Spatial and temporal distribution, geochemical characteristics of carbonatites and their relationship with U–REE mineralization in the Xiaoqinling area, Shaanxi Province
-
摘要: 碳酸岩作为一种岩浆成因的岩石类型,是铀、稀土等矿产的重要含矿母岩。陕西小秦岭地区广泛分布着碳酸岩,呈大脉状、群脉状、网脉状沿断裂构造侵入太古代变质基底、长城系熊耳群火山沉积岩及蓟县系高山河群碎屑岩中。基于野外穿插关系,结合碳酸岩主要矿物组合特征,将小秦岭碳酸岩划分为5个阶段,由老到新分别为:霓辉石正长岩阶段、霓辉石碳酸岩阶段、钾长石碳酸岩阶段、石英碳酸岩阶段和含沸石碳酸岩阶段,碳酸岩由早期铁碳酸岩向晚期钙碳酸岩演化。在空间上碳酸岩大致以近东西向小河断裂为界,南北部碳酸岩脉的主要类型存在明显的差异;在时间上碳酸岩总体形成于晚三叠世,但不同地段不同类型碳酸岩存在较为明显的时间差异性。碳酸岩地球化学特征显示高硅、富碱、低镁、高钡锶−稀土元素的特征,以及异常高的钾钠比值;CaO含量、TiO2含量、Al2O3含量、铁镁质含量、全碱含量、稀土元素总量及分馏程度均有自早期碳酸岩到晚期碳酸岩逐渐降低的趋势;MnO含量与重稀土元素含量变化相反,且两者呈线性相关特征;与国内其他地区碳酸岩地球化学特征具有明显的差异性。不同类型碳酸岩具有显著的成矿专属性:早期的霓辉石正长岩、霓辉石碳酸岩、钾长石碳酸岩主要富集铀(铌),钾长石碳酸岩还富集钼;晚期的石英碳酸岩主要富集钼、重稀土元素。碳酸岩的侵入致使围岩发生了普遍的霓长岩化作用,由此导致的钾钠元素的迁移可能是碳酸岩成矿专属特征的重要指标和原因。研究结果为小秦岭地区碳酸岩型铀、稀土等多金属矿的区域勘探提供了有价值的信息。Abstract: [ Objective ] Carbonatites, as magmatic-origin rocks, are crucial source rocks for uranium, rare earth, and other minerals. They are widely distributed in the Xiaoqinling region of Shaanxi, giving rise to numerous large to super-large carbonatite deposits of uranium, molybdenum, and rare earth, represented by Huayangchuan and Dashigou, attracting attention from scholars in recent years. Previous studies on carbonatite deposits in the area focused on petrology, mineralogy, genesis, and mineralization chronology. However, they were often limited to individual deposits, needing more regional cross-sectional comparative studies. [ Methods ] This study employs field geological surveys, petrographic analysis, and geochemical characterization of typical rocks and ores to reclassify different types and stages of Xiaoqinling carbonatites. It analyzes the geochemical characteristics of various carbonatite types and explores the mineralization processes of uranium and rare earth elements associated with carbonatites. [ Results ] Xiaoqinling carbonatites exhibit a large vein, vein group, and vein network morphology, intruding into the Archean metamorphic basement, Xiong'er Group volcanic sedimentary rocks of the Changchengian System, and Gaoshanhe Group clastic rocks of the Jixianian System along fault structures. Based on field crosscutting relationships and primary mineral assemblage characteristics, Xiaoqinling carbonate rocks can be re-divided into five stages from old to new: aegirine syenite stage (I), aegirine carbonatite stage (II), potassium feldspar carbonatite stage (III), quartz carbonatite stage (IV) and zeolite-bearing carbonatite stage (V). Spatially, the division is roughly along the nearly EW-striking Xiaohe Fault, with northern carbonatite veins dominated by aegirine syenite and aegirine carbonatite, rich in aegirine, biotite and other dark minerals, distributed in the Archean gneiss basement. The southern part is mainly composed of light-colored potassic feldspar carbonatites and quartz carbonatites, almost devoid of dark minerals, with surrounding rocks consisting of Xiong'er Group volcanic sedimentary rocks and Gaoshanhe group clastic rocks. Zeolite-bearing carbonatites are distributed throughout the region. Temporally, the carbonatites formed in the Late Triassic, but distinct temporal differences exist among different sections. Previous data indicate a possible 30 Ma gap in the formation times of various carbonatite types in the Xiaoqinling area. The geochemical characteristics of Xiaoqinling carbonatites reveal an average SiO2 content of 30.43%, significantly higher than the global average for carbonatites. CaO is relatively low, with an average content of 28.71%, exhibiting a clear negative correlation with SiO2 content. Total alkali (Na2O+K2O) content is relatively high, averaging 2.25%, with a maximum value of 10.23%. The total alkali content decreases gradually from early to late stages, strongly correlating with CaO and Al2O3 content. The potassium-sodium ratio (w(K2O)/w(Na2O)) is exceptionally high, with an average of 4.625 and a maximum value of 36.55. Ferromagnesian content (TFe2O3+MgO) varies significantly, with early-stage carbonatites (Stages I, II, III) having higher ferromagnesian content (average 8.29%), while late-stage carbonatites (Stages IV, V) generally have lower ferromagnesian content (average 1.92%). Ferromagnesian content correlates positively with TiO2 content. MnO has an average content of 1.22%, reaching up to 4.49%, notably enriched in late-stage quartz carbonatites. REE content averages 0.26%, with a maximum value of 0.96%, exhibiting a positive correlation with MgO content. The ∑LREE/∑HREE ratio ranges from 0.47 to 27.72, with early-stage carbonatites (Stages I, II, III) showing strong heavy REE depletion. Late-stage quartz carbonatites have an average ∑LREE/∑HREE ratio of 2.15, indicating relatively heavy REE enrichment, especially in Tm, Yb, Lu, and Y. Heavy REE content correlates linearly with MnO content. The overall REE distribution pattern of carbonatites is a steep-left and gentle-right, relatively flat-right-trending model, showing continuous variations in REE distribution patterns throughout different stages. Ore-related element content characteristics of various carbonatite types reveal significant U and Nb enrichment in aegirine syenite, aegirine carbonatite, and potassium feldspar carbonatite. Mo-mineralization is closely associated with potassium feldspar carbonatite and quartz carbonatite, while Pb and Ba-Sr mineralization is evident in all carbonatite stages. [ Conclusions ] (1) Xiaoqinling carbonatites are categorized into aegirine syenites, aegirine carbonatites, potassium feldspar carbonatites, quartz carbonatites, and zeolite-bearing carbonatites in chronological order. (2) Xiaoqinling carbonatites exhibit notably high SiO2 and total alkali content, low MgO content, and exceptionally high potassium-sodium ratio. There is a gradual decrease in CaO, TiO2, Al2O3, ferromagnesian, and total alkali content from early to late stages, while MnO content shows an opposite trend. Carbonatites evolve from early ferrocarbonatite to late calciocarbonatite. (3) Different types of carbonatites show distinct ore-related characteristics, with early stages (aegirine syenite, aegirine carbonatite, and potassium feldspar carbonatite) mainly enriched in U (Nb), and Potassic Feldspar Carbonate additionally enriched in Mo. Late-stage quartz carbonatites are characterized by Mo and HREE enrichment. [ Significance ] The findings of this study provide valuable information for the exploration and research of carbonatite-type uranium, rare earth, and polymetallic deposits in the Xiaoqinling area, holding significant practical importance.
