留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华南洋陆过渡带构造演化:特提斯构造域向太平洋构造域的转换过程与机制

李三忠 索艳慧 周洁 王光增 李玺瑶 姜兆霞 刘金平 刘丽军 刘永江 占华旺 姜素华 程昊皞 王鹏程 朱俊江 戴黎明 董昊 刘琳 郭晓玉

徐琴如,董有浦,谢志鹏,等,2024. 川滇地块东部老鹰山的构造地貌特征及其揭示的地块隆升和旋转运动[J]. 地质力学学报,30(4):535−546 doi: 10.12090/j.issn.1006-6616.2023087
引用本文: 李三忠,索艳慧,周洁,等,2022. 华南洋陆过渡带构造演化:特提斯构造域向太平洋构造域的转换过程与机制[J]. 地质力学学报,28(5):683−704 doi: 10.12090/j.issn.1006-6616.20222809
XU Q R,DONG Y P,XIE Z P,et al.,2024. Tectonic and geomorphological characteristics of Laoyingshan in the eastern Sichuan-Yunnan block:Insights into the uplift and rotation of the blocks[J]. Journal of Geomechanics,30(4):535−546 doi: 10.12090/j.issn.1006-6616.2023087
Citation: LI S Z,SUO Y H,ZHOU J,et al.,2022. Tectonic evolution of the South China Ocean-Continent Connection Zone: Transition and mechanism of the Tethyan to the Pacific tectonic domains[J]. Journal of Geomechanics,28(5):683−704 doi: 10.12090/j.issn.1006-6616.20222809

华南洋陆过渡带构造演化:特提斯构造域向太平洋构造域的转换过程与机制

doi: 10.12090/j.issn.1006-6616.20222809
基金项目: 国家自然科学基金重点项目(91958214);国家自然科学基金创新群体项目(42121005);青岛海洋科学与技术国家实验室山东省专项经费(2022 QNLM05032);泰山学者攀登计划(tspd20210305)
详细信息
    作者简介:

    李三忠(1968—),男,教授,博士生导师,从事海洋地质与构造地质研究。E-mail: Sanzhong@ouc.edu.cn

  • 中图分类号: P54; P67

Tectonic evolution of the South China Ocean-Continent Connection Zone: Transition and mechanism of the Tethyan to the Pacific tectonic domains

Funds: This research is financially supported by the Key Project of National Natural Science Foundation of China (Grant No. 91958214), the Innovation Group Project (Grant No. 42121005), the Marine S&T Fund of Shandong Province for National Laboratory for Marine Science and Technology(Qingdao) (Grant 2022 QNLM050302) , and the Taishan Scholarship Program (Grant tspd20210305)
  • 摘要: 南海北部陆缘位于大华南地块洋陆过渡带南段的关键核心段落,曾处于特提斯洋构造域与(古)太平洋构造域交接地带,是印度洋构造动力系统与太平洋构造动力系统波及的共同地区。然而,以往研究和勘探程度较低,特提斯构造域与太平洋构造域交接转换区域的大地构造背景、过程、机制始终不够明确。基于南海北部陆缘地震剖面,不仅关注该区新生代盆地结构构造,以服务该区油气精准勘探,并且试图以此解剖、揭示该区中生代基底结构特征,进而探索新生代南海海盆打开、扩张、停滞到消亡过程的前生今世。对珠江口盆地地震剖面解析和华南陆缘野外构造研究表明:华南地块洋陆过渡带先后经历了中生代印支期碰撞造山、燕山早期增生造山、燕山晚期压扭造山三个过程;随后进入新生代,又经历了早期北东东—南西西走向正断层主控下的弥散性裂解成盆、中期北东—北北东走向张扭断裂主控下的右行走滑拉分成盆、晚期北西—北西西向张扭断裂主控下的左行走滑拉分成盆三期伸展构造叠加。总体上,该区特提斯洋构造体系向太平洋构造体系的转换过程经历了四个阶段:古特提斯洋构造体系向新特提斯洋构造体系转换、新特提斯洋构造体系向古太平洋构造体系转换、新特提斯洋构造体系向太平洋构造体系转换及古太平洋构造体系向太平洋构造体系的转换。东亚洋陆过渡带的构造转换折射出地球深浅部动力系统驱动“东亚大汇聚”的长期机制,即东南亚环形俯冲驱动体系、太平洋LLSVP和非洲LLSVP的深部动力系统(统称为海底“三极”)的重要性,其中,东南亚环形俯冲驱动体系是地球板块运动的重要动力引擎之一。

