Exploration and application of in-situ stress estimation method based on core disking phenomenon of boreholes
-
摘要: 岩芯饼化是在高地应力环境下产生的典型现象之一,其形成的岩饼的几何特征、断面形态与原地应力状态具有相关性,并且产生该现象的部位可能不适宜直接进行原地应力测量。为获得更全面、来源更广泛的地应力数据,依据该现象,基于饼化岩芯现场测量数据与原地应力之间的内在关系,进行地应力估算,所得结果对地应力测量数据具有补充完善的作用。依据岩芯饼化国内外研究相关假设和理论,分析岩芯饼化现象发生过程中出现的岩芯断面应力和岩芯内部能量变化情况,测量饼化岩芯的物理性质、几何特征,结合其原岩应力状态,构建基于岩芯饼化特征的地应力估算公式,并与其他公式作对比。对辽宁丹东大连山钻孔内出现岩芯饼化的30~120 m深度段73块代表性岩饼的几何特征进行测量,对该段岩芯物理性质进行试验,运用所构建的地应力估算公式估算该段地应力大小,补充完善水压致裂测量数据。同时依据国内外学者曾提出的基于岩芯饼化现象的其他地应力估算公式对该段进行估算,计算结果或偏离实际,或分布离散,相较之下以此公式估算补充后的地应力数据更符合实际,并满足产生岩芯饼化的应力条件。研究结果表明,该地应力估算方法所得结果可以补充完善钻孔饼状深度段地应力数据。Abstract:
Objective Rock core disking is a typical phenomenon that occurs in environments with high in-situ stress. The geometric characteristics and section shape of rock disking are related to the state of in-situ stress, and the site where this phenomenon occurs may be unsuitable for measuring in-situ stress. To obtain more comprehensive in-situ stress data from a wider range of sources, according to this phenomenon, in-situ stress estimation is conducted based on the internal relationship between the in-situ measurement data and the original in-situ stress, and the obtained result can supplement the in-situ stress measurement data. Methods According to the relevant hypotheses and theories worldwide, the change in core section stress and core internal energy during the core disking phenomenon was analyzed. The physical and geometric characteristics of the disked rock cores were measured, combined with the stress state of the original rock, and an in-situ stress estimation formula based on core disking characteristics was constructed. The results were compared with those of the other formulas. Results The geometric characteristics of 73 representative rock disks in the 30–120 m depth section of the Dalianshan borehole in Dandong, Liaoning Province, where the phenomenon of rock core disking occurs, are measured, and the physical properties of the core are tested. The value of the in-situ stress in this section is estimated using the established in-situ stress estimation formula to supplement and perfect the measured hydraulic fracturing data and better reveal the law of in-situ stress variation. Conclusion This section is estimated according to other in-situ stress estimation formulas based on the phenomenon of core disking proposed by scholars worldwide; the calculated results either deviate from reality or are dispersed in the distribution. Compared with these formulas, the in-situ stress data estimated by this formula are more in line with reality and meet the stress conditions for the generation of core disking. Significance The results show that the results obtained using this method can complement and perfect the in-situ stress data of the core disking depth section. -
Key words:
- core disking /
- high geostress /
- long and short axis of the core /
- geostress estimation
-
图 3 系数kx、ky、kz与Ls /R的关系(Kaga et al.,2003)
Figure 3. The relationship between the kx、ky、kz coefficients and Ls/R
