留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

兰州市寺儿沟泥石流物源特征及其危险性分析

马思琦 杨为民 张春山 渠敬凯 万飞鹏 唐海兵

马思琦, 杨为民, 张春山, 等, 2022. 兰州市寺儿沟泥石流物源特征及其危险性分析. 地质力学学报, 28 (6): 1059-1070. DOI: 10.12090/j.issn.1006-6616.20222829
引用本文: 马思琦, 杨为民, 张春山, 等, 2022. 兰州市寺儿沟泥石流物源特征及其危险性分析. 地质力学学报, 28 (6): 1059-1070. DOI: 10.12090/j.issn.1006-6616.20222829
MA Siqi, YANG Weimin, ZHANG Chunshan, et al., 2022. Provenance characteristics and risk analysis of debris flows in Siergou, Lanzhou City. Journal of Geomechanics, 28 (6): 1059-1070. DOI: 10.12090/j.issn.1006-6616.20222829
Citation: MA Siqi, YANG Weimin, ZHANG Chunshan, et al., 2022. Provenance characteristics and risk analysis of debris flows in Siergou, Lanzhou City. Journal of Geomechanics, 28 (6): 1059-1070. DOI: 10.12090/j.issn.1006-6616.20222829

兰州市寺儿沟泥石流物源特征及其危险性分析

doi: 10.12090/j.issn.1006-6616.20222829
基金项目: 

科技部基地与人才项目 2019QZKK0902

详细信息
    作者简介:

    马思琦(1999—), 女, 在读硕士, 主要从事地质灾害方面的研究。E-mail: 1027277606@qq.com

    通讯作者:

    杨为民(1965—), 男, 博士, 研究员, 主要从事地质灾害、工程地质, 构造地质等方面的科研。E-mail: snon_72@163.com

  • 中图分类号: P694;P642.5

Provenance characteristics and risk analysis of debris flows in Siergou, Lanzhou City

Funds: 

the Base and Talent Project of the Ministry of Science and Technology 2019QZKK0902

  • 摘要:

    寺儿沟流域位于甘肃省兰州市西固区, 历史上曾发生过大规模泥石流, 造成重大人员伤亡和财产损失。文章基于野外调查和遥感解译, 结合已有文献成果和室内测试, 研究寺儿沟泥石流物源特征及影响因素, 采用FLO-2D软件模拟分析泥石流的危险性。研究结果表明: 寺儿沟以黏性泥石流为主, 表现为低频活动, 目前处于衰退期; 寺儿沟流域内物源丰富, 可分为坡面型物源、崩滑型物源、沟道型物源和人为型物源共4种, 其中崩滑型、沟道型物源控制了泥石流的暴发规模; 而一次性冲出量的大小主要取决于泥石流起动时崩滑体的发育程度, 崩滑体越发育, 一次性冲出量越大, 泥石流规模越大; 在临界降雨条件下, 寺儿沟将会暴发泥石流, 中—高危险区集中于流通区, 严重威胁冲沟内构筑物如兰西高铁、环城高速等安全运营。当遭遇极端强降雨时, 寺儿沟将暴发更大规模泥石流。因此, 有必要进一步研究极端天气条件下泥石流的危险性, 为区内泥石流的防灾减灾提供地质依据。

     

  • 图  1  寺儿沟流域地质略图

    Figure  1.  Geologic scheme of the Siergou watershed

    图  2  寺儿沟流域泥石流特征

    a—寺儿沟泥石流遥感解译图;b—形成区沟谷形态及岸坡岩性;c—东支沟滑坡群;d—流通区沟道堆积及植被;e—兰西高铁横跨寺儿沟;f—流通区新发黏性泥石流堆积;g—沟口排导槽内植被生长茂盛

    Figure  2.  Characteristics of the debris flows in the Siergou watershed

    (a) Remote sensing interpretation of the debris flows; (b) Gully morphology and bank slope lithology in the formation area; (c) Landslide group along the east sub-branch; (d) Trench accumulation and vegetation in the circulation area; (e) The Lanzhou-Xining high-speed railway spans the Siergou watershed; (f) New accumulation of viscous debris flows in the circulation area; (g) Vegetation flourish in the trench drain channel

    图  3  寺儿沟流域形成区下游及流通区沟谷不同位置地质剖面图

    a—徐家大山至杏芽台主沟滑坡剖面;b—流通区下游右岸不稳定斜坡

    Figure  3.  Geological profiles of different locations in the downstream formation area and the circulation area