-
图 1 研究区大地构造位置及地质矿产简图
I—构造界线;II—区域断裂;1—蓟县系;2—长城系;3—元古代铁洞沟组;4—太古代太华群;5—白垩纪—侏罗纪二长花岗岩;6—寒武纪正长岩;7—中元古代二长花岗岩;8—早元古代二长花岗岩;9—早元古代正长斑岩;10—早元古代闪长岩;11—太古代太峪岭−翁岔铺片麻岩套;12—地壳断裂;13—脆韧性剪切带/韧性剪切带;14—区域性断裂/一般性断裂;15—地质界线;16—碳酸岩;17—碳酸岩型矿床(点);18—主要断裂编号矿床(点)编号:①—华阳川铀铌铅矿;②—大石沟钼矿;③—驾鹿稀土矿;④—宋家沟钼矿;⑤—桃园铀钼矿;⑥—西沟铅钼矿;⑦—小夫峪稀土矿;⑧—秦岭沟钼矿;⑨—文公岭钼矿;⑩—塬头钨钼矿;⑪—石家湾钼矿;⑫—鳖盖子钼矿;⑬—铁岔沟铀矿点;⑭—太子坪稀土矿点断裂编号:F1—太要断裂,F2—小河断裂,F3—青岗坪−金堆城断裂;F4—华阳川断裂a—研究区大地构造位置图(据喻学惠等,1992修编);b—研究区地质矿产简图(底图据王北颖等,1996修编)
Figure 1. Schematic map of tectonic location and geological and mineral resources in the study area
(a) Tectonic location map of the study area(modified after Yu et al., 1992); (b) Schematic map of geological and mineral resources in the study area (modified after Wang et al., 1996) I–tectonic boundary; II–regional fault structure; 1–Jixian System; 2–Changchengian System; 3–Proterozoic Tietonggou Fm; 4–Archaeozoic Taihua Group; 5–Cretaceous–Jurassic monzogranite; 6–Cambrian syenite; 7–Mesoproterozoic monzogranite; 8–Paleoproterozoic monzogranite; 9–Paleoproterozoic syenite porphyry; 10–Paleoproterozoic diorite; 11–Archaeozoic Taiyuling−Wengchapu gneiss suite; 12–crustal fault; 13–brittle ductile shear zone/ductile shear zone; 14–regional fault/general fracture; 15–geological boundary; 16–carbonatite; 17–carbonatite-type deposits (mineral occurrences); 18–number of major fractures Number of deposits and mineral occurrences: ①–Huayangchuan U-Nb-Pb deposit; ②–Dashigou Mo deposit; ③–Jialu REE deposit; ④–Songjiagou Mo deposit; ⑤–Taoyuan U-Mo deposit; ⑥–Xigou Pb-Mo deposit; ⑦–Xiaofuyu REE deposit; ⑧–Qinlinggou Mo deposit; ⑨–Wengongling Mo deposit; ⑩–Yuantou W-Mo deposit; ⑪–Shijiawan Mo deposit; ⑫–Biegaizi Mo deposit; ⑬–Tiechagou U occurrences; ⑭–Taiziping REE occurrences Number of fractures: F1–Taiyao fracture; F2–Xiaohe fracture; F3–Qinggangping−Jinduicheng fracture; F4–Huayangchuan fracture
图 2 小秦岭地区典型碳酸岩矿区地质简图
1—第四系;2—长城系高山河群;3—长城系熊耳群;4—太古代太华群;5—白垩系水池沟单元;6—白垩系黄狗峪单元;7—白垩系西牛峪单元;8—侏罗系沫沫岔单元;9—侏罗系赛华山单元;10—中元古代后沟单元;11—中元古代甘沟单元;12—太古代大月坪片麻岩;13—太古代马驹峪片麻岩;14—太古代侯家村片麻岩;15—太古代武家坪片麻岩;16—花岗斑岩;17—花岗伟晶岩;18—黑云母角闪岩;19—霓辉石正长岩;20—钠铁闪石正长岩;21—辉绿岩;22—碳酸岩脉及编号;23—地质界线/脉动侵入界线;24—不整合界线;25—断层;26—推测断层;27—碳酸岩脉群;28—矿床位置a—塬头−黄龙铺矿区地质简图;b—驾鹿矿区地质简图;c—华阳川矿区地质简图
Figure 2. Geological schematic map of typical carbonatite mining areas in the Xiaoqinling area
(a) Geological schematic map of the Yuantou–Huanglongpu mining area; (b) Geological schematic map of the Jialu mining area; (c) Geological schematic map of the Huayangchuan mining area 1–Quaternary System; 2–Gaoshanhe Group of Changchengian System; 3–Xionger Group of Changchengian System ; 4–Archaeozoic Taihua Group; 5–Cretaceous Shuichigou Cell; 6–Cretaceous Huanggouyu Cell; 7–Cretaceous Xiniuyu Cell; 8–Jurassic Momocha Cell; 9–Jurassic Saihuashan Cell; 10–Mesoproterozoic Hougou Cell; 11–Mesoproterozoic Gangou Cell; 12–Archaeozoic Dayueping gneiss; 13–Archaeozoic Majuyu gneiss; 14–Archaeozoic Houjiacun gneiss; 15–Archaeozoic Dayueping gneiss; 16–granite porphyry; 17–granite pegmatite; 18–biotite amphibolite; 19–aegirite syenite; 20–arfvedsonite syenite; 21–diabase; 22–carbonatite vein; 23–geologic boundary/pulsation boundary; 24–non-integration boundary; 25–faults; 26–presumed faults; 27–carbonatite vein groups; 28–deposit location
图 3 小秦岭碳酸岩产出特征
a—d、g—华阳川碳酸岩,围岩为太古代武家坪片麻岩;e、h—大石沟碳酸岩,围岩为熊耳群变安山岩;f—桃园碳酸岩,围岩为高山河群蚀变板岩
Figure 3. The occurrence characteristics of carbonatites in Xiaoqinling
(a–d, g) Photos of Huayangchuan carbonatite, and the surrounding rock is Archean Wujiaping gneiss; (e,h) Photos of Dashigou carbonatite, and the surrounding rock is metamorphic andesite of the Xionger Group; (f) Photos of Taoyuan carbonatite, and the surrounding rock is altered slate of the Gaoshanhe Group
图 4 小秦岭碳酸岩脉穿插关系素描图
I—霓辉石正长岩;II-1—含霓辉石钠闪石的重晶石石英方解石脉;II-2—含黑云母霓辉石的重晶石石英方解石脉;III—钾长石重晶石石英方解石脉;IV—重晶石石英方解石脉;V—含沸石重晶石方解石石英脉;ρ—伟晶岩;γπ—花岗斑岩;bpg—黑云斜长片麻岩;mas—变安山岩a—c—华阳川碳酸岩脉侵入关系素描图;d—大石沟碳酸岩脉侵入关系素描图
Figure 4. Sketch of interpenetrating relationship of carbonatite veins in Xiaoqinling
(a–c) Sketch map of carbonate vein intrusion relationship in the Huayangchuan area; (d) Sketch map of carbonate vein intrusion relationship in the Dashigou area I–aegirine syenite; II-1–barite-quartz-calcite veins with aegirine and riebeckite; II-2–barite-quartz-calcite veins with aegirine and black mica; III–potassium-feldspar-barite-quartz-calcite veins; IV–barite-quartz-calcite veins; V–zeolite-bearing barite-calcite-quartz veins; ρ–pegmatite; γπ–granite porphyry; bpg–biotite-plagioclase gneiss; mas–metamorphic andesite
图 5 小秦岭碳酸岩手标本特征及显微特征(单偏光)
Agt—霓辉石;Kfs—钾长石;Cal—方解石;Brt—重晶石;Qz—石英;Zeo—沸石;Str—菱锶矿;Amp—角闪石;Ttm—榍石;Ap—磷灰石;Mt—磁铁矿;Bat—铌钛铀矿;Ga—方铅矿a—e—碳酸岩手标本特征,依次为霓辉石正长岩、霓辉石碳酸岩、钾长石碳酸岩、石英碳酸岩、含沸石碳酸岩;f—j—碳酸岩显微特征,依次为霓辉石正长岩、霓辉石碳酸岩、钾长石碳酸岩、石英碳酸岩、含沸石碳酸岩
Figure 5. Characteristics of hand specimens and microscopic characteristics of carbonatites in Xiaoqinling area (plain-polarized)
(a–e) Characteristics of hand specimens of carbonatites, in order, syenite, aegirine carbonatite, potassium feldspar carbonatite, quartz carbonatite, zeolite-bearing carbonatite; (f–j) Microscopic characteristics of carbonatites, in order, syenite, aegirine carbonatite, potassium feldspar carbonatite, quartz carbonatite, zeolite-bearing carbonatite Agt–aegirine; Kfs–potassium feldspar; Cal–calcite; Brt–baryte; Qz–quartz; Zeo–zeolite; Str–strontianite; Amp–amphibole; Ttm–titanite; Ap–apatite; Mt–magnetite; Bat–betafite; Ga–galena
图 6 小秦岭地区不同类型碳酸岩常量元素特征图解
a—碳酸岩CaO与SiO2含量关系图;b—碳酸岩CaO与(Na2O+K2O)含量关系图;c—碳酸岩Al2O3与(Na2O+K2O)含量关系图;d—碳酸岩(TFe2O3+MnO)与TiO2含量关系图;e—碳酸岩烧失量与CaO含量关系图;f—碳酸岩MnO与CaO含量关系图图a、b、d加入了小秦岭碳酸岩、白云鄂博H8碳酸岩、牦牛坪碳酸岩、庙垭碳酸岩、世界碳酸岩及世界碳酸盐岩的平均值
Figure 6. Characterization diagram of major elements of different types of carbonatites in the Xiaoqinling area
(a) Plot of CaO vs. SiO2 content of carbonatites; (b) Plot of CaO vs. (Na2O+K2O) content of carbonatites; (c) Plot of Al2O3 vs. (Na2O+K2O) content of carbonatites; (d) Plot of (TFe2O3+MnO) vs.TiO2 content of carbonatites; (e) Plot of LOI vs.CaO content of carbonatites; (f) Plot of MnO vs.CaO content of carbonatites In Fig. a, b and d, the average investment points of Xiaoqinling carbonatite, Bayan Ebo H8 carbonatite, Maoniuping carbonatite, Miaoya carbonatite, world carbonatite and world sedimentary carbonate rock are added.