图 9 各估算公式计算结果的偏差系数分布
a—公式(14)计算结果的偏差系数分布; b—公式(15)计算结果的偏差系数分布;c—公式(16)计算结果的偏差系数分布;d—公式(17)计算结果的偏差系数分布;e—公式(18)计算结果的偏差系数分布;f—公式(19)计算结果的偏差系数分布;g—公式(20)计算结果的偏差系数分布
Figure 9. Distribution of deviation coefficients of the results calculated by each estimation formula
(a) Formula (14); (b) Formula (15); (c) Formula (16); (d) Formula (17); (e) Formula (18); (f) Formula (19); (g) Formula (20) calculates the distribution of the deviation coefficients of the results
表 1 岩芯饼化部位的地应力计算结果
Table 1. The calculation results of in-situ stress at the disking part of the core
深度
Z/m水压致裂拟合
SH/MPa岩饼补充后拟合
SH /MPa公式(14)
SH /MPa公式(15)
SH /MPa公式(16)
SH /MPa公式(17)
SH /MPa公式(18)
SH /MPa公式(19)
SH /MPa公式(20)
SH /MPa31.70 13.03 32.91 31.79 1054.15 409.79 1448.56 62.60 64.28 823.33 31.72 13.03 32.90 29.01 1495.12 442.80 2054.53 51.53 63.88 1163.50 32.76 13.05 32.89 28.82 1540.37 438.56 2116.70 49.07 63.83 1192.44 32.80 13.05 32.89 30.63 1211.15 428.65 1664.30 59.62 64.10 937.07 32.90 13.05 32.88 29.19 1443.93 429.23 1984.18 50.14 63.89 1119.08 33.25 13.06 32.88 33.26 892.16 379.38 1225.96 63.40 64.36 692.43 33.38 13.06 32.88 34.95 733.96 332.19 1008.58 59.08 64.18 569.44 33.49 13.06 32.87 37.70 633.59 339.78 870.65 71.61 64.90 491.81 33.75 13.07 32.87 38.57 535.90 210.94 736.41 32.63 63.70 415.80 33.98 13.07 32.87 37.23 960.59 468.42 1320.00 89.76 66.60 745.46 34.50 13.08 32.86 37.16 608.38 297.90 836.01 57.32 64.11 472.35 34.56 13.08 32.86 31.64 1317.56 500.90 1810.54 74.83 65.14 1024.97 34.58 13.08 32.86 30.25 1296.11 444.84 1781.05 60.00 64.22 1005.93 34.80 13.09 32.85 31.66 1454.37 538.22 1998.53 78.27 65.52 1124.63 35.25 13.09 32.84 30.30 1511.62 521.20 2077.20 70.62 64.85 1176.00 35.40 13.10 32.84 38.20 614.29 335.81 844.13 72.14 64.83 477.19 35.64 13.10 32.84 29.05 1767.79 544.38 2429.22 65.88 64.45 1381.94 35.66 13.10 32.84 32.08 995.06 385.01 1367.37 58.54 64.20 773.88 35.75 13.10 32.84 32.88 990.63 416.12 1361.28 68.69 64.73 770.07 35.97 13.11 32.83 33.61 1522.30 581.62 2091.88 87.32 66.22 1191.08 36.00 13.11 32.83 33.21 1100.87 464.70 1512.77 77.08 65.29 850.53 36.20 13.11 32.83 35.12 864.08 410.80 1187.38 76.75 65.23 672.20 36.26 13.11 32.83 32.90 1194.61 488.32 1641.58 78.44 65.37 927.21 36.51 13.12 32.82 27.42 2263.97 566.45 3111.04 55.69 63.91 1760.34 36.69 13.12 32.82 35.64 699.43 328.22 961.12 60.52 64.20 543.19 37.00 13.13 32.81 34.56 868.65 402.20 1193.66 73.18 64.99 673.25 37.38 13.13 32.81 32.20 1829.44 630.02 2513.94 85.26 65.94 1421.90 37.56 13.14 32.80 31.60 1099.20 418.71 1510.47 62.68 64.41 850.62 37.67 13.14 32.80 28.78 1664.84 490.57 2287.75 56.80 64.07 1287.07 37.83 13.14 32.80 32.70 1260.00 503.36 1731.44 79.02 65.43 973.29 37.94 13.14 32.80 28.04 2387.20 639.06 3280.38 67.23 64.76 1864.79 38.10 13.15 32.79 31.98 1126.10 444.44 1547.44 68.93 64.64 877.84 38.20 13.15 32.79 27.72 4224.51 902.12 5805.13 75.70 65.02 3317.23 38.48 13.15 32.79 41.49 465.35 268.22 639.47 60.75 64.24 361.02 40.91 13.20 32.75 35.39 722.06 334.55 992.22 60.91 64.31 561.11 51.88 13.40 32.56 32.25 