     

  • 新生代以来,印−欧大陆板块的持续碰撞与挤压造成了青藏高原的隆升和地壳缩短,在青藏高原东南缘形成了高黎贡断裂、哀牢山−红河断裂、鲜水河−小江断裂等大型走滑断裂(Wang et al.,1998)。其中,川滇地块受鲜水河−小江左行走滑断裂和哀牢山−红河右行走滑断裂的影响,向东南方向发生了大规模挤出逃逸和顺时针旋转(Wang et al.,1998Tapponnier et al.,2001Tong et al.,2015王恒和杨振宇,2019),因此,川滇地块是研究青藏高原东南缘新生代构造旋转的理想地区。

    相关学者利用古地磁方法针对西昌、会东、白路、楚雄、元谋、剑川、大姚以及大理等地区对川滇地块旋转运动进行了研究,认为从新生代以来川滇地块北部西昌的逆时针旋转(13.9°± 6.2°),向南逐渐变化为楚雄的顺时针旋转(36.4° ± 18°)(Huang et al.,1992Yoshioka et al.,2003Tamai et al.,2004Zhu et al.,2008Li et al.,20132015Tong et al.,2015王恒和杨振宇,2019)。由于滇中地块东部主要出露古生界,新生界出露较少,目前对滇中地块东部开展的古地磁研究相对较少。构造地貌学方法对揭示构造变形具有很好的作用(曹鹏举等,2021关雪等,2021),河流地貌分析是还原地块构造演化历史的一个有效方法。河流作为陆地地形地貌演化过程中最活跃的影响因子之一,通常能对地块抬升、沉降(Fox et al.,2014王乃瑞等,2015段佳鑫等,2021)或旋转(Castelltort et al.,2012Goren et al.,2015Yıldırım and Tüysüz,2017)做出很好地响应。因此,该研究主要利用构造地貌学方法来揭示川滇地块东部老鹰山的旋转特征,进一步认识整个川滇地块新生代晚期的隆升与旋转构造变形过程。

    鲜水河−小江断裂是一个长约2000 km的左行走滑断裂,其与哀牢山−红河右行断裂共同构成了川滇菱形地块的边界。南部的小江断裂呈南北走向,全长约为400 km。小江断裂在东川以南30 km处,分为东、西2支,2支断裂大致平行,间距约为15 km(Shen et al.,2003)。其中,西支断裂走滑速率为6.4 mm/a,东支断裂走滑速率为4.8 mm/a(宋方敏等,1998李西,2015)。在东、西支断裂之间,发育了大量北东走向的新生代断裂及褶皱。在小江断裂西侧还发育有近乎平行的南北走向的元谋−绿汁江断裂和易门断裂和普渡河断裂等(余华玉等,2023图1)。

    老鹰山地区位于小江断裂东、西2支断裂之间(图2),其山脉水系呈南北向延伸,边界被四甲河、大白河、功山大河以及摆宰河围限,主要出露二叠系玄武岩以及茅口组灰岩、白云岩,局部出露寒武系页岩及灰岩。元古代地层少量出露,部分河流中发育有新生代地层(图2)。研究区自古近纪—早更新世时期构造运动以整体间歇抬升为主,在这一时期发育有多个盆地,如晚更新世发育的甸沙盆地、中更新世发育的沧溪盆地、阿旺盆地、功山盆地以及金所盆地(图2宋方敏等,1998Shen et al.,2003郑立龙等,2019)。