图 7 小秦岭碳酸岩MgO–CaO–TFe2O3+MnO岩相分类图解(底图引自Woolley and Kempe, 1989)
Figure 7. Classification of Xiaoqinling carbonatite phases using the MgO–CaO–TFe2O3 +MnO diagram of Woolley and Kempe (1989)
图 8 小秦岭地区不同类型碳酸岩稀土元素与常量元素相关性图解
a—碳酸岩稀土元素总量与MgO含量关系图;b—碳酸岩重稀土元素与MnO含量关系图;c—碳酸岩重稀土元素与CaO含量关系图;d—碳酸岩重稀土元素与SiO2含量关系图;e—碳酸岩 (La/Yb)N与MgO含量关系图;f—碳酸岩(Gd/Yb)N与MnO含量关系图;g—碳酸岩δCe与CaO含量关系图;h—碳酸岩δCe与δEu关系图
Figure 8. Correlation diagram of rare earth elements and major elements for different types of carbonatites in the Xiaoqinling area
(a) Plot of REE vs. MgO content of carbonatites; (b) Plot of HREE vs.MnO content of carbonatites; (c) Plot of HREE vs.CaO content of carbonatites; (d) Plot of HREE vs.SiO2 content of carbonatites; (e) Plot of (La/Yb)N vs. MgO content of carbonatites; (f) Plot of (Gd/Yb)N vs. MnO content of carbonatites; (g) Plot of δCe vs. CaO content of carbonatites; h—Plot of δCe vs. δEu of carbonatites
图 9 小秦岭碳酸岩稀土元素配分模式(球粒陨石数据引自Sun and McDonough, 1989)
a—I—III阶段碳酸岩稀土元素配分模式;b—IV、V阶段碳酸岩稀土元素配分模式
Figure 9. Chondrite-normalized REE pattern of carbonatite in Xiaoqinling (Chondrite data is cited from Sun and McDonough, 1989 )
(a) Chondrite-normalized REE pattern of carbonaites in stage I–III; (b) Chondrite-normalized REE pattern of carbonaites in stage IV and V
图 11 小秦岭碳酸岩Sr+Ba–REE分类图(底图引自Samoilov,1991修编)
Figure 11. The Sr+Ba–REE classification diagram for Xiaoqinling carbonatites (modified from Samoilov, 1991)
图 12 小秦岭地区不同类型碳酸岩含矿性差异图解
a—碳酸岩U、Pb含量关系图;b—碳酸岩U、Nb含量关系图;c—碳酸岩U、REE含量关系图;d—碳酸岩Ba、Sr含量关系图;e—碳酸岩U含量与钾钠差关系图;f—碳酸岩(La/Yb)N与钾钠差关系图
Figure 12. Mineral-bearing difference diagram of different types of carbonatites in Xiaoqinling
(a) Plot of U vs. Pb content of carbonatites; (b) Plot of U vs. Nb content of carbonatites; (c) Plot of U vs. REE content of carbonatites; (d) Plot of Ba vs. Sr content of carbonatites; (e) Plot of (K2O–Na2O) vs. U content of carbonatites; (f) Plot of (K2O–Na2O) vs.(La/Yb)N of carbonatites
表 1 小秦岭地区不同阶段碳酸岩岩矿特征表
Table 1. Petromineral characteristics of carbonatite in different stages in the Xiaoqinling area
碳酸岩阶段 脉岩类型 分布范围 岩矿特征 赋矿特征 霓辉石正长岩(第(I)阶段) 霓辉石正长岩脉、霓辉石正长斑岩脉 华阳川、驾鹿 霓辉石正长岩多呈伟晶状,主要由晶体粗大的霓辉石和钾长石(微斜长石)构成(图5f),局部地段可见霓辉石、微斜长石集中分布于脉体边部或中心,形成不规则的霓辉石条带和微斜长石条带,此外还含有少量的石英、方解石、重晶石及钠铁闪石。霓辉石正长斑岩,斑晶为钾钠长石和霓辉石;基质主要为钾钠长石和霓辉石,此外还含有少量的石英、金云母、碱性闪石和黑云母等 铀、铌、轻稀土 霓辉石碳酸岩(第(II)阶段) 含霓辉石钠闪石的重晶石石英方解石脉(II-1)、含黑云母及少量霓辉石的重晶石石英方解石脉(II-2) 华阳川、铁岔沟 前者主要矿物成为方解石、霓辉石、石英,其次为微斜长石、重晶石(天青石)、铁白云石以及少量的钠闪石。部分具有明显的分带特征,方解石主要位于脉壁,霓辉石、重晶石、微斜长石、石英多呈不规则团块状位于中心部分(图3d),亦有发现霓辉石等暗色位于脉壁,而方解石等浅色矿物位于中心部分的现象(图3g);无明显分带特征者脉内霓辉石呈自形程度较好的大团块状分布(图5b)。后者主要矿物为石英、方解石、重晶石及少量的霓辉石、黑云母;该脉较前者相比以含量较多的自形程度较好的黑云母为特征,且霓辉石等暗色矿物总体含量明显减少,浅色矿物石英、方解石的含量明显增加。脉体无分带特征,矿物多呈不规则团块状杂乱分布(图5g) 铀、铌、铅、轻稀土 钾长石碳酸岩(第(III)阶段) 含重晶石(钡天青石)钾长石石英锰方解石脉、含重晶石方解石的长石石英脉 文公岭、上河、大石沟、宋家沟、驾鹿、西沟、塬头,华阳川少量 主要成分为钾长石、锰方解石、石英、重晶石(天青石),不含霓辉石等暗色矿物,具有伟晶状结构(图3h,图5c、5h)。西沟地区和桃园地区的该类碳酸岩脉中方解石一般含量少于石英和钾长石,局部地段还形成几乎不含方解石的长石石英脉 铀、铌、铅、钼、稀土 石英碳酸岩阶段(第(IV)阶段) 含重晶石(天青石)石英方解石脉、方解石石英脉 华阳川、西沟、文公岭、上河、大石沟、宋家沟、驾鹿 主要矿物为方解石和石英,其次为重晶石或钡天青石,部分含少量的微斜长石,极少含有暗色矿物(图5d、5i)。部分脉体可见矿物分带现象,多形成石英的内带和方解石、重晶石的外带(图3c)。不同地段主要矿物石英和方解石的含量差别比较大,局部地段发育仅有少量方解石的石英脉,亦发现仅有少量石英的方解石脉 钼、铅、重
稀土含沸石碳酸岩(第(V)阶段) 含沸石重晶石方解石石英脉 华阳川、铁岔沟、西沟、大石沟 主要矿物为石英、方解石和沸石,其次为重晶石(天青石),脉体内沸石和天青石多在晶洞处发育自形程度较好的晶体,同时该类型脉体内还多发育针状的菱锶矿和片状方解石,未见有暗色矿物霓辉石、黑云母及长石等(图5e、5j) 铅 表 2 小秦岭地区碳酸岩常量元素及成矿元素组成
Table 2. The major element composition and metallogenic elements of carbonatites in Xiaoqinling
序号 取样位置 样品编号 碳酸岩阶段 样品性质 主量元素/×10−2 成矿元素/×10−6 数据来源 SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O P2O5 LOI SUM Sr Nb Ba Pb U 1 华阳川 HY-14 II-1 含霓辉石方解石石英脉 20.47 0.18 0.48 9.36 0.89 1.72 34.95 1.96 0.20 0.15 25.18 95.54 7208.24 1405.67 2339.22 1549.37 1506.98 文中 2 HY-15 IV 方解石石英脉 50.60 0.01 0.03 0.76 0.44 0.14 25.72 0.03 0.03 0.02 20.50 98.28 5530.99 4.48 1401.22 68.96 4.68 3 HY-16 IV 含重晶石方解石石英脉 0.42 0.02 0.05 1.05 1.44 0.57 50.55 0.03 0.03 0.04 42.06 96.26 8612.08 8.92 1421.39 928.99 13.76 4 HY-17 II-2 含黑云母霓辉石方解石石英脉 11.17 0.39 2.26 6.24 1.08 4.13 37.79 0.07 1.56 0.22 29.40 94.31 6110.52 436.36 766.49 1205.44 421.85 5 HY-18 III 含钾长石石英锰方解石脉 11.65 0.07 2.54 1.38 1.15 0.58 39.60 0.11 2.00 0.12 33.21 92.41 11504.62 640.57 7679.19 5471.90 671.15 6 HY-19 II-1 含重晶石霓辉石方解石石英脉 32.95 0.20 3.49 9.99 0.24 1.74 10.61 0.38 2.23 0.43 5.94 68.20 40679.00 397.17 12203.75 26448.17 666.07 7 H1 II 碳酸岩 17.52 0.6 3.97 8.49 1.01 4.73 33.67 0.09 3.29 0.42 26.23 100.02 6966 780 2155 343 1110 惠小朝,2014 8 H37 III 碳酸岩 36.06 0.14 8.25 3.7 0.59 1.32 21.4 0.46 5.98 0.5 17.61 96.01 7406 893 0 585 1392 9 H38 I 碳酸岩(霓辉石正长岩) 63.45 0.49 13.71 4.74 0.09 1.02 2.86 2.97 7.26 0.36 2.51 99.46 1071 645 7398 664 860 10 HYC-01 II 含霓辉石碳酸岩 14.86 0.16 3.46 3.1 0.75 0.46 32.02 0.51 2.06 0.15 26.76 84.29 21337 1629 24034 7389 1715 黄卉,2020 11 HYC-28 II 含霓辉石碳酸岩 61.31 0.92 3.44 12.65 0.33 5.81 6.94 0.39 0.98 0.16 2.02 94.95 1104 5779 299 78.90 6719 12 17KD-2 IV 重晶石碳酸岩 47.59 0.03 0.3 1.48 0.5 0.42 22.7 0.11 0.11 0.01 18.11 91.36 14501 22.80 18415 1351 22.70 13 17KD-3 V 含沸石碳酸岩脉 79.82 0.02 1.52 1.05 0.13 0.21 6.14 0.1 1.11 0.02 5.32 95.44 7886 17 10876 2606 26.30 14 驾鹿 JL-06 III 钾长石石英方解石脉 61.80 0.14 9.15 1.51 0.72 0.22 9.09 0.10 7.02 0.10 8.21 98.05 746.25 14.42 3187.87 57.39 6.53 文中 15 JL-07 IV 锰方解石脉 0.19 0.00 0.18 0.66 4.49 1.16 48.32 0.05 0.02 0.00 41.70 96.77 4995.34 0.07 524.06 67.38 0.62 16 XI01-1 IV 锰方解石脉 42.81 0.04 1.62 1.31 2.41 3.14 23.83 0.11 1.01 0.04 21.78 98.10 贾鸿涛,