1039.87 403.65 1428.94 61.57 64.36 806.02 52.00 13.40 32.55 30.37 1755.21 575.27 2411.92 74.09 65.11 1368.51 52.01 13.40 32.55 34.19 789.44 258.08 1084.81 33.15 63.71 613.27 52.19 13.40 32.55 29.20 1656.02 496.81 2275.63 58.57 64.16 1289.69 52.31 13.41 32.55 32.18 1011.93 378.20 1390.54 55.55 64.12 787.74 53.00 13.42 32.54 31.34 1256.51 462.34 1726.64 66.85 64.64 976.86 53.12 13.42 32.53 33.24 1179.90 484.12 1621.37 78.06 65.57 916.47 53.40 13.43 32.53 29.88 1604.51 518.90 2204.85 65.94 64.50 1248.51 53.53 13.43 32.53 34.04 995.87 437.16 1368.48 75.41 65.36 772.91 53.75 13.43 32.52 33.42 887.99 361.57 1220.24 57.85 64.21 690.75 54.12 13.44 32.52 33.69 836.18 255.12 1149.04 30.59 63.70 650.49 54.20 13.44 32.52 36.66 669.06 326.47 919.39 62.60 64.44 519.88 54.38 13.44 32.51 27.83 2329.67 588.65 3201.33 58.45 64.19 1787.77 54.54 13.45 32.51 31.42 1135.41 406.43 1560.23 57.17 64.16 884.39 54.66 13.45 32.51 30.38 1465.35 495.76 2013.62 65.91 64.53 1134.94 55.28 13.46 32.50 32.63 1003.98 398.25 1379.62 62.08 64.38 778.12 55.46 13.46 32.49 32.66 982.61 386.19 1350.26 59.65 64.31 761.33 55.75 13.47 32.49 32.22 1065.42 412.79 1464.06 62.85 64.39 823.14 55.85 13.47 32.49 35.46 777.43 367.53 1068.30 68.28 64.83 603.52 94.00 14.17 31.83 31.23 1301.90 329.94 1789.02 32.86 63.70 1010.08 94.15 14.17 31.83 32.42 1082.10 353.82 1486.98 45.46 63.78 839.78 94.16 14.17 31.83 31.33 1266.19 379.58 1739.95 44.72 63.76 982.10 94.40 14.17 31.82 39.77 799.21 425.77 1098.23 89.13 66.44 624.44 94.50 14.18 31.82 32.36 1365.59 503.84 1876.54 73.05 64.88 1064.01 95.00 14.18 31.81 35.19 1410.82 560.60 1938.69 87.53 66.24 1091.55 95.68 14.20 31.80 30.57 1586.34 503.09 2179.87 62.70 64.34 1232.78 95.95 14.20 31.79 32.74 1188.72 455.32 1633.49 68.53 64.60 924.87 96.26 14.21 31.79 32.22 1199.67 437.90 1648.53 62.81 64.34 933.76 96.96 14.22 31.78 29.69 1779.75 499.14 2445.65 55.01 63.99 1389.64 97.02 14.22 31.78 31.10 1364.84 440.10 1875.50 55.77 64.02 1066.67 97.44 14.23 31.77 32.81 1066.39 393.50 1465.38 57.06 64.08 826.49 97.66 14.23 31.77 33.64 950.98 272.36 1306.80 30.65 63.70 740.48 97.80 14.24 31.76 33.23 991.27 356.39 1362.16 50.35 63.87 772.75 98.59 14.25 31.75 32.29 1117.73 364.13 1535.93 46.62 63.81 867.20 103.92 14.35 31.66 37.59 1362.49 569.17 1872.28 93.43 67.01 1064.33 104.05 14.35 31.65 28.98 2159.25 533.80 2967.14 51.86 63.96 1693.93 104.20 14.35 31.65 36.50 848.30 404.83 1165.69 75.92 65.32 659.03 106.14 14.39 31.62 35.17 1352.02 543.63 1857.88 85.90 66.23 1048.09 -
[1] BUNGER A P, 2010. Stochastic analysis of core discing for estimation of in situ stress[J]. Rock Mechanics and Rock Engineering, 43(3): 275-286. doi: 10.1007/s00603-009-0051-3 [2] HAIMSON B C, LEE M Y, 1995. Estimating in situ stress from borehole breakouts and core disking—experimental results in granite [C]//Proceedings of the international workshop on rock stress measurement at great depth. Tokyo: ISRM: 19-24. [3] HAST N, 1967. The state of stresses in the upper part of the earth’s crust[J]. Engineering Geology, 2(1): 5-17. doi: 