    (a) Slope profile from Xujiadashan to Xingyatai; (b) Unstable slope on the right bank of the downstream circulation area

    图  4  寺儿沟流域物源类型及崩滑体分布

    a—西固二号隧道危岩体;b—崩塌形成倒石锥;c—滑坡编号;d—流通区沟谷及沟道堆积;e—人为型物源

    Figure  4.  Source types and distribution of slumped masses in the Siergou watershed

    (a) Unstable rock mass over the Xigu No.2 tunnel; (b) Rockfall cone formed by a collapse; (c) Landslide number; (d) Gullies and accumulations in the circulation area; (e) Anthropogenic sources

    图  5  寺儿沟流域坡面侵蚀深度分布图

    a—地层岩性分布图;b—坡度图;c—坡面侵蚀深度分布图

    Figure  5.  Maps showing the slope erosion-depth in the Siergou watershed

    (a) Lithology map of the strata; (b) Slope steepness map; (c) Slope erosion-depth map

    图  6  兰州南部山区地震滑坡分布图(据袁道阳等,2002修改)

    Figure  6.  Seismic landslide distribution map in the southern mountainous area of Lanzhou (modified from Yuan et al., 2002)

    图  7  寺儿沟流域不同类型滑坡残留体物源体积

    Figure  7.  Volume of landslide residues of different types in the Siergou watershed

    图  8  寺儿沟泥石流流量过程曲线

    Figure  8.  Hydrograph of debris flows in Siergou

    图  9  临界降雨条件下寺儿沟泥石流危险性计算结果

    a—流速分布图;b—泥深分布图;c—危险性分布图

    Figure  9.  Risk assessment for the debris flows in Siergou under critical rainfall condition

    (a) Velocity profile; (b) Mud-depth profile; (c) Risk profile

    表  2  寺儿沟流域物源静储量统计

    Table  2.   Static reserves of material sources in the Siergou watershed

    物源类型 各部分静储量 静储量/×104 m3
    坡面侵蚀型 地层岩性 Q3黄土 Q3黄土 Q3黄土 K1砂砾岩 2908.31
    可侵蚀深度/m 2 1.5 1 0.5
    面积/×104 m2 234.09 1049.04 676.20 380.76
    累计最大侵蚀量/×104 m3 468.17 1573.56 676.20 190.38
    崩滑型 崩塌体静储量/×104 m3 114.00 3465.84
    滑坡体静储量/×104 m3 3351.84
    沟道型 沟道面积/m2 堆积厚度/m 静储量/×104 m3 10.97
    形成区 32800 3 9.84
    流通区 5670 2 1.13
    人为型 16×104 m3 16.00
    下载: 导出CSV

    表  1  寺儿沟流域崩滑体物源静储量表(表中滑坡编号见图 4c)

    Table  1.   Static reserves of slumped masses in the Siergou watershed (corresponding landslide numbers are shown in Fig. 4c)