197217 大石沟 DSG 004 IV 蚀变方解石碳酸岩脉 5.42 0.05 0.15 1.12 2.16 0.63 46.16 0.03 0.13 0.09 36.33 92.28 >10000 44 14230 19 59 Delia Cangelosi,
201918 DSG 436 IV 蚀变方解石碳酸岩脉 6.61 < 0.01 0.05 0.76 2.23 0.49 48.34 0.04 0.04 < 0.01 38.43 97 6094 11 391 7210 9 19 DSG 006 IV 蚀变方解石碳酸岩脉 13.41 0.01 0.2 1.96 2.51 0.41 44.73 0.03 0.14 < 0.01 34.11 97.51 4472 17 1551 46 1 小秦岭碳酸岩平均 碳酸岩 30.43 0.18 2.89 3.75 1.22 1.52 28.71 0.40 1.85 0.15 9234.67 708.08 6168.41 由上述平均 白云鄂博碳酸岩H8 碳酸岩 0.80 0.05 0.11 9.31 1.52 14.48 25.16 0.25 0.02 1.38 1550.00 257.50 1005.00 王希斌,2002 牦牛坪碳酸岩 碳酸岩 2.920 0.001 0.126 0.463 0.685 0.151 55.013 0.064 0.035 0.001 12390.00 0.097 980.38 许成等,2002 庙垭碳酸岩 碳酸岩 4.420 0.170 1.660 5.27 1.060 3.330 41.990 0.220 0.570 1.640 5330.00 821.74 718.00 李石,1980 世界碳酸岩平均 碳酸岩 9.58 0.65 2.9 8.7 0.72 6.69 34.06 1.02 1.47 1.86 6853.00 782.00 3581.00 Hyndman,
1972世界沉积碳酸盐岩平均 碳酸盐岩 5.14 0.07 0.4 0.49 0.14 7.79 42.3 0.03 0.16 0.05 592.00 0.20 8.95 表 3 小秦岭碳酸岩稀土元素组成(×10−6)
Table 3. The REE composition of carbonatites in Xiaoqinling(×10−6)
序号 样品
编号取样
位置碳酸岩
阶段样品性质 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y LREE HREE LREE/
HREE∑REE (La/
Sm)N(Gd/
Yb)N(La/
Yb)NδEu δCe 数据来源 1 HY-14 华阳川 II-1 含霓辉石方
解石石英脉239.06 567.68 71.74 284.50 55.75 14.47 43.42 5.57 30.58 5.92 17.93 2.70 20.02 3.01 183.42 1233.20 312.57 3.95 1545.77 2.77 1.79 8.57 0.90 1.06 文中 2 HY-15 IV 方解石石英脉 157.93 381.67 48.13 197.70 40.25 10.40 33.31 4.20 23.31 4.49 13.11 1.89 13.27 1.82 139.85 836.08 235.25 3.55 1071.33 2.53 2.08 8.54 0.87 1.07 3 HY-16 IV 含重晶石方
解石石英脉339.05 731.84 86.64 335.17 72.57 19.22 69.79 9.94 58.75 11.74 34.42 5.57 39.29 5.86 377.07 1584.49 612.43 2.59 2196.93 3.02 1.47 6.19 0.83 1.05 4 HY-17 II-2 含黑云母霓辉石
方解石石英脉1373.24 2282.21 205.53 637.35 88.76 21.27 73.62 9.78 56.78 11.19 33.63 5.24 36.01 5.32 357.85 4608.36 589.42 7.82 5197.78 9.99 1.69 27.36 0.80 1.05 5 HY-18 III 含钾长石方
解石石英脉840.94 1398.78 131.57 407.09 58.33 13.89 46.53 6.00 35.98 7.66 24.06 4.03 29.86 4.58 249.50 2851.60 408.20 6.98 3258.80 9.31 1.29 20.20 0.82 1.03 6 HY-19 II-1 含重晶石霓辉石
方解石石英脉283.44 312.15 31.24 118.51 24.58 9.32 19.59 2.45 13.90 2.52 7.08 1.12 9.46 1.91 71.54 779.24 129.57 6.01 908.80 7.44 1.71 21.49 1.30 0.81 7 H1 II 碳酸岩 2796.00 4655.00 349.00 1103.00 118.00 25.80 98.60 10.80 52.00 10.10 28.40 4.98 34.40 4.93 268.00 9046.80 512.21 17.66 9559.01 15.30 2.37 58.30 0.73 1.16 惠小朝,
20148 H37 III 碳酸岩 2784.00 4140.00 335.00 1045.00 105.00 22.40 73.80 7.11 29.70 5.52 17.30 2.59 18.40 2.71 147.00 8431.40 304.13 27.72 8735.53 17.12 3.32 108.53 0.78 1.05 9 H38 I 碳酸岩(霓辉
石正长岩)551.00 918.00 104.00 324.00 37.40 9.09 24.00 2.34 9.79 1.67 4.61 0.62 3.93 0.49 40.00 1943.49 87.45 22.22 2030.94 9.51 5.05 100.57 0.93 0.94 10 HYC-01 II 含霓辉石
碳酸岩335.00 623.00 74.40 300.00 55.60 15.10 36.90 4.32 22.60 4.27 12.80 1.96 14.00 2.08 134.00 1403.10 232.93 6.02 1636.03 3.89 2.18 17.16 1.02 0.97 黄卉等,
202011 HYC-28 II 含霓辉石
碳酸岩1574.00 2630.00 251.00 770.00 100.00 18.00 57.10 7.03 34.60 5.36 14.40 1.78 11.20 1.73 118.00 5343.00 251.20 21.27 5594.20 10.16 4.22 100.81 0.73 1.03 12 17KD-2 IV 重晶石
碳酸岩200.00 350.00 42.80 166.00 29.50 9.21 24.40 3.13 17.60 3.64 10.90 1.75 12.40 1.84 119.00 797.51 194.66 4.10 992.17 4.38 1.63 11.57 1.05 0.93 13 17KD-3 V 含沸石碳
酸岩脉65.00 88.40 10.00 37.70 6.34 2.51 5.37 0.61 3.42 0.67 2.07 0.32 2.43 0.41 23.90 209.95 39.20 5.36 249.15 6.62 1.83 19.19 1.32 0.85 14 HYC-1 II 含霓辉石石
英方解石脉580.00 1159.00 104.00 337.00 44.30 10.50 37.20 4.91 25.70 5.00 15.60 2.67 18.00 2.76 166.00 2234.80 277.84 8.04 2512.64 8.45 1.71 23.11 0.79 1.16 康清清等,
202015 HYC-2 II 含霓辉石石
英方解石脉1228.00 2325.00 199.00 613.00 68.70 14.40 55.60 5.85 27.10 5.13 16.40 2.69 18.40 2.86 162.00 4448.10 296.03 15.03 4744.13 11.54 2.50 47.87 0.71 1.15 16 JL-1 驾鹿 IV 石英方
解石脉238.91 493.67 52.42 174.60 58.81 24.10 58.69 13.16 64.19 13.26 44.98 9.38 52.34 7.76 431.64 1042.51 695.42 1.50 1737.93 2.62 0.93 3.27 1.25 1.08 康清清等,
202017 JL-2 IV 石英方
解石脉276.94 536.71 62.60 221.90 69.07 24.27 69.15 13.92 71.07 15.85 48.50 8.57 51.40 7.97 461.34 1191.50 747.76 1.59 1939.26 2.59 1.11 3.86 1.07 1.00 18 JL-3 IV 石英方
解石脉185.81 345.37 39.14 165.63 52.83 18.23 63.47 10.87 75.74 14.39 45.18 8.26 54.65 7.12 546.86 807.00 826.55 0.98 1633.55 2.27 0.96 2.44 0.96 0.99 19 JL-06 III 钾长石石英
方解石脉579.33 1062.66 104.36 342.57 54.60 11.27 31.97 3.66 22.67 4.24 12.02 1.98 13.98 1.65 157.88 2154.80 250.05 8.62 2404.85 6.85 1.89 29.72 0.83 1.06 文中 20 JL-07 IV 锰方解石脉 74.94 239.17 37.43 194.88 82.87 25.64 102.70 18.32 124.04 24.80 72.27 12.91 84.89 10.31 930.90 654.90 1381.14 0.47 2036.08 0.58 1.00 0.63 0.85 1.11 21 DSG 004 黄龙铺
大石沟IV 蚀变方解石
碳酸岩脉531.00 867.00 80.00 271.00 48.00 15.00 50.00 8.00 51.00 11.00 37.00 6.00 43.00 7.00 437.00 1812.0 650.00 2.79 2462.00 7.14 0.96 8.86 0.94 1.03 Cangelosi
et al,,
202022 DSG 436 IV 蚀变方解石
碳酸岩脉148.00 385.00 51.00 223.00 61.00 18.00 66.00 11.00 67.00 14.00 47.00 8.00 57.00 9.00 472.00 886.0 751.00 1.18 1637.00 1.57 0.96 1.86 0.87 1.09 23 DSG 006 IV 蚀变方解石
碳酸岩脉179.00 422.00 52.00 218.00 46.00 14.00 44.00 7.00 40.00 9.00 29.00 5.00 38.00 6.00 348.00 931.00 526.00 1.77 1457.00 2.51 0.96 3.38 0.95 1.07 24 HD80-11 IV 石英方