    图  2  老鹰山地区地质图(据覃胜荣,1978修改)
    Figure  2.  Geological map of Laoyingshan (modified from Qin, 1978)

    基于30 m分辨率的数字高程模型(DEM),研究利用ArcGIS 10.7和Matlab 2015b提取了老鹰山地区的22条流域,获得了相关的构造地貌参数。

    区域地形起伏度指单位面积内最大相对高程差,可反映地面相对高差,能够反映区域地表的切割剥蚀程度,是描述地貌形态的定量指标(张会平等,2006刘静等,2006)。其计算公式如下:

    (1)

    式中:R—地形起伏度;Hmax—单位面积内最大高程值;Hmin—单位面积内最小高程值。通过ArcGIS工具箱中的焦点统计工具,在给定的采样空间窗口(如1 km × 1 km)中分别获取该窗口内的最大高程和最小高程值,最后利用DEM栅格数据的插值运算,实现局部地形起伏的定量化(张会平等,2006Yıldırım and Tüysüz,2017)。研究中,区域地形起伏度采用2 km × 2 km的采样窗口(包含研究流域的一个山脊和山谷组合,可以反映山谷到山脊的起伏特征),利用焦点邻域工具,采用公式(1)对该窗口进行计算,获得研究区的局部地形起伏度。

    在稳定的气候及构造条件下,河流纵剖面为平滑下凹形态(Whipple,2001Yıldırım and Tüysüz,2017),但是当岩性、气候、沉积物通量以及活动构造发生变化时都会导致河流处于瞬态的不平衡状态(Kirby et al.,2003),在河流纵剖面上出现上凸的异常部位,即裂点(戴岩等,2016)。当河流流域面积未发生变化时,现存河流出水口的高程与在裂点处稳态时河流投影出水处的高程差揭示了自隆起开始以来的地表隆升量(Kirby and Whipple,2012Yıldırım and Tüysüz,2017)。河流纵剖面的特征作为侵蚀作用和构造隆升相互竞争的结果,在不同的构造、气候和岩性条件下会呈现出不同的形态,因此通过对河流纵剖面的形态特征进行定量研究可以很好地指示区域隆升过程及相关的构造变形特征(Kirby and Whipple,2001张东越等,2023)。其中,河流陡峭指数可以反映基岩隆升速率的空间分布特征(Goren et al.,2014余华玉等,2023)。在构造隆升地区,由于河流纵剖面高程变化通常是河道隆升与下切之间竞争的结果,河道某点在一定时间(dt)内的高程变化(dz)是由岩石隆升速率(U)和侵蚀速率(E)共同决定的(Goren et al.,2014Fox et al.,2015):

    (2)

    另外,河道侵蚀速率(E)可以表示为流域面积(A)与河流局部坡度(S)的函数:

    (3)

    式中,K—侵蚀系数,由气候和岩石性质决定(Willett,1999);mn是描述河道侵蚀速率对流域面积和河道坡度相关性的正指数(Whipple and Tucker,1999)。当岩石隆升速率等于侵蚀速率时,河道的高程不随时间变化,因此,河道坡度为:

    (4)

    在均一的岩性、隆升速率和气候条件下,河流坡度(S)与流域面积(A)呈幂律关系:

    (5)

    式中,Ks—河道陡峭指数,θ—河道凹曲度指数。利用DEM计算出河道坡度和流域面积,将数据投在双对数图上,稳定态的河段数据呈直线分布,线性拟合获得的斜率与截距就是河道凹曲度指数(θ)和陡峭指数(Ks),为了对不同大小的流域之间进行比较,Ks通常被归一化,归一化河流陡峭指数为KsnWhipple and Tucker,1999)。