10.1016/0013-7952(67)90002-6 [4] HOU F L, JIA Y R, 1984. Stress analysis on disced rock cores[J]. Chinese Journal of Geotechnical Engineering, 6(5): 48-58. (in Chinese with English abstract [5] HOU F L, 1985. Critical under-ground stress of disked rock cores and the relation between the thickness of rock disk and under-ground stress[J]. Engineering Journal of Wuhan University(1): 37-48. (in Chinese with English abstract [6] JAEGER J C, Cook N G W, 1963. Pinching off and discing of rocks[J]. Journal of Geophysical Research, 68(6): 1759-1765. doi: 10.1029/JZ068i006p01759 [7] JIANG A N, CENG Z W, TANG C A, 2010. Three-dimensional numerical test of element safety degree of rock core discing and feed-back analysis of geostresses[J]. Chinese Journal of Rock Mechanics and Engineering, 29(8): 1610-1617. (in Chinese with English abstract [8] KAGA N, MATSUKI K, SAKAGUCHI K, 2003. The in situ stress states associated with core discing estimated by analysis of principal tensile stress[J]. International Journal of Rock Mechanics and Mining Sciences, 40(5): 653-665. doi: 10.1016/S1365-1609(03)00057-1 [9] LAN T W, ZHANG H W, HAN J, et al. , 2012. Study on rock burst mechanism based on geo-stress and energy principle[J]. Journal of Mining & Safety Engineering, 29(6): 840-844, 875. (in Chinese with English abstract [10] LI J, FAN P X, WANG M Y, 2019. The stress conditions of rock core disking based on an energy analysis[J]. Rock Mechanics and Rock Engineering, 52(2): 465-470. doi: 10.1007/s00603-018-1634-7 [11] LI S S, NIE D X, REN G M, 2004. The fracture mechanism of discal drill core and its influence on characteristic of engineering geology[J]. Advance in Earth Science, 19(S1): 376-379. (in Chinese with English abstract [12] LI Y H, TAN K K, FENG L, 2012. Estimation of in situ geostress states from measuring shape of disked core[J]. Rock and Soil Mechanics, 33(S2): 224-228. (in Chinese with English abstract [13] LI Z H, LI S J, FENG X T, et al., 2011. Characteristics and formation mechanism of core discing in deep rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 30(11): 2254-2266. (in Chinese with English abstract [14] LIM S S, MARTIN C D, 2010. Core disking and its relationship with stress magnitude for Lac du Bonnet granite[J]. International Journal of Rock Mechanics and Mining Sciences, 47(2): 254-264. doi: 10.1016/j.ijrmms.2009.11.007 [15] LIU S H, 1988. Core discing phenomenon of Laxiwa hydropower Station[J]. Xibei Shuidian(3): 11-18. (in Chinese with English abstract [16] MA T H, WANG L, XU T, et al., 2016. Mechanism and stress analysis of rock core discing[J]. Journal of Northeastern University (Natural Science), 37(10): 1491-1495. (in Chinese with English abstract [17] MATSUKI K, KAGA N, YOKOYAMA T, et al., 2004. Determination of three dimensional in situ stress from core discing based on analysis of principal tensile stress[J]. International Journal of Rock Mechanics and Mining Sciences, 41(7): 1167-1190. doi: 10.1016/j.ijrmms.2004.05.002 [18] Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2015. Standard