解石脉195.00 500.00 70.20 275.00 58.70 16.60 52.30 7.40 41.90 11.00 33.20 4.50 43.90 4.90 295.00 1115.50 494.10 2.26 1609.60 2.14 0.99 3.19 0.92 1.05 黄典豪等,
198525 HD81-21 IV 石英方
解石脉450.00 1150.00 137.50 575.00 118.80 30.00 93.00 11.30 78.40 13.40 38.40 6.10 43.90 5.10 375.00 2461.30 664.60 3.70 3125.90 2.45 1.75 7.35 0.87 1.13 26 HD81-95 IV 石英方
解石脉456.00 1184.00 162.80 677.90 147.70 36.38 106.70 13.90 76.20 18.70 39.70 6.70 42.90 5.90 418.80 266478 729.50 3.65 3394.28 1.99 2.06 7.62 0.89 1.07 27 HD81-48 IV 石英方
解石脉219.90 578.70 79.00 333.40 81.10 22.10 76.60 11.50 68.90 19.60 47.50 8.60 58.40 8.70 486.10 1314.20 785.90 1.67 2100.10 1.75 1.09 2.70 0.86 1.08 28 HD81-25 IV 石英方
解石脉408.60 909.00 112.60 438.90 93.20 23.30 72.10 9.60 58.30 15.30 35.30 6.20 41.40 5.80 361.70 1985.60 605.70 3.28 2591.30 2.83 1.44 7.08 0.87 1.04 29 HLP-1 黄龙铺
石家湾IV 石英方
解石脉220.00 516.00 47.90 200.00 41.70 11.30 38.00 5.72 34.30 8.28 28.60 4.86 35.30 5.55 365.00 1036.90 525.60 1.97 1562.51 3.41 0.89 4.47 0.87 1.23 许成等,
200930 HLP-2 IV 石英方
解石脉147.00 466.00 46.00 199.00 42.90 11.30 38.90 5.59 33.50 7.92 26.30 4.48 32.30 5.02 339.00 912.20 493.00 1.85 1405.21 2.21 1.00 3.26 1.22 1.39 31 HLP-3 IV 石英方
解石脉130.00 445.00 46.10 210.00 58.20 17.90 61.20 11.30 77.40 19.20 67.30 11.80 86.00 13.30 841.00 907.20 1188.50 0.76 2095.70 1.44 0.59 1.08 0.92 1.41 32 HLP-4 IV 石英方
解石脉279.00 764.00 76.90 336.00 71.90 18.60 60.70 8.80 49.60 10.90 34.20 5.23 34.70 4.82 426.00 1546.40 635.00 2.44 2181.35 2.51 1.45 5.77 0.86 1.28 33 HLP-5 IV 石英方
解石脉140.00 516.00 53.20 240.00 60.10 17.20 56.80 9.48 59.70 13.60 44.90 7.52 53.00 8.11 589.00 1026.50 842.10 1.22 1868.61 1.50 0.89 1.89 0.90 1.47 34 HLP-6 IV 石英方
解石脉186.00 527.00 52.40 230.00 50.90 13.50 45.50 6.84 41.60 9.73 32.90 5.47 37.90 5.61 421.00 1059.80 606.60 1.75 1666.35 2.36 0.99 3.52 0.86 1.31 白云鄂博H8碳酸岩 18400.00 28300.00 2000.00 6200.00 436.50 88.50 644.50 38.50 168.00 7.00 37.00 0.75 7.00 1.50 130.00 55425.00 1034.25 53.32 56459.25 27.21 76.17 1885.47 0.51 0.94 王希斌,
2002牦牛坪碳酸岩 627.38 1329.75 133.34 525.75 78.73 17.26 54.70 6.27 29.35 4.96 15.03 1.90 12.28 1.51 145.50 2712.20 271.49 9.96 2983.69 5.14 3.69 36.66 0.76 1.07 许成等,
2002黄水庵碳酸岩 151.17 346.17 36.55 133.58 27.20 7.45 21.63 3.04 18.77 4.40 15.52 2.33 17.65 2.53 181.67 702.12 267.54 2.59 969.65 3.59 1.01 6.14 0.91 1.11 曹晶,
2018表 4 小秦岭地区碳酸岩测年数据统计表
Table 4. Statistical table of carbonatite dating data in the Xiaoqinling area
矿床名称 岩矿石名称 年龄/Ma 测定方法 测试矿物 数据来源 华阳川铀铌铅矿 碳酸岩 204~206 K–Ar 钾长石 邱家骧等,1993 华阳川铀铌铅矿 碳酸岩 181 K–Ar 金云母 喻学惠,1992 华阳川铀铌铅矿 碳酸岩 222.5±6.7 U–Pb 独居石 王佳营等,2020 华阳川铀铌铅矿 碳酸岩 200±2.9 U–Pb 榍石 Zheng,et al.,2020 华阳川铀铌铅矿 碳酸岩 218.7±1.7 U–Pb 独居石 黄卉等,2020 华阳川铀铌铅矿 碳酸岩 229±3 U–Pb 锆石 Xue,et al.2020 华阳川铀铌铅矿 碳酸岩 200.6±3.3 U–Th–Pb 晶质铀矿 高龙刚等,2019 华阳川铀铌铅矿 碳酸岩 230 U–Pb 锆石 陈华勇等,2018 塬头钨钼矿 碳酸岩 225.0±7.6 Re–Os 辉钼矿 Song et al.,2015 黄龙铺大石沟钼矿 碳酸岩 221 Re–Os 辉钼矿 黄典豪等,1994 黄龙铺大石沟钼矿 碳酸岩 221.5 Re–Os 辉钼矿 Stein et al,1997 黄龙铺大石沟钼矿 碳酸岩 221±8.4 Re–Os 辉钼矿 王佳营等,2020 黄龙铺大石沟钼矿 碳酸岩 223±1 U–Pb 晶质铀矿 黄广文等,2022 黄龙铺秦岭沟钼矿 碳酸岩 207±11 U–Pb 独居石 王佳营等,2020 西沟铅钼矿 碳酸岩 212.4±2.8 Re-Os 辉钼矿 袁海潮等,2014 西沟铅钼矿 碳酸岩 224.6±9.1 Re-Os 辉钼矿 杜芷葳等,2020 表 5 碳酸岩围岩主量元素变化
Table 5. Variation of major elements in the surrounding rocks of carbonatites
层位 样品编号 岩性 SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI SUM Na2O+K2O 数据来源 华阳川矿区武家
坪片麻岩围岩WJP-1 黑云斜长片麻岩 43.48 2.22 14.22 13.96 0.22 5.38 6.08 4.36 4.28 0.39 4.10 98.68 8.63 文中 WJP-2 黑云斜长片麻岩 44.41 2.29 14.56 13.95 0.19 5.43 5.32 4.40 4.32 0.40 3.47 98.74 8.72 区域武家坪黑云斜长片麻岩均值 62.49 0.58 14.57 5.78 0.11 3.43 5.48 4.15 1.97 0.16 6.12 王北颖等,1996 大石沟矿区熊耳
群上岩性段围岩(1) 变安山岩 51.21 1.4 15.9 12.05 0.21 5.49 2.17 5.15 0.88 0.42 94.88 6.03 王绪现,1986 (2) 绿泥石−碳酸盐−
绢云母化安山岩54.82 1.29 14.47 10.78 0.16 3.8 4.4 4 2.75 3.33 99.8 6.75 (3) 黑云母−钾石化安山岩 51.42 1.82 12.78 9.31 0.15 3.04 3.58 0.35 10.11 0.38 92.94 10.46 DSG437f 霓长岩化蚀变岩(近脉) 46.96 1.50 12.43 10.19 0.25 2.96 8.24 0.17 10.65 0.57 5.17 99.09 10.82 Cangelosi et al., 2020 区域熊耳群上岩性段变质火山熔岩均值 50.3 1.77 13.58 13.12 0.19 6.7 5 1.32 2.87 0.48 4.19 王北颖等,1996 注:单位为10−2 -
[1] ANENBURG M, et al., 2020, Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica.[J]. Science advances, 2020, 6 (41): eabb6570. [2] CANGELOSI D, SMITH M, BANKS D, et al. , 2020. The role of sulfate-rich fluids in heavy rare earth enrichment at the Dashigou carbonatite deposit, Huanglongpu, China[J]. Mineralogical Magazine, 84(1): 65-80. doi: 10.1180/mgm.2019.78 [3] CAO J, 2018. Mineralization of the Huangshui'an carbonatite Mo deposit in East Qinling[D]. Beijing: China University of Geosciences (Beijing ) (in Chinese with English abstract) [4] CHAO H X, SU S R, YANG X K, et al. , 2016. Research on the geological characteristics of the Miaoya REE deposit, Hubei province[J]. . Earth Science Frontiers, 23(4): 102-108. (in Chinese with English abstract) [5] CHEN H Y, SUN W D, XU D R, et al. , 2018. Metallogenic regularity and prospecting prediction of Huayangchuan U-Nb-Pb polymetallic deposit in Huayin City, Shaanxi Province[R]. Xi’an: Sino-Shaanxi Nuclear Industry Group and Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (in Chinese) [6] DAI J Z, QIAN Z Z, GAO J S, et al. , 2018. Geological and Geochmical characteristics of the Xigou Mo deposit in Huaxian county, Shaanxi Province: constraint for its metallogenesis[J]. Bulletin of mineralogy, petrogy and geochemistry, 37 (04): 705-713. (in Chinese with English abstract) [7] DU L T,1983.Geochemistry of alkali metasomatism[J].Mineral Deposits,(02): 33-41.