    研究表明可以利用参考凹曲度指数(θref)对公式(5)计算得到归一化陡峭指数(Ksn),Ksn可以用来反映构造抬升速率的相对大小(Trauerstein et al.,2013王乃瑞等,2015)。Ksn可靠性在于其不受坡度−面积线性拟合的截距以及下游面积变化的影响(王乃瑞等,2015),并且已经在不同研究区域得到验证(Snyder et al.,2000Wobus et al.,20032006Yıldırım and Tüysüz,2017张东越等,2023)。因为凹曲度在不同地貌中往往变化不大,陡度指数通常使用参考凹曲度指数(θref)计算(Snyder et al.,2000Wobus et al.,20032006Yıldırım and Tüysüz,2017)。将θref设定为0.45(Wobus et al.,20032006Yıldırım and Tüysüz,2017),其程序代码来自http://www.geomorphtools.org,根据其相关数据提取了研究区归一化河道陡峭指数(Ksn)。因归一化河道陡峭指数(Ksn)受岩性和气候影响,故采用型号HT-225回弹仪测量了研究区岩性的硬度,来判断岩性对Ksn的影响(Cruslock et al.,2010王乃瑞等,2015Bernard et al.,2019)。

    流域盆地的方位角用于定义流域方向,可以用来确定块体的旋转量。流域方位角(BA)是流域主河道的源头和出口之间的投影中线的方位。未受构造作用时,BA垂直于分水岭的方向发育,其随着持续的构造作用而发生旋转(Ramsey et al.,2007Castelltort et al.,2012Goren et al.,2015Guerit et al.,2016Yıldırım and Tüysüz,2017)。以流域中线作为对象,如果流域旋转,中线的方向必须偏离初始变形区和流域分水岭之间的垂线,流域中线和垂直于分水岭方位之间的夹角即为该区域的旋转量。依据Goren et al.(2015)对黎巴嫩流域和Yıldırım and Tüysüz(2017)对Almacık地块提取流域方位角方法对大白河及功山大河周围的流域进行提取(Goren et al.,2015Yıldırım and Tüysüz,2017)。

    老鹰山地区低起伏区域主要位于老鹰山西侧四甲河以及摆宰河附近,高起伏区域主要位于老鹰山东侧大白河及功山大河附近(图3),即大白河及功山大河周围地形的起伏度大于老鹰山西侧四甲河周围的地形起伏度。根据区域地形起伏度的方法得出老鹰山地区的平均高程差为324 m(图3)。

    图  3  老鹰山地区地形起伏图
    Figure  3.  Local topographical relief map of the Laoyingshan region

    老鹰山地区流域归一化河流陡峭指数(Ksn)的范围为0 m0.9~ 1282 m0.9Ksn值整体分布趋势由北向南逐渐降低,高值区(> 260 m0.9)主要分布在阿旺镇和金源乡附近,与小江断裂东、西2支断裂相重合,低值区(< 65 m0.9)主要分布在研究区老鹰山顶部以及摆宰河南部(图4)。

    图  4  老鹰山地区Ksn值分布图
    Figure  4.  Distribution diagram of Ksn in the Laoyingshan

    研究中共选择了22条河流(图5),通过用稳定状态和瞬时状态的河流纵剖面的高差来估计地表隆升(具体河流纵剖面图可扫描文后OSID码查看)。老鹰山分水岭东部河流(h1—h12,河流h9未发现裂点)的地表隆升量分别为200 m、220 m、500 m、290 m、300 m、140 m、250 m、200 m、350 m、400 m和180 m,东部地表隆升量为140 ~ 500 m;老鹰山分水岭西部河流(h13—h22)的地表隆升量分别为260 m、260 m、360 m、810 m、650 m、640 m、400 m、360 m、300 m和440 m,西部地表隆升量在260 ~ 440 m之间,局部流域的地表隆升较高,如h16流域的地表隆升量高达810 m,老鹰山北部的地表隆升量平均低于南部的隆升量。由此可知该地区整体的平均表面隆升为358 ± 200 m,这与表明局部区域地形起伏分析相吻合。

    图  5  老鹰山地区22条河流纵剖面分布情况
    Figure  5.  Longitudinal profile distribution of 22 rivers in the Laoyingshan