    编号 灾害体规模
    长×宽×高/m
    静储量/
    ×104 m3
    灾害体类型 编号 灾害体规模
    长×宽×高/m
    静储量/
    ×104 m3
    灾害体类型
    E-1 450×650×50 487.50 地震滑坡 W-2-1 65×230×20 9.97 降雨滑坡
    E-2 360×370×45 199.80 地震滑坡 W-3 422×196×55 151.64 地震滑坡
    E-3 400×250×45 150.00 地震滑坡 W-4 352×223×50 130.83 地震滑坡
    E-3-1 72×200×30 14.40 降雨滑坡 W-5 65×200×15 6.50 降雨滑坡
    E-4 750×640×45 720.00 地震滑坡 W-6 90×90×15 4.05 降雨滑坡
    E-4-1 240×140×30 33.60 降雨滑坡 W-7 30×90×15 1.35 降雨滑坡
    E-5 550×450×45 371.25 地震滑坡 W-8 120×110×20 8.80 降雨滑坡
    E-5-1 59×70×30 4.13 降雨滑坡 W-9 150×170×25 21.25 降雨滑坡
    E-5-2 50×96×30 4.80 降雨滑坡 W-10 250×230×25 47.92 降雨滑坡
    E-5-3 69×140×30 9.66 降雨滑坡 W-11 200×150×25 25.00 降雨滑坡
    E-5-4 40×97×30 3.88 降雨滑坡 W-12 300×230×40 92.00 降雨滑坡
    E-6 300×360×30 108.00 地震滑坡 W-13 250×180×40 60.00 降雨滑坡
    E-6-1 67×55×20 2.46 降雨滑坡 N-1 300×260×35 91.00 降雨滑坡
    E-6-2 104×59×20 4.09 降雨滑坡 N-2 100×270×35 31.50 降雨滑坡
    E-7 300×700×40 280.00 地震滑坡 N-3 67×80×30 5.36 降雨滑坡
    E-7-1 200×270×25 45.00 降雨滑坡 N-4 60×190×30 11.40 降雨滑坡
    E-7-2 120×270×25 27.00 降雨滑坡 N-5 150×70×15 5.25 降雨滑坡
    E-7-3 117×114×25 11.12 降雨滑坡 西固二号隧道 100×830×10 83.00 危岩体
    E-7-4 80×80×25 5.33 降雨滑坡 西固二号隧道 100×100×60 20.00 崩塌体
    W-1 120×300×25 30.00 降雨滑坡 池沟 5×200×100 1.00 危岩体
    W-2 400×170×60 136.00 地震滑坡 池沟 50×120×5 10.00 崩塌体
    滑坡体总计 3351.84 崩塌危岩体总计 114.00
    下载: 导出CSV
  • BERTOLO P, WIECZOREK G F, 2005. Calibration of numerical models for small debris flows in Yosemite Valley, California, USA[J]. Natural Hazards and Earth System Sciences, 5(6): 993-1001. doi: 10.5194/nhess-5-993-2005
    DENG J L, 2018. Debris flow prediction model based on factor analysis method[J]. Gansu Water Resources and Hydropower Technology, 54(7): 26-30, 42. (in Chinese)
    DOMÈNECH G, FAN X M, SCARINGI G, et al., 2019. Modelling the role of material depletion, grain coarsening and revegetation in debris flow occurrences after the 2008 Wenchuan earthquake[J]. Engineering Geology, 250: 34-44. doi: 10.1016/j.enggeo.2019.01.010
    DOU X D, 2020. Hazard evaluation and control scheme of Daqinggou debris flow disasters in Anning District of Lanzhou[J]. Resource Information and Engineering, 35(1): 110-112. (in Chinese with English abstract)
    FEI X J, SHU A P, 2004. Movement mechanism and disaster control for debris flow[M]. Beijing: Tsinghua University Press. (in Chinese)
    GUO X J, LI Y, CUI P, et al., 2020. Intermittent viscous debris flow formation in Jiangjia Gully from the perspectives of hydrological processes and material supply[J]. Journal of Hydrology, 589: 125184. doi: 10.1016/j.jhydrol.2020.125184
    HU C H, ZHANG X M, 2020. Loess Plateau soil erosion governance and runoff-sediment variation of Yellow River[J]. Water Resources and Hydropower Engineering, 51(1): 1-11. (in Chinese with English abstract)
    HU S, QIU H J, WANG N L, et al., 2021. The influence of terrain on loess landslides in Loess Plateau[J]. Acta Geographica Sinica, 76(11): 2697-2709. (in Chinese with English abstract) doi: 10.11821/dlxb202111008
    JIANG Z X, 1994. Aquantitative forecast to reserves change of solid loose materials in debris flow ravine[J]. Mountain Research, 12(3): 155-162. (in Chinese with English abstract)
    JIN L Y, 2004. Development characteristics and disaster assessment methods of debris flow in Loess region: a case study of debris flow disaster assessment in urban planning area of Dingxi City[J]. Gansu Science and Technology, 20(9): 20-24. (in Chinese) doi: 10.3969/j.issn.1000-0952.2004.09.009
    KEEFER D K, 1984. Landslides caused by earthquakes[J]. GSA Bulletin, 95(4): 406-421. doi: 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