(in Chinese with English abstract) [8] DU L T, 1986. Geochemical principle of alkali metasomatism[J]. Scientia Sinica(Series B), (01): 81-90. (in Chinese with English abstract) [9] DU Z W , YE H S , MAO J W, et al. , 2020. Molybdenite Re-Os gochronology and isotope geochemical characteristics of Xigou molybdenum deposit in Shaanxi Province and its geological significance[J]. Mineral Deposits, 39 (04): 728-744. (in Chinese with English abstract) [10] ELLIOTT H A L, WALL F, CHAKHMOURADIAN A R, et al. , 2018. Fenites associated with carbonatite complexes: a review[J]. Ore Geology Reviews, 93: 38-59. doi: 10.1016/j.oregeorev.2017.12.003 [11] FAN H R, XIE Y H, WANG K Y, et al. , 2001. Carbonatitic fluids and REE mineralization[J]. Earth Science Frontiers, 8(4): 289-295. (in Chinese with English abstract) [12] GAO L G, CHEN Y W, BI X W, et al. , 2019. Chronology and mineral chemistry of the uranium minerals in Huayangchuan uranium-niobium deposit, Shaanxi Province and its implications for uranium mineralization[J]. Acta Geologica Sinica, 93(9): 2273-2291. (in Chinese with English abstract) [13] General Administration of Quality Supervision, Inspection and Quarantine of China, Standardization Administration of China.Methods for chemical analysis of silicate rocks—Part 30: Determination of 44 element: GB/T14506.30-2010[S]. Beijing: 2010a. (in Chinese) [14] General Administration of Quality Supervision, Inspection and Quarantine of China, Standardization Administration of China.Methods for chemical analysis of silicate rocks—Part 30: Determination of 44 element: GB/T14506.30-2010[S]. Beijing: 2010a. (in Chinese) [15] HOU Z Q, TIAN S H, XIE Y L, et al. , 2008. Mianning-Dechang Himalayan REE belt associated with carbonatite-alkalic complex in eastern Indo-Asian collision zone, southwest China: Geological characteristics of REE deposits and a possible metallogenic model[J]. Mineral Deposits, 27(02): 145-176. (in Chinese with English abstract) [16] HUANG D H, HOU Z Q, YANG Z M, et al. , 2009. Geological and geochemical characteristics‚ metallogenetic mechanism and tectonic setting of carbonatite vein-type Mo (Pb) deposits in the east Qinling molybdenum ore belt[J]. Acta Geologica Sinica, 83(12): 1968-1984. (in Chinese with English abstract) [17] HUANG D H, NIE F J, WANG Y C, et al. , 1984a. Lead isotope compositions of molybdenum deposits in East Qinling as applied to the problem of ore sources[J]. Mineral Deposits, 3(4): 20-28. (in Chinese with English abstract) [18] HUANG D H, WANG Y C, NIE F J, et al. , 1984b. Isotopic composition of sulfur, carbon and oxygen and source material of the Huanglongpu carbonatite vein-type of molybdenum (lead) deposits[J]. Acta Geologica Sinica, 58(3): 252-264. (in Chinese with English abstract) [19] HUANG D H, WANG Y C, NIE F J, et al. , 1985. A new type of molybdenum deposit: geological characteristics and metal-logenic mechanism of the Huanglongpu carbonatite vein-type of Molybdenum (lead) deposit, Shaanxi[J]. Acta Geologica Sinica, 59(3): 241-257. (in Chinese with English abstract) [20] HUANG D H, WU C Y, DU A D, et al. , 1994. Re-Os isotope ages of molybdenum deposits in East Qinling and their significance[J]. Mineral Deposits, 13(3): 221-230. (in Chinese with English abstract) [21] HUANG G W, 2022. Study of the carbonatite type U-REE mineralization in the Huayangchuan-Dashigou ore-concentrated area, East Qinling orogen, China[D]. Nanchang: East China University of Technology. (in Chinese with English abstract) [22] HUANG H, PAN J Y, HONG B Y, et al. , 2020. EPMA chemical U-Th-Pb dating of uraninite in Huayangchuan U-polymetallic deposit of Shaanxi Province and its geological significance[J]. Mineral Deposits, 39(2): 351-368. (in Chinese with English abstract) [23] HUI X Z, 2014. Geochemical study of uranium polymetallic mineralization in Huayangchuan, Shaanxi Province[D]. Beijing: Beijing Research Institute of Uranium Geology. (in Chinese) [24] HYNDMAN D W, 1972. Petrology of igneous and metamorphic rocks[M] New York and London:McGraw-Hill. [25] JIA H T, 1972. Survey and evaluation report of Jialu rare earth element mining area in Luonan [R]. Shangluo: The 13th Geological Team of Shaanxi Provincial Geological Bureau. (in Chinese with English abstract) [26] JIANG H J, GAO C, KANG Q Q, et al. , 2020. Mineralization paragenesis of Huayangchuan U-Nb-Pb deposit in the lesser Qinling[J]. Geotectonica et Metallogenia, 44(3): 404-421. (in Chinese with English abstract) [27] KANG Q Q, JIANG H J, LI P, et al. , 2018. Ore mineralogical characteristics of the Huayangchuan U-Nb-Pb deposit[J]. Journal of East China Institute of Technology (Natural Science Edition), 41(2): 111-123. (in Chinese with English abstract) [28] KANG Q Q, ZHANG X M, MENG H, 2020. Analysis on the characteristics and prospecting of rare earth ore in the western section of Xiaoqinling[J]. Northwestern Geology, 53(1): 107-121. (in