    为确定老鹰山地区的旋转量,测定了研究区大白河及功山大河西侧和东侧的流域方位角(图6a),并根据其方位角制作了玫瑰图(图6b、6c)。大白河、功山大河西侧流域方位角揭示出其逆时针旋转量约为15°(表1);大白河、功山大河东侧流域方位角揭示出其逆时针旋转量约为12°(表2)。

    图  6  大白河、功山大河两侧流域方位角及生成的玫瑰图
    a—大白河、功山大河两侧生成的流域方位角;b—大白河、功山大河西侧流域方位角生成的玫瑰图;c—大白河、功山大河东侧流域方位角生成的玫瑰图
    Figure  6.  The azimuth of the basins on both sides of Dabai River and Gongshan River and the generated rose diagram
    (a) Basin azimuth generated on both sides of Dabai River and Gongshan River;(b) Rose diagram of the basin azimuth analysis on the western side of Dabai River and Gongshan River;(c) Rose diagram of the basin azimuth analysis on the east side of Dabai River and Gongshan River
    表  1  大白河、功山大河西侧流域方位角
    Table  1.  Basin azimuth on the western side of Dabai River and Gongshan River
    河流 流域中线方位角/
    (°)
    垂线方位角/
    (°)
    旋转量/
    (°)
    平均旋转量/
    (°)
    1 47.4035 35.5030 11.9005 14.9956
    2 56.8472 39.2746 17.5726
    3 61.7182 43.5887 18.1295
    4 36.7287 24.0545 12.6742
    5 34.9060 23.0075 11.8985
    6 18.4842 8.4548 10.0294
    7 30.4826 13.6866 16.7960
    8 31.1446 14.6053 16.5393
    9 29.4522 21.8166 7.6356
    10 30.9373 14.6053 16.3320
    11 26.3950 0.9501 25.4449
    下载: 导出CSV 
    | 显示表格
    表  2  大白河、功山大河东侧流域方位角
    Table  2.  Basin azimuth on the eastern side of Dabai River and Gongshan River
    河流 流域中线方位角/
    (°)
    垂线方位角/
    (°)
    旋转量/
    (°)
    平均旋转量/
    (°)
    1 222.3619 206.4810 15.8809 12.2181
    2 213.5884 208.1903 5.3981
    3 219.7653 208.5652 11.2002
    4 229.0780 211.4550 17.6230
    5 230.8436 220.5600 10.2836
    6 216.6224 203.6995 12.9229
    下载: 导出CSV 
    | 显示表格

    大白河、功山大河地区岩性大多为二叠系玄武岩,回弹值约为46.97,四甲河流域岩性相对复杂,除二叠系玄武岩,局部有寒武系灰岩、砂岩、白云岩以及页岩,结果显示其不同岩性硬度的差别较小(图7),回弹值主要集中在46.97 ~ 64.38之间。

    图  7  老鹰山地区Schmidt hammer回弹值柱状图
    Figure  7.  Bar chart of Schmidt hammer rebound values in the Laoyingshan region

    河流陡峭指数受岩性和气候影响(Snyder et al.,2000Wobus et al.,20032006张东越等,2023),根据硬度测试结果,不同岩性的硬度差异较小,表明岩性对老鹰山地区河流陡峭指数的影响较低;同时研究区范围较小,可忽略气候对其产生的影响。因此,在排除岩性、气候影响后河流陡峭指数可视为抬升速率,老鹰山地区顶部河流陡峭指数较高,表明其抬升速率较小,可能是高海拔低起伏的古残留面(宋方敏等,1998冯金良等,2004)。大白河、功山大河附近以及四甲河附近河流的陡峭指数较高,且分布在小江东、西支断裂附近,表示该地区的抬升速率较大,其河流陡峭指数主要受构造活动影响。研究表明老鹰山地区产生了324 m的局部起伏作为地表隆起的响应(图3),且高起伏度区域主要分布在断裂附近(图3),说明研究区地表隆起主要受断裂构造的影响,这与其河流陡峭指数数据相吻合。河流纵剖面显示老鹰山东侧的垂直位移量由北向南逐渐增大,平均隆起量为358 m。同时河流的纵剖面结果表明河流h16、h17、h18的隆起量较高(图5),分别为810 m、650 m和640 m,因为其地理位置位于金源乡附近的沧溪拉分盆地周围,并且根据野外地质观察及图5河流和断裂分布,发现河流h16附近有部分断裂以及褶皱,说明该地区构造运动较活跃,故河流h16、h17、h18地表隆起量较高的原因可能是盆地局部伸展构造的结果。

