years ago)[J]. Geology in China, 49(3): 912-928. (in Chinese with English abstract [55] WU F, LI Z H, JlNG X H, et al.,2024. Detrital zircon ages of the Permian coal-bearing rock series in the ZhongtiaoMountain area and their sedimentological constraints on regional tectonic activity[J]. Coal Geology & Exploration,52(11):37-54. [56] WU X H, JIANG F C, WANG S M, et al., 1998. On problem of the Yellow River passing through the Sanmen Gorge and flowing east into sea[J]. Quaternary Sciences, 18(2): 188. (in Chinese with English abstract [57] XIAO F, WANG J G, WU H Y, et al. , 2017. Cambrian sequence stratigraphic framework in the middle-northern North China[J]. Acta Petrolei Sinica, 38(10): 1144-1157, 1167. (in Chinese with English abstract [58] XING Z Y, ZHAO B, TU M Y, et al., 2005. The formation of the Fenwei rift valley[J]. Earth Science Frontiers, 12(2): 247-262. (in Chinese with English abstract [59] XU X W, MA X Y, DENG Q D, 1993. Neotectonic activity along the Shanxi rift system, China[J]. Tectonophysics, 219(4): 305-325. doi: 10.1016/0040-1951(93)90180-R [60] XUE D, 1996. A humble opinion of the formed age for the eastern section of the Yellow River[J]. Henan Geology, 14(2): 110-112. (in Chinese with English abstract [61] YAN J Y, HU J M, GONG W B, et al., 2020. Late Cenozoic magnetostratigraphy of the Yuncheng Basin, central North China Craton and its tectonic implications[J]. Geological Journal, 55(11): 7415-7428. doi: 10.1002/gj.3744 [62] YAN J Y, HU J M, WANG D M, et al., 2021. The critical geological events in the Huang-Huai-Hai Plain during the Late Cenozoic[J]. Geological Bulletin of China, 40(5): 623-648. (in Chinese with English abstract [63] YANG J, LI D M, CHANG J, et al., 2019. Analysis of geochemical characteristic of hot spring water of Xiaxian Seismic Station of Shanxi[J]. Seismological and Geomagnetic Observation and Research, 40(4): 114-119. (in Chinese with English abstract [64] YANG S Y, CAI J G, LI C X, et al., 2001. New discussion about the run-through time of the Yellow River[J]. Marine Geology & Quaternary Geology, 21(2): 15-20. (in Chinese with English abstract [65] YUE L P, Heller F, QIU Z X, et al,2000. Paleomagnetic and geological age dating of the Tertiary strata and paleoenvironmental record in the Lanzhou Basin[J]. Science Bulletin,(18):1998-2003. (in Chinese) [66] ZHANG K, 1991. Tilloid at the bottom of the sedimentary covers on the margins of the Ordos basin[J]. Regional Geology of China(1): 79-85. (in Chinese with English abstract [67] ZHANG L, LIU J Q, QIN X G, 2018. The environmental effects and mechanism of the Yellow River flooding into the Huaibei Plain during Quaternary: a brief