for engineering classification of rock mass: GB/T 50218-2014[S]. Beijing: China Planning Press. (in Chinese) [19] OBERT L, STEPHENSON D E, 1965. Stress conditions under which core discing occurs[J]. Society of Mining Engineers, 232(3): 227-235. [20] SHEOREY P R, 1994. A theory for in situ stresses in isotropic and transverseley isotropic rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(1): 23-34. [21] TANG S H, WU Z J, CHEN X H, 2003. Approach to occurrence and mechanism of rockburst in deep underground mines[J]. Chinese Journal of Rock Mechanics and Engineering, 22(8): 1250-1254. (in Chinese with English abstract [22] WANG W Q, HU Q G, NING G Z, 2018. Estimation of the in-situ stress in rock mass in the tunnel of N-J hydropower station excavated with TBM[J]. Soil Engineering and Foundation, 32(4): 428-432. (in Chinese with English abstract [23] XIE F R, CUI X F, 2015. Crustal stress field map of China and its neighboring regions [M]. Beijing: SinoMaps Press. [24] ZHANG F S, LI M L, ZHANG C Y, et al., 2022. Study on fracture propagation and formation mechanism of core discing at depth under high in-situ stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 41(03): 533-542. (in Chinese with English abstract [25] ZHANG H W, RONG H, HAN J, et al., 2014. Study on rock core discing mechanism based on stress and energy principle[J]. Chinese Journal of Applied Mechanics, 31(4): 512-517. (in Chinese with English abstract [26] ZHANG X, GUO Q F, 2017. Characteristics of core disking and calculation of in-situ rock stress in deep rock mass[J]. Metal Mine(10): 163-170. (in Chinese with English abstract [27] ZHONG S, JIANG Q, FENG X T, et al., 2018. A case of in-situ stress measurement in Chinese Jinping underground laboratory[J]. Rock and Soil Mechanics, 39(1): 356-366. (in Chinese with English abstract [28] 侯发亮,贾愚如,1984. 岩芯饼化的应力分析[J]. 岩土工程学报,6(5):48-58. [29] 侯发亮,1985. 岩芯饼化的临界地应力及岩饼厚度与地应力的关系[J]. 武汉水利电力学院学报(1):37-48. [30] 姜谙男,曾正文,唐春安,2010. 岩芯成饼单元安全度三维数值试验及地应力反馈分析[J]. 岩石力学与工程学报,29(8):1610-1617. [31] 兰天伟,张宏伟,韩军,等,2012. 基于应力及能量条件的岩爆发生机理研究[J]. 采矿与安全工程学报,29(6):840-844,875. [32] 李树森,聂德新,任光明,2004. 岩芯饼裂机制及其对工程地质特性影响的分析[J]. 地球科学进展,19(S1):376-379. [33] 李彦恒,谭可可,冯利,2012. 基于岩饼几何形态测量的原地应力测定方法[J]. 岩土力学,33(S2):224-228. [34] 李占海,李邵军,冯夏庭,等,2011. 深部岩体岩芯饼化特征分析与形成机制研究[J]. 岩石力学与工程学报,30(11):2254-2266. [35] 刘世煌,1988. 拉西瓦水电站的岩芯饼化现象[J]. 西北水电技术(3):11-18. [36] 马天辉,王龙,徐涛,等,2016. 岩芯饼化机制及应力分析[J]. 东北大学学报(自然科学版),37(10):1491-1495. [37] 唐绍辉,吴壮军,陈向华,2003. 地下深井矿山岩爆发生规律及形成机理研究[J]. 岩石力学与工程学报,22(8):1250-1254. doi: 10.3321/j.issn:1000-6915.2003.08.005 [38] 汪文桥,胡泉光,宁光忠,2018. 巴基斯坦N-J水电站引水隧洞地应力估算[J]. 土工基础,32(4):428-432. [39] 谢富仁,崔效锋,2015. 中国及邻区现代地壳应力场图[M]. 北京:中国地图出版社. [40] 张丰收,李猛利,张重远,等,2022. 高地应力下深部岩芯饼化裂缝发展规律及机制研究[J]. 岩石力学与工程学报,41(3):533-542. [41] 张宏伟,荣海,韩军,等,2014. 基于应力及能量条件的岩芯饼化机理研究[J]. 应用力学学报,31(4):512-517. [42] 张旭,郭奇峰,2017. 深部岩体岩芯饼化特征分析与原岩应力计算研究[J]. 金属矿山(10):163-170. [43] 中华人民共和国住房和城乡建设部,2015. 工程岩体分级标准:GB/T 50218-2014[S]. 北京:中国计划出版社. [44] 钟山,江权,冯夏庭,等,2018. 锦屏深部地下实验室初始地应力测量实践[J]. 岩土力学,39(1):356-366.