    研究区地处青藏高原东南缘,位于川滇菱形地块的边界处,因此该地区的新构造运动与青藏高原隆升、挤压密切相关。始新世、上新世、早更新世区内发育有多个盆地,反映地壳运动在间歇性抬升的背景下,局部还存在垂直差异运动特征(林向东,2009),因此,研究区内盆地、河流及湖泊等是地壳升降运动形成的地貌(宋方敏等,1998)。研究区内河流与小江断裂重合,暗示两者的形成时间应大致相当。以往研究表明小江断裂开始活动的时间在中新世晚期(Roger et al.,1995Li et al.,2015Zhang et al.,2017),因此老鹰山地区的隆升时间开始于晚中新世,暗示老鹰山地区晚中新世以来的隆升量为358 m。研究基于河流地貌得到的隆升结果与滇中地区先锋盆地利用古植物恢复古高程的研究结果(Jacques et al.,2014Li et al.,2015)相吻合。

    自印−欧大陆碰撞以来,导致川滇地块的侧向逃逸与旋转(Wang et al.,1998Zhu et al.,2008高亮,2013Li et al.,2013吴中海等,2015Tong et al.,2015王恒和杨振宇,2019)。但是由于地壳物质组成和结构构造的复杂性,这种旋转并不表现为简单均一的运动。川滇地块中部和西部(丽江−小金河断裂以南、元谋断裂以西)的研究表明剑川地区始新世以来的顺时针旋转量约为20°(Tong et al.,2015);楚雄盆地核部、剑川盆地以及渔泡江断裂东侧三岔河镇以南白垩纪以来的顺时针旋转量约为20°(王恒和杨振宇,2019);对宁蒗地区古新统宁蒗组进行古地磁研究发现该地区顺时针旋转量为16.7° ± 6°(高亮,2013);大理地区新近纪晚期以来的顺时针旋转量为4.4° ± 2.5°(Li et al.,2013)。

    流域方位角研究表明,老鹰山地区河流经历了大约15°的顺时针旋转(图6)。由于大白河、功山大河和四甲河主要沿小江断裂发育(图2),推断老鹰山地区的河流发生的逆时针旋转是由断裂走滑造成的。川滇地块东部(元谋断裂以东)以逆时针旋转为主,例如,元谋盆地4.9 ~ 1.4 Ma发生了约12°的逆时针旋转运动(Li et al.,2015);Huang et al.(1992)对会东地区古新世地层的古地磁研究表明该地区逆时针旋转了6.1° ± 7.2°(Huang et al.,1992);Li et al.(2015)发现小龙潭盆地晚中新世地层逆时针旋转了8° ± 3°(Li et al.,2015),上述研究结果与文中基于河流地貌得到的地块旋转方向和旋转量相一致。因此,研究推测川滇地块内元谋断裂以西受走滑断裂影响较小,主要发生顺时针旋转;元谋断裂以东地层受走滑断裂等强烈的左行走滑影响,发生了逆时针旋转并伴随着差异隆升。