    LI C A, 2004. The primary research of the forecast model of the source area's soil starting for the soil-mechanical debris flows[D]. Beijing: China Academy of Railway Sciences. (in Chinese with English abstract)
    LI H J, LIU Z, HE F, 2021. Landslide prediction based on grey theory and regression analysis[J]. Building Technology Development, 48(1): 149-151. (in Chinese with English abstract)
    LI W L, XU Q, HUANG R Q, 2013. A preliminary study on the back wave surface effect of Wenchuan earthquake landslide[J]. Acta Geologica Sinica, 87(S1): 294-295. (in Chinese)
    LI X Z, KONG J M, WANG C H, 2007. Comparison and application of grey GM (1, 1) modified residual error models in landslide predicting[J]. Journal of Mountain Science, 25(6): 741-746. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2007.06.015
    LIANG H X, SHANG M, XU X, 2016. Research on the influence factors of flow and deposition of debris flow based on the FLO-2D simulation[J]. Journal of Engineering Geology, 24(2): 228-234. (in Chinese with English abstract)
    LIN M L, WANG K L, HUANG J J, 2005. Debris flow run off simulation and verification-case study of Chen-You-Lan watershed, Taiwan[J]. Natural Hazards and Earth System Sciences, 5(3): 439-445. doi: 10.5194/nhess-5-439-2005
    LIU X R, 2016. Hazard assessment of debris flows in Lanzhou City[J]. Northwestern Geology, 49(1): 257-262. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-6248.2016.01.027
    LIU Y L, GUAN H P, LI J L, 2001. Time-and-space distribution and prevention of debris flow in Lanzhou district[J]. Journal of Lanzhou Railway Institute, 20(1): 30-35.
    LU D F, WEI Y T, 2015. A brief analysis of the risk of mudslides in Guanshangou, Anning District, Lanzhou City[J]. Ground Water, 37(6): 195-197. (in Chinese) doi: 10.3969/j.issn.1004-1184.2015.06.083
    MA C, HU K H, TIAN M, 2013. Post-earthquake relationships of maximum runout amount and loose matter mass in debris flow gully[J]. Journal of Natural Disasters, 22(6): 76-84. (in Chinese with English abstract)
    NIU Q F, LU M, LI Y F, et al., 2019. Hazard assessment of debris flow in Lanzhou City of Gansu Province based on methods of grey relation and rough dependence[J]. The Chinese Journal of Geological Hazard and Control, 30(5): 48-56. (in Chinese with English abstract)
    PAN H L, AN X, DENG Q J, et al., 2020. Progress and prospects of research on debris flow solid source[J]. Science Technology and Engineering, 20(24): 9733-9741. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2020.24.007
    PENG J B, LIN H C, WANG Q Y, et al., 2014. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology, 22(4): 684-691. (in Chinese with English abstract)
    PENG J B, WANG Q Y, ZHUANG J Q, et al., 2020. Dynamic formation mechanism of landslide disaster on the Loess Plateau[J]. Journal of Geomechanics, 26(5): 714-730. (in Chinese with English abstract)
    QIAO J P, HUANG D, YANG Z J, et al., 2012. Statistical method on dynamic reserve of debris flow's source materials in meizoseismal area of Wenchuan earthquake region[J]. The Chinese Journal of Geological Hazard and Control, 23(2): 1-6. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2012.02.001
    QIN Y L, WU J L, ZHAN H Y, et al., 2021. Discussion on the correlation between active fault and geological disaster distribution in the Ganzi area, western Sichuan province, China[J]. Journal of Geomechanics, 27(3): 463-474. (in Chinese with English abstract)
    SUN X C, WANG B Y, LIU K X, et al., 2020. Analysis on influencing factors of debris flow disasters in Yunnan Province[J]. Yangtze River, 51(11): 121-127. (in Chinese with English abstract) doi: 10.11988/ckyyb.20190825