Chinese with English abstract) [29] KANG Q Q, LI P, ZHANG X M, et al. , 2021. Detailed geological report of 3-40 exploration line section(above 856m elevation) of Huayangchuan U-Nb-Pb deposit, Huayin City, Shaanxi Province[R]. Xi’an: Team 224 of Sino Shaanxi Nuclear Industry Group. (in Chinese) [30] LE BAS M J, 2008. Fenites associated with carbonatites[J]. The Canadian Mineralogist, 46(4): 915-932. doi: 10.3749/canmin.46.4.915 [31] LI S,1980.Geochemical features and petrogenesis of Miaoya carbonatites,Hupeh[J]. Geochimica, (04): 345-355. (in Chinese with English abstract) [32] LIU S, FAN H R, YANG K F, et al. , 2018. Fenitization in the giant Bayan Obo REE-Nb-Fe deposit: implication for REE mineralization[J]. Ore Geology Reviews, 94: 290-309. doi: 10.1016/j.oregeorev.2018.02.006 [33] LIU Y, SHU X C, 2021. An overview of fenitization in carbonatite-related rare earth element deposits[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(5): 1025-1033. (in Chinese with English abstract) [34] LYU Z C, CHEN H, MI K F, et al. , 2022. The theory and method of ore prospecting prediction for exploration area: case studies of the Lala copper deposit in Sichuan, Muhu–Maerkantu manganese ore deposit in Xinjiang and Aonaodaba tin-polymetallic deposit in Inner Mongolia[J]. Journal of Geomechanics, 28(5): 842-865. (in Chinese with English abstract) [35] MOROGAN V, 1989. Mass transfer and REE mobility during fenitization at Alnö, Sweden[J]. Contributions to Mineralogy and Petrology, 103(1): 25-34. doi: 10.1007/BF00371362 [36] QIU J X, LI C N, YU X H, et al. , 1993, Qinba alkaline rock[M]. Beijing: Geological Publishing House. (in Chinese with English abstract) [37] Samoilov V S, 1991. The main geochemical features of carbonatites[J]. Journal of Geochemical Exploration, 40(1-3): 251-262. doi: 10.1016/0375-6742(91)90041-R [38] SONG W L, XU C, QI L, et al. , 2015. Genesis of Si-rich carbonatites in Huanglongpu Mo deposit, Lesser Qinling orogen, China and significance for Mo mineralization[J]. Ore Geology Reviews, 64: 756-765. doi: 10.1016/j.oregeorev.2014.04.003 [39] STEIN H J, MARKEY R J, MORGAN J W, et al. , 1997. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt, Shaanxi Province, China[J]. Economic Geology, 92(7-8): 827-835. doi: 10.2113/gsecongeo.92.7-8.827 [40] SUN S S, MCDONOUGH W F, 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society of London Special Publications, 42, 313-345. [41] WAN J J, 2022. Metallogenesis of the Huayangchuan U-Nb-REE polymetallic deposit in Shaanxi Province, China[D]. Nanchang: East China University of Technology. (in Chinese with English abstract) [42] WANG B Y, CHEN L G, XUE Y Z, et al. , 1996.1: 50, 000 Regional Geological survey report of Huayang Chuan, Huashan and Taiyukou [R]. Xi 'an: Comprehensive Research Team of Geology and Mineral Bureau of Shaanxi Province. (in Chinese with English abstract) [43] WANG J Y, LI Z D, ZHANG Q, et al. , 2020. Metallogenic epoch of the carbonatite-type Mo-U polymetallic deposit in east Qinling: evidence from the monazite LA-ICP-MS U-Pb and molybdenite Re-Os isotopic dating[J]. Acta Geologica Sinica, 94(10): 2946-2964. (in Chinese with English abstract) [44] WANG L J, XU C, WU M, et al. , 2011. A study of fluid inclusion from huayangchuan carbonatite[J]. Acta Mineralogica Sinica, 31(3): 372-379. (in Chinese with English abstract) [45] WANG X B, HAO Z G, LI Z, et al. , 2002. A typical alkaline rock-carbonatite complex in Bayan Obo, Inner Mongolia[J]. Acta Geologica Sinica, 76(04): 501-524+581-582. (in Chinese with English abstract) [46] WANG X X, 1986. The wall rock alteration of the carbonate vein-type molybdenum-lead deposit in Dashigou in Luonan county, Shaanxi[J]. Geology of Shaanxi, 4(2): 72-83. (in Chinese with English abstract) [47] WOOLLEY A R, 1982. A discussion of carbonatite evolution and nomenclature, and the generation of sodic and potassic fenites[J]. Mineralogical Magazine, 46(338): 13-17. doi: 10.1180/minmag.1982.046.338.03 [48] WOOLLEY A R, CHURCH A A, 2005. Extrusive carbonatites: a brief review[J]. Lithos, 85(1-4): 1-14. doi: 10.1016/j.lithos.2005.03.018 [49] WOOLLEY A R, KEMPE D R C, 1989. Carbonatites: Nomenclature, average chemical compositions, and element distribution[A]. Bell K, ed. Carbonatites-Genesis and Evolution[M]. London: Unwin Hyman, 1-14. [50] XU C, HUANG Z H, LIU C Q, et al., 2002. Geochemistry of carbonatites in Maoniuping REE deposit, Sichuan province, China[J]. Science in China Series D: Earth Sciences,(08): 635-643. [51] XU C, SONG W L, QI L, et al. , 2009. Geochemical characteristics and tectonic setting of ore-bearing carbonatites in Hunglongpu Mo ore field[J]. Acta Petrologica Sinica, 25(2): 422-430. (in Chinese with English abstract) [52] XUE S, LING M X, LIU Y L, , et al. . 