    始新世以来,在印−欧板块的碰撞作用下,青藏高原向东挤出,受华南块体的阻挡,使高原东部发生了显著的构造变形,主要表现为一系列北北西向的大型走滑断裂和褶皱带以及北北东向的褶皱逆冲带(Chen and Wilson,1996Wang et al.,1998Roger et al.,2004陶亚玲等,2020),如鲜水河−小江断裂、哀牢山−红河断裂等,这些大型断裂控制着青藏高原东缘的构造及地貌特征(陶亚玲等,2020)。鲜水河–小江断裂是青藏高原东缘的大型走滑断裂之一,对高原的差异性变形及东构造节东侧地块顺时针旋转具有重要的调节作用(图8Wang et al.,1998Schoenbohm et al.,2006)。以往研究发现鲜水河−小江断裂不同段开始活动的时间不同,Roger et al.(1995)和 Zhang et al.(2004)根据花岗岩锆石U-Pb测年和云母39Ar/40Ar测年表明,鲜水河断裂活动开始于12.8 Ma,随后逐渐演变为边界断裂,之后青藏高原持续隆升造成其川滇地块向东南方向侧向逃逸,鲜水河断裂通过安宁河−则木河断裂逐渐向南发展;Liu et al.(2015)根据元谋断裂南、北两侧正长石锆石U-Pb测年数据,认为元谋断裂的活动时间在11 ~ 12 Ma,据此可以推测在上新世以前川滇地块的边界为鲜水河−安宁河−则木河−元谋断裂(图8a);Tong et al.(2015)根据白垩系和古近系古地磁资料表明元谋−绿汁江断裂西侧经历了15°~20°的顺时针旋转,之后随着地块继续向东南方向挤出,旋转变形也继续向东南扩展;在上新世以后,小江断裂逐渐取代元谋−绿汁江断裂,成为川滇地块的东边界(图8bTong et al.,2015)。

    图  8  川滇地块构造活动演变(Tong et al.,2015吴中海等,2015
    a—b—17 Ma以来川滇地块的构造演化过程;c—老鹰山地区受力旋转过程
    Figure  8.  Evolution of tectonic activity in the Sichuan-Yunnan block (modified according to Tong et al., 2015; Wu et al., 2015)
    (a)—(b) Tectonic evolution of the Sichuan-Yunnan block since 17 Ma;(c) Rotational stress process in Laoyingshan region

    因老鹰山地区正处于小江断裂中段东、西2支断裂中间,在高原隆升活动早期,小江断裂的活动性质以挤压为主,小江断裂中段区间表现为垂直差异运动,导致小江断裂区间形成南北向的地块隆起(宋方敏等,1998冯金良等,2004);之后受小江断裂东、西2支断裂左行走滑的影响,老鹰山地区受到挤压应力作用,发生了15°逆时针旋转以及358 m左右的差异隆升,以此来调节该应力作用(图8c)。

    (1)老鹰山地区的区域地形起伏、河流陡峭指数以及河流纵剖面结果显示,受构造活动影响其自晚中新世以来发生了358 m左右的隆升,总体呈西北高、东南低的趋势。

    (2)根据老鹰山地区流域方位角表明,大白河和功山大河附近流域对研究区的旋转很敏感,并且该地区受小江断裂影响较大,产生了15°左右的逆时针旋转。

    (3)川滇地块内元谋断裂以西地区受走滑断裂影响较小,以印度向欧亚大陆强烈的北东向挤压为主,主要发生顺时针旋转;元谋断裂以东地区受强烈的左行走滑断裂影响,通过调节地块内部的应力差异,发生逆时针旋转并伴随着差异隆升。

  • 图  1  大华南地块东南缘的构造格架

    a—大华南地块洋陆过渡带及两侧构造格架; b—研究区新生代构造模式图

    Figure  1.  Tectonic units in the southeast margin of the Great South China Block

    (a) The Ocean-Continent Connection Zone of the Great South China Block and its surrounding tectonic framework; (b) Cenozoic tectonic pattern diagram

    图  2  东亚洋陆过渡带的特提斯构造体系与太平洋构造体系关系(据刘海龄等,2006修改)

    BS—保山地块;SM—思茅地块;ST—掸泰地块缝合带:1—滇琼;2—哀牢山;3—琼南;4—卢帕尔−八仙–库约俯冲−碰撞缝合带;5—飞弹(Hida)缝合带;6—日本中央构造线;7—马江;8—难河−程逸;9—奠边府−黎府;10—色潘−三歧;11—斯雷博河;12—碧土−昌宁−孟连;13—文冬−劳勿;14—金沙江−墨江;15—班公湖−怒江;16—雅鲁藏布江–沃依拉;17—潞西;18—密支那;19—那加−沃依拉