    TANG C, ZHOU J Q, ZHU J, et al., 1994. A study on the risk zoning of debris flow on alluvial fans by applying technology of numerical simulation[J]. Journal of Catastrophology, 9(4): 7-13. (in Chinese with English abstract)
    WANG W, 2007. Distribution and disaster characteristics of landslides and landslides in Lanzhou[J]. Scienfic & Technical Information of Gansu, 35(6): 56, 180. (in Chinese)
    WANG X A, CHEN J G, CHEN H Y, et al., 2020. Calculation of debris flow velocity in consideration of viscosity of slurry[J]. Journal of Yangtze River Scientific Research Institute, 37(4): 56-61. (in Chinese with English abstract)
    WANG Y Y, ZHAN Q D, HAN W L, et al., 2003. Stress-strain properties of viscous debris flow and determination of volocity parameter[J]. The Chinese Journal of Geological Hazard and Control, 14(1): 9-13. (in Chinese with English abstract)
    WU J H, ZHANG C S, YANG W M, et al., 2022. Risk assessment of debris flow in Zhujiagully watershed based on entropy weight coefficient of variation fusion algorithm and FLO-2D[J]. Journal of Natural Disasters, 31(1): 81-91. (in Chinese with English abstract)
    WU Y H, LIU K F, CHEN Y C, 2013. Comparison between FLO-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study[J]. Journal of Mountain Science, 10(2): 293-304. doi: 10.1007/s11629-013-2511-1
    YAN L Y, LI X B, OUYANG G L, 2021. Research progress in formation mechanism of loess coseismic landslides[J]. Journal of Institute of Disaster Prevention, 23(2): 46-53. (in Chinese with English abstract)
    YANG J, 2015. Discussion on soil and water loss control model in Loess Plateau of Gansu Province[J]. Soil and Water Conservation in China(4): 33-35. (in Chinese)
    YANG S, 2014. Study on the movable critical model of solid materials under hydro-dynamical condition in debris flow area[D]. Chengdu: University of Chinese Academy of Sciences. (in Chinese with English abstract)
    YU B, TANG C, 2016. Dynamic characteristics and activity law of debris flow[M]. Beijing: Science Press. (in Chinese)
    YUAN D Y, LEI Z S, LIU B C, et al., 2002. Textual research on the 1125 Lanzhou M7.0 earthquake and the causative structure[J]. Earthquake Research in China, 18(1): 67-75. (in Chinese with English abstract)
    ZHANG D, WU Z H, LI J C, et al., 2013. An overview on earthquake-induced landslide research[J]. Journal of Geomechanics, 19(3): 225-241. (in Chinese with English abstract)
    ZHANG H W, LIU F Z, WANG J C, et al., 2022. Hazard assessment of debris flows in Kongpo Gyamda, Tibet based on FLO-2D numerical simulation[J]. Journal of Geomechanics, 28(2): 306-318. (in Chinese with English abstract)
    ZHANG J K, 1994. Summary on debris flow research[J]. The Chinese Journal of Geological Hazard and Control, 5(4): 1-8. (in Chinese with English abstract)
    邓玖林, 2018. 基于因子分析法的泥石流预测模型[J]. 甘肃水利水电技术, 54(7): 26-30, 42. https://www.cnki.com.cn/Article/CJFDTOTAL-GSSJ201807008.htm
    窦晓东, 2020. 兰州市安宁区大青沟泥石流灾害危害性评价及治理方案[J]. 资源信息与工程, 35(1): 110-112. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJW202001030.htm
    费祥俊, 舒安平, 2004. 泥石流运动机理与灾害防治[M]. 北京: 清华大学出版社.
    胡春宏, 张晓明, 2020. 黄土高原水土流失治理与黄河水沙变化[J]. 水利水电技术, 51(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202001001.htm
    胡胜, 邱海军, 王宁练, 等, 2021. 地形对黄土高原滑坡的影响[J]. 地理学报, 76(11): 2697-2709. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202111009.htm
    蒋忠信, 1994. 泥石流固体物质储量变化的定量预测[J]. 山地研究, 12(3): 155-162. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA403.004.htm
    金凌燕, 2004. 黄土地区泥石流发育特点及灾害评估方法: 以定西市城市规划区泥石流灾害评估为例[J]. 甘肃科技, 20(9): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKJ200409008.htm