2020. The formation of the giant Huayangchuan U-Nb deposit associated with carbonatite in the Qingling Orogenic Belt[J]. Ore Geology Revies, 122, 1-16. [53] YANG X M, YANG X Y, M.J.LeBas, 1998.Geological and geochemical characteristics of carbonatites and their implication for tectonic settings[J]. Advance In Sciences, 1998, (05): 44-53. (in Chinese with English abstract) [54] YANG X M, YANG X Y, FAN H R, et al. , 2000. Petrological characteristics of fenites and their geological significance[J]. Geological Review, 46(5): 481-490. (in Chinese with English abstract) [55] YU X H, 1992. Geological, petrol-mineralogical characteristics and origin of the carbonatites from Huayangchuan, shaanxi province[J]. Earth Science—Journal of China University of Geosciences, 17(2): 151-158. (in Chinese with English abstract) [56] YUAN H C, WANG R T, JIAO J G, et al. , 2014. Re-Os isotopic ages of molybdenites from Xigou Mo deposit in Huanxian of East Qinling and their geological significance[J]. Journal of earth sciences and environment, 36 (01): 120-127. (in Chinese with English abstract) [57] ZHANG L M, ZHANG Z B, CUI W L, 2014. Discovery of two carbonatite intrusive complexes in Yanyuan Area of Western Sichuan and its geological significance[J]. Geotectonica et Metallogenia, 38 (01): 131-139. (in Chinese with English abstract) [58] ZHENG F B, WANG G G, NI P, 2021. Research progress on the fluid metallogenic mechanism of granitic pegmatite-type rare metal deposits[J]. Journal of Geomechanics, 27(4): 596-613. (in Chinese with English abstract) [59] ZHENG H , CHEN H Y , LI D F, et al. 2020, Timing of carbonatite-hosted U-polymetallic mineralization in the supergiant Huayangchuan deposit, Qinling Orogen: Constraints from titanite U–Pb and molybdenite Re–Os dating [J]. Geoscience Frontiers, 11 (5): 1581-1592. [60] 曹晶, 2018. 东秦岭黄水庵碳酸岩型钼矿床成矿作用研究[D]. 北京: 中国地质大学(北京). [61] 晁会霞, 苏生瑞, 杨兴科, 等, 2016. 湖北庙垭稀土矿床地质特征研究[J]. 地学前缘, 23(04): 102-108 [62] 陈华勇, 孙卫东, 许德如, 等, 2018. 陕西省华阴市华阳川铀铌铅多金属矿成矿规律与找矿预测[R]. 西安: 中陕核工业集团公司, 中科院广州地化所 [63] 代军治, 钱壮志, 高菊生, 等, 2018. 陕西华县西沟钼矿地质、地球化学特征及其对矿床成因的制约[J]. 矿物岩石地球化学通报, 37 (04): 705-713. [64] 杜乐天, 1983. 碱交代成矿作用的地球化学共性和归类[J].矿床地质,1983, (02): 33-41. [65] 杜乐天, 1986. 碱交代作用地球化学原理[J]. 中国科学(B辑), (01): 81-90. [66] 杜芷葳, 叶会寿, 毛景文, 等, 2020. 陕西西沟钼矿床辉钼矿Re-Os年代学和同位素地球化学特征及其地质意义 [J]. 矿床地质, 39 (04): 728-744. [67] 范宏瑞, 谢奕汉, 王凯怡, 等, 2001. 碳酸岩流体及其稀土成矿作用[J]. 地学前缘, 8(4): 289-295. doi: 10.3321/j.issn:1005-2321.2001.04.008 [68] 高龙刚, 陈佑纬, 毕献武, 等, 2019. 陕西华阳川铀铌矿床中铀矿物的年代学与矿物化学研究及其对铀成矿的启示[J]. 地质学报, 93(9): 2273-2291. doi: 10.3969/j.issn.0001-5717.2019.09.012 [69] 侯增谦, 田世洪, 谢玉玲, 等, 2008. 川西冕宁-德昌喜马拉雅期稀土元素成矿带: 矿床地质特征与区域成矿模型 [J]. 矿床地质, 27(02): 145-176. doi: 10.3969/j.issn.0258-7106.2008.02.002 [70] 黄典豪, 侯增谦, 杨志明, 等, 2009. 东秦岭钼矿带内碳酸岩脉型钼(铅)矿床地质-地球化学特征、成矿机制及成矿构造背景[J]. 地质学报, 83(12): 1968-1984. doi: 10.3321/j.issn:0001-5717.2009.12.012 [71] 黄典豪, 聂凤军, 王义昌, 等, 1984a. 东秦岭地区钼矿床铅同位素组成特征及成矿物质来源初探[J]. 矿床地质, 3(4): 20-28. [72] 黄典豪, 王义昌, 聂凤军, 等, 1984b. 黄龙铺碳酸岩脉型钼(铅)矿床的硫、碳、氧同位素组成及成矿物质来源[J]. 地质学报, 58(3): 252-264. [73] 黄典豪, 王义昌, 聂凤军, 等, 1985. 一种新的钼矿床类型: 陕西黄龙铺碳酸岩脉型钼(铅)矿床地质特征及成矿机制[J]. 地质学报, 59(3): 241-257. [74] 黄典豪, 吴澄宇, 杜安道, 等, 1994. 东秦岭地区钼矿床的铼-锇同位素年龄及其意义[J]. 矿床地质, 13(3): 221-230. [75] 黄广文, 2022. 东秦岭华阳川-大石沟矿集区碳酸岩型U-REE成矿作用研究[D]. 南昌: 东华理工大学. [76] 黄卉, 潘家永, 洪斌跃, 等, 2020. 陕西华阳川铀-多金属矿床晶质铀矿电子探针U-Th-Pb化学定年及其地质意义[J]. 矿床地质, 39(2): 351-368. [77] 惠小朝, 2014. 陕西省华阳川铀多金属成矿作用地球化学研究[D]. 北京: 核工业北京地质研究院. [78] 贾鸿涛, 1972. 洛南驾鹿稀土元素矿区普查评价报告[R]. 商洛: 陕西省地质局第13地质队. [79] 江宏君, 高成, 康清清, 等, 2020. 小秦岭华阳川铀铌铅矿床蚀变矿化期次研究[J]. 大地构造与成矿学, 44(3): 404-421. [80] 康清清, 江宏君, 李鹏, 等, 2018. 陕西华阳川铀铌铅矿床矿石矿物学特征[J]. 东华理工大学学报(自然科学版), 41(2): 111-123. [81] 康清清, 李鹏, 张熊猫, 等, 2021. 陕西省华阴市华阳川铀铌铅矿床3-40线详查地质报告[R]. 西安: 中陕核工业集团二二四大队有限公司. [82] 康清清, 张熊猫, 孟华, 2020. 小秦岭西段稀土矿特征及找矿远景浅析[J]. 西北地质, 53(1): 107-121. [83] 李石, 1980 . 湖北庙垭碳酸岩地球化学特征及岩石成因探讨[J]. 地球化学, (04): 345-355. [84] 刘琰, 舒小超, 2021. 碳酸岩型稀土矿床中的霓长岩化作用概述[J]. 矿物岩石地球化学通报, 40(5): 1025-1033. [85] 吕志成, 陈辉, 宓奎峰, 等, 2022. 勘查区找矿预测理论与方法及其应用案例[J]. 地质力学学报, 28(5): 842-865. doi: 10.12090/j.issn.1006-6616.20222816 [86] 邱家骧, 李昌年, 喻学惠, 等, 1993. 秦巴碱性岩[M]. 北京: 地质出版社. [87] 万建军, 2022. 陕西华阳川U-Nb-REE多金属矿床成岩成矿作用研究[D]. 南昌: 东华理工大学. [88] 王北颖, 陈陇刚, 薛煜洲, 等, 1996, 1: 50000华阳川幅、华山幅、太峪口幅区域地质调查报告[R]. 西安: 陕西省地矿局综合研究队. [89] 王佳营, 李志丹, 张祺, 等, 2020. 东秦岭地区碳酸岩型钼-铀多金属矿床成矿时代: 来自LA-ICP-MS独居石U-Pb和辉钼矿Re-Os年龄的证据[J]. 地质学报, 94(10): 2946-2964. doi: 10.3969/j.issn.0001-5717.2020.10.011 [90] 王林均, 许成, 吴敏, 等, 2011. 华阳川碳酸岩流体包裹体研究[J]. 矿物学报, 31(3): 372-379. [91] 王希斌, 郝梓国, 李震, 等, 2002. 白云鄂博——一个典型的碱性-碳酸岩杂岩的厘定 [J]. 地质学报, 76(04): 501-524+581-582 doi: 10.3321/j.issn:0001-5717.2002.04.009 [92] 王绪现, 1986. 陕西大石沟碳酸岩脉型钼(铅)矿床围岩蚀变探讨[J]. 陕西地质, 4(2): 72-83. [93] 许成, 黄智龙, 刘丛强, 等, 2002. 四川牦牛坪稀土矿床碳酸岩地球化学[J]. 中国科学(D辑), 32(8): 635-643. doi: 10.3321/j.issn:1006-9267.2002.08.003 [94] 许成, 宋文磊, 漆亮, 等, 2009. 黄龙铺钼矿田含矿碳酸岩地球化学特征及其形成构造背景[J]. 岩石学报, 25(2): 422-430. [95] 杨学明, 杨晓勇, M.J.LeBas, 1998.碳酸岩的地质地球化学特征及其大地构造意义 [J]. 地球科学进展, 1998, (05): 44-53. [96] 杨学明, 杨晓勇, 范宏瑞, 等, 2000. 霓长岩岩石学特征及其地质意义评述[J]. 地质论评, 46(5): 481-490. doi: 10.3321/j.issn:0371-5736.2000.05.006 [97] 喻学惠, 1992. 陕西华阳川碳酸岩地质学和岩石学特征及其成因初探[J]. 地球科学: 中国地质大学学报, 17(2): 151-158. [98] 袁海潮, 王瑞廷, 焦建刚, 等, 2014. 东秦岭华县西沟钼矿床Re-Os同位素年龄及其地质意义[J]. 地球科学与环境学报, 36 (01): 120-127. [99] 张丽敏, 张志斌, 崔文玲, 2014. 川西盐源两个碳酸岩杂岩体的厘定及其地质意义 [J]. 大地构造与成矿学, 38 (01): 131-139. [100] 郑范博, 王国光, 倪培, 2021. 花岗伟晶岩型稀有金属矿床流体成矿机制研究进展[J]. 地质力学学报, 27(4): 596-613. doi: 10.12090/j.issn.1006-6616.2021.27.04.050 [101] 中国国家质量监督检查检疫总局, 中国国家标准化管理委员会, 2010a. 硅酸盐岩石化学分析方法: 第28部分 16个主次成分量测定: GB/T 14506.28—2010[S]. 北京: 中国标准出版社. [102] 中国国家质量监督检查检疫总局, 中国国家标准化管理委员会, 2010b. 硅酸盐岩石化学分析方法: 第30部分 44个元素量测定: GB/T14506.30-2010[S]. 北京: 中国标准出版社.