    Figure  2.  Relationship between the Tethyan and the Pacific tectonic systems in the East Asia Ocean−Continent Connection Zone (modified from Liu et al., 2006 )

    Suture: 1−Dianqiong;2−Ailaoshan; 3−Qiongnan; 4−Lupar−Parsons−Coyo; 5−Hida; 6−Median Tectonic Line in Japan; 7−Majiang; 8−Nan−Uttaradit; 9−Dien Bien Phu−Loei; 10−Sepon−Tam Ky; 11−Srepok; 12−Bitu−Changning−Menglian; 13−Bentong−Raub; 14−Jinshajiang−Mojiang; 15−Bangonghu−Nujiang; 16−Yarlung Zangbo−Woyla; 17−Luxi; 18−Myitkyina; 19−Naga−Woyla. BS−Baoshan Block; SM−Simao Block; ST−Shan Thai Block

    图  3  东亚印支早期(234 Ma)板块构造重建与华南地块顺时针旋转的动力背景

    箭头为板块运动方向

    Figure  3.  Plate tectonic reconstruction and dynamic background on clockwise rotation of the South China Block in the early Indosinian (234 Ma) in East Asia (Arrow is plate motion sense)

    图  4  南海北部和西部陆缘–右江造山带印支期构造单元划分及其后期叠加改造(据王宏等,2015修改)

    彩色底图为现今珠江口盆地基底深度图珠江口盆地主要构造单元:BYS—白云凹陷;EPS—恩平凹陷;HJS—韩江凹陷;HZS—惠州凹陷;KPS—开平凹陷;LWS—荔湾凹陷;WCS—文昌凹陷;XJS—西江凹陷;YJS—阳江凹陷;DSU—东沙隆起;HNU—海南隆起;HSYLU—鹤顺−云荔凸起;NU—北部隆起;PYLU—番禺低凸起;SAU—神弧−暗沙隆起

    Figure  4.  The Indosinian tectonic units and their late-stage superposition in the northern and western South China Sea margins (modified from Wang et al., 2015)

    Color basemap shows the present surface depths of the basement of the Pearl River Mouth Basin. Main tectonic units of the Pearl River Mouth Basin: BYS−Baiyun Sag; EPS−Enping Sag; HJS−Hanjiang Sag; HZS−Huizhou Sag; KPS−Kaiping Sag; LWS−Liwan Sag; WCS−Wenchang Sag; XJS−Xijiang Sag; YJS−Yangjiang Sag; DSU−Dongsha Uplift; HNU−Hainan Uplift; HSYLU−Heshun−Yunli Heave; NU−North Uplift; PYLU−Pangyu Low Heave; SAU−Shenhu−Ansha Uplift

    图  5  东亚印支晚期(200 Ma)板块构造重建与古太平洋板块正向俯冲

    箭头为板块运动方向

    Figure  5.  Plate tectonic reconstruction and normal subduction of the Paleo-Pacific plates in the late Indosinian (200 Ma) in East Asia (Arrow is plate motion sense)

    图  6  东亚燕山早期(176 Ma)板块构造重建与古太平洋板块正向俯冲

    箭头为板块运动方向

    Figure  6.  Plate tectonic reconstruction and normal subduction of the Paleo-Pacific plates in the early Yanshanian (176 Ma) in East Asia (Arrow is plate motion sense)

    图  8  东南亚环形汇聚系统(CSEASS)重力异常与中国东部(重力梯度带NSGL以东)晚白垩世依泽奈崎(Izanagi)板块平板俯冲以及东亚大陆岩石圈水化、弱化、减薄破坏机制(据Liu et al.,2021 bLi et al.,2021修改)

    Figure  8.  Gravity anomaly of the Curved Southeast Asian Subduction System (CSEASS) and Late Cretaceous flat subduction of the Izanagi