    李朝安, 2004. 土力类泥石流源地土体起动预报模型初步研究[D]. 北京: 铁道部科学研究院.
    栗海军, 刘泽, 何矾, 2021. 基于灰色理论和非线性回归分析的滑坡时间组合预测研究[J]. 建筑技术开发, 48(1): 149-151. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKF202101079.htm
    李为乐, 许强, 黄润秋, 2013. 汶川地震滑坡背波面效应初探[J]. 地质学报, 87(S1): 294-295. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2013S1138.htm
    李秀珍, 孔纪名, 王成华, 2007. 灰色GM(1, 1)残差修正模型在滑坡预测中的对比应用[J]. 山地学报, 25(6): 741-746. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200706015.htm
    梁鸿熙, 尚敏, 徐鑫, 2016. 基于FLO-2D数值模拟的泥石流流动与堆积影响因素研究[J]. 工程地质学报, 24(2): 228-234. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201602010.htm
    刘兴荣, 2016. 兰州市城区泥石流危险性评价[J]. 西北地质, 49(1): 257-262. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201601030.htm
    鲁得方, 魏玉涛, 2015. 浅析兰州市安宁区关山沟泥石流风险性[J]. 地下水, 37(6): 195-197.
    马超, 胡凯衡, 田密, 2013. 震后泥石流沟松散物质量与最大冲出总量的关系[J]. 自然灾害学报, 22(6): 76-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201306011.htm
    牛全福, 陆铭, 李月锋, 等, 2019. 基于灰色关联与粗糙依赖度的甘肃兰州市区泥石流危险性评价[J]. 中国地质灾害与防治学报, 30(5): 48-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201905007.htm
    潘华利, 安笑, 邓其娟, 等, 2020. 泥石流松散固体物源研究进展与展望[J]. 科学技术与工程, 20(24): 9733-9741. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202024007.htm
    彭建兵, 林鸿州, 王启耀, 等, 2014. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报, 22(4): 684-691. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201404018.htm
    彭建兵, 王启耀, 庄建琦, 等, 2020. 黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报, 26(5): 714-730. doi: 10.12090/j.issn.1006-6616.2020.26.05.059
    乔建平, 黄栋, 杨宗佶, 等, 2012. 汶川地震极震区泥石流物源动储量统计方法讨论[J]. 中国地质灾害与防治学报, 23(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201202003.htm
    秦宇龙, 吴建亮, 詹涵钰, 等, 2021. 川西甘孜地区活动断裂与地质灾害分布相关性探讨[J]. 地质力学学报, 27(3): 463-474. doi: 10.12090/j.issn.1006-6616.2021.27.03.042
    孙显辰, 王保云, 刘坤香, 等, 2020. 云南省泥石流灾害影响因子分析[J]. 人民长江, 51(11): 121-127. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202011021.htm
    唐川, 周钜乾, 朱静, 等, 1994. 泥石流堆积扇危险度分区评价的数值模拟研究[J]. 灾害学, 9(4): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU404.001.htm
    王伟, 2007. 兰州地区滑坡泥石流分布及灾害特征[J]. 甘肃科技纵横, 35(6): 56, 180. https://www.cnki.com.cn/Article/CJFDTOTAL-LZKQ200706046.htm
    王喜安, 陈剑刚, 陈华勇, 等, 2020. 考虑浆体黏度的泥石流流速计算方法[J]. 长江科学院院报, 37(4): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202004010.htm
    王裕宜, 詹钱登, 韩文亮, 等, 2003. 粘性泥石流体的应力应变特性和流速参数的确定[J]. 中国地质灾害与防治学报, 14(1): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200301002.htm
    吴季寰, 张春山, 杨为民, 等, 2022. 基于熵权变异系数融合算法和FLO-2D的朱家沟流域泥石流危险性评价[J]. 自然灾害学报, 31(1): 81-91. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202201008.htm
    颜灵勇, 李孝波, 欧阳刚垒, 2021. 黄土地震滑坡形成机理研究的若干进展[J]. 防灾科技学院学报, 23(2): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-FZJS202102006.htm
    杨俊, 2015. 甘肃省黄土高原地区水土流失治理模式探讨[J]. 中国水土保持(4): 33-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSB201504015.htm
    杨顺, 2014. 水动力作用下泥石流源区固体物质可移动判别模型研究[D]. 成都: 中国科学院大学.
    余斌, 唐川, 2016. 泥石流动力特性与活动规律研究[M]. 北京: 科学出版社.
    袁道阳, 雷中生, 刘百篪, 等, 2002. 兰州1125年7级地震考证与发震构造分析[J]. 中国地震, 18(1): 67-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD200201006.htm
    张铎, 吴中海, 李家存, 等, 2013. 国内外地震滑坡研究综述[J]. 地质力学学报, 19(3): 225-241. https://journal.geomech.ac.cn/article/id/59c5f311-5f2f-467d-adfe-69e7da4f5fc6
    张浩韦, 刘福臻, 王军朝, 等, 2022. 基于FLO-2D数值模拟的工布江达县城泥石流灾害危险性评价[J]. 地质力学学报, 28(2): 306-318. doi: 10.12090/j.issn.1006-6616.2021117
    张杰坤, 1994. 泥石流研究综述[J]. 中国地质灾害与防治学报, 5(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH199404000.htm
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  489
  • HTML全文浏览量:  141
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 修回日期:  2022-10-14

目录

    /

    返回文章
    返回