review[J]. Quaternary Sciences, 38(2): 441-453. (in Chinese with English abstract [68] ZHANG Y C, HE C B, 2004. Main mineral resources in Yun Cheng-Yanhu and their comprehensive utilization[J]. Mining Engineering, 2(6): 23-25. (in Chinese) [69] ZHANG Y Q, MERCIER J L, VERGÉLY P, 1998. Extension in the graben systems around the Ordos (China), and its contribution to the extrusion tectonics of south China with respect to Gobi-Mongolia[J]. Tectonophysics, 285(1-2): 41-75. doi: 10.1016/S0040-1951(97)00170-4 [70] ZHAO B, WANG D H, HOU K J, et al., 2012. Isochronology study on Sushui complex in Zhongtiao Mountains and its geological significance[J]. Journal of Earth Sciences and Environment, 34(1): 1-8. (in Chinese with English abstract [71] ZHU G Y, LI X, 2023. Progress in genetic types and research methods of dolomite[J]. Acta Petrolei Sinica, 44(7): 1167-1190. (in Chinese with English abstract [72] ZHU X D, 1996. Dingcun 54: 100 location: environmental catastrophic events and epochal significance of mussel fossils[J]. Journal of Chinese Antiquity(4): 36-38. (in Chinese) [73] 常大宇,张成龙,陈燕萍,等,2021. 鄂尔多斯盆地南部旬宜地区及周缘马家沟组层序地层研究[J]. 矿产与地质,35(5):901-908. [74] 崔加伟,李振宏,井向辉,等,2023. 汾渭地堑系开启时限:基于中条山奇峰花岗斑岩岩脉的年代学约束[J]. 地质力学学报,29(4):485-496. [75] 董江凯,赵毅,程芳琴,等,2006. 运城盐湖的形成及其开发利用[J]. 盐业与化工,35(4):37-39. [76] 董晓朋,李振宏,井向辉,等,2023. 青藏高原东北缘弧形构造带新生代地层沉积序列及年代学研究进展[J]. 地质力学学报,29(4):465-484. [77] 樊如意,杨萌萌,周均朋,等,2023. 运城盆地ZK301钻孔中新世保德组孢粉组合及地质意义[J]. 地质力学学报,29(4):543-554. [78] 方小敏,2017. 青藏高原隆升阶段性[J]. 科技导报,35(6):42-50. [79] 冯有良,周海民,任建业,等,2010. 渤海湾盆地东部古近系层序地层及其对构造活动的响应[J]. 中国科学:地球科学,40(10):1356-1376. [80] 付锁堂,付金华,喻建,等,2018. 河套盆地临河坳陷石油地质特征及勘探前景[J]. 石油勘探与开发,45(5):749-762. [81] 郭令智,薛禹群,1958. 从第四纪沉积物讨论山西汾河与涑水在地貌演化上的关系[J]. 第四纪研究,1(1):107-117. [82] 胡健民,闫纪元,程瑜,等,2022. 中国晚新生代构造−沉积−古气候事件的地质记录[J]. 地质与资源,31(3):303-330. [83] 胡晓猛,1997. 古汾河在峨嵋台地上的变迁[J]. 安徽师大学报(自然科学版),20(2):154-158. [84] 胡小猛,郭家秀,胡向阳,2010. 汾河地堑湖盆第四纪地貌−沉积特征的构造控制[J]. 地理学报,65(1):73-81. [85] 胡小猛,陈美君,王杜涛,等,2012. 汾渭地堑系列湖盆第四纪中晚期地貌与沉积阶段性演化的时间序次差异及其构造指示意义[J]. 第四纪研究,32(5):849-858. [86] 黄婷,李振宏,刘锋,等,2018. 宁夏红寺堡盆地地表沙漠化现状及其地质主控因素[J]. 地质力学学报,24(4):505-514. [87] 纪友亮,任红燕,张世奇,等,2022. 渤海湾盆地古近纪古地理特征与油气[J]. 古地理学报,24(4):611-633. [88] 寇琳琳,李振宏,董晓朋,等,2021. 青藏高原东北缘隆德观音店剖面碎屑锆石年龄序列及地质意义[J]. 地质力学学报,27(6):1051-1064. [89] 李承东,赵利刚,常青松,等,2017. 豫西洛峪口组凝灰岩锆石LA-MC-ICPMS U-Pb年龄及地层归属讨论[J]. 中国地质,44(3):511-525. [90] 李国英,2008. 运城盐湖矿硝成因探讨[J]. 山东化工(3):21-23. [91] 李三忠,余珊,赵淑娟,等,2013. 东亚大陆边缘的板块重建与构造转换[J]. 海洋地质与第四纪地质,33(3):65-94. [92] 李三忠,曹现志,王光增,等,2019. 太平洋板块中—新生代构造演化及板块重建[J]. 地质力学学报,25(5):642-677. [93] 李侠,李晶莹,1998. 运城盐湖盐类矿床特征及其成因探讨[J]. 西安工程学院学报,20(1):6-9. [94] 李有利,杨景春,1994. 运城盐湖沉积环境演化[J]. 地理研究,13(1):70-74. [95] 李智超,李文厚,李永项,等,2015. 渭河盆地新生代沉积相研究[J]. 古地理学报,17(4):529-540. [96] 刘书丹,李广坤,李玉信,等,1988. 从河南东部平原第四纪沉积物特征探讨黄河的形成与演变[J]. 河南地质,6(2):20-24. [97] 刘涛,2020. 渤海湾盆地东部古近系—新近系沉积与物源特征研究[D].中国地质大学(北京). [98] 刘玄,范宏瑞,邱正杰,等,2015. 中条山地区绛县群和中条群沉积时限:夹层斜长角闪岩 SIMS锆石U-Pb年代学证据[J]. 岩石学报,31(6):1564-1572. [99] 刘学飞,王庆飞,马遥,等,2020. 华北克拉通南缘石炭系本溪组铁−铝黏土矿物质来源:以河南三门峡大安铝黏土矿床为例[J]. 古地理学报,22(5):965-976. [100] 南德斌,李振宏,董晓朋,等,2023. 运城盆地栲栳塬晚更新世地层序列及地质意义[J]. 地质力学学报,29(4):497-511. [101] 潘保田,王均平,高红山,等,2005. 河南扣马黄河最高级阶地古地磁年代及其对黄河贯通时代的指示[J]. 科学通报,50(3):255-261. [102] 申旭辉,田勤俭,丁国瑜,等,2001. 宁夏贺家口子地区晚新生代地层序列及其构造意义[J]. 中国地震,17(2):156-166. [103] 苏文博,李怀坤,徐莉,等,2012. 华北克拉通南缘洛峪群−汝阳群属于中元古界长城系:河南汝州洛峪口组层凝灰岩锆石LA-MC-ICPMS U-Pb年龄的直接约束[J]. 地质调查与研究,35(2):96-108. [104] 孙大中,李惠民,林源贤,等,1991. 中条山前寒武纪年代学、年代构造格架和年代地壳结构模式的研究[J]. 地质学报(3):216-231. [105] 孙培霞,2007. 运城盐湖资源及开发利用情况[J]. 盐湖研究,15(2):38-41,49. [106] 索艳慧,李三忠,戴黎明,等,2012. 东亚及其大陆边缘新生代构造迁移与盆地演化[J]. 岩石学报,28(8):2602-2618. [107] 索艳慧,李三忠,曹现志,等,2017. 中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J]. 地学前缘,24(4):249-267. [108] 陶明华,赵力民,陶亮,2005. 泛华北区石炭系、二叠系内部的重要地质演化转折[J]. 地层学杂志,29(S1):534-540. [109] 王峰,刘新社,赵伟波,等,2023. 鄂尔多斯盆地南部二叠系砂岩碎屑锆石年代学特征及地质意义[J]. 沉积学报,41(5):1396-1413. [110] 王强,李彩光,田国强,等,2000. 7.1Ma以来运城盆地地表系统巨变及盐湖形成的构造背景[J]. 中国科学(D辑),30(4):420-428. [111] 王书兵,蒋复初,吴锡浩,等,2004. 三门组的内涵及其意义[J]. 第四纪研究,24(1):116-123. [112] 王伟涛,郑德文,庞建章,2013. 青藏高原东北缘寺口子剖面碎屑锆石示踪及其构造意义[J]. 地质学报,87(10):1551-1569. [113] 王怡然,李有利,闫冬冬,等,2015. 中条山北麓断裂中南段全新世地震事件的初步研究[J]. 地震地质,37(1):1-12. [114] 魏荣珠,庄其天,闫纪元,等,2022. 山西晋中盆地晚新生代地层划分、沉积环境及其先秦以来气候和湖泊演化[J]. 中国地质,49(3):912-928. [115] 吴芳,李振宏,井向辉,等,2024. 中条山地区二叠系含煤岩系碎屑锆石年龄及其对区域构造活动的沉积学制约[J]. 煤田地质与勘探,52(11):37-54. [116] 吴锡浩,蒋复初,王苏民,等,1998. 关于黄河贯通三门峡东流入海问题[J]. 第四纪研究,(2):188. [117] 肖飞,汪建国,吴和源,等,2017. 华北地区中北部寒武系层序地层格架[J]. 石油学报,38(10):1144-1157,1167. doi: 10.7623/syxb201710005 [118] 邢作云,赵斌,涂美义,等,2005. 汾渭裂谷系与造山带耦合关系及其形成机制研究[J]. 地学前缘,12(2):247-262. [119] 薛铎,1996. 黄河东段形成时代管见[J]. 河南地质,14(2):110-112. [120] 闫纪元,胡健民,王东明,等,2021. 黄淮海平原晚新生代重大地质事件[J]. 地质通报,40(5):623-648. [121] 杨静,李冬梅,常姣,等,2019. 山西夏县中心地震台温泉水化学特征[J]. 地震地磁观测与研究,40(4):114-119. [122] 杨守业,蔡进功,李从先,等,2001. 黄河贯通时间的新探索[J]. 海洋地质与第四纪地质,21(2):15-20. [123] 岳乐平,Heller F,邱占祥,等,2000. 兰州盆地第三系磁性地层年代与古环境记录[J]. 科学通报,(18):1998-2003. [124] 张抗,1991. 鄂尔多斯盆地边缘沉积盖层底部类冰碛岩的讨论[J]. 中国区域地质(1):79-85. [125] 张磊,刘嘉麒,秦小光,2018. 第四纪黄河入淮成因机制与环境效应的研究现状及存在问题[J]. 第四纪研究,38(2):441-453. doi: 10.11928/j.issn.1001-7410.2018.02.15 [126] 张永朝,贺春宝,2004. 运城盐湖主要资源及综合利用[J]. 矿业工程,2(6):23-25. doi: 10.3969/j.issn.1671-8550.2004.06.009 [127] 赵斌,王登红,侯可军,等,2012. 中条山涑水杂岩的同位素年代学研究及其地质意义[J]. 地球科学与环境学报,34(1):1-8. doi: 10.3969/j.issn.1672-6561.2012.01.001 [128] 朱光有,李茜,2023. 白云岩成因类型与研究方法进展[J]. 石油学报,44(7):1167-1190. doi: 10.7623/syxb202307012 [129] 朱晓东,1996. 丁村54∶100地点蚌类化石的环境灾变事件及时代意义[J]. 文物季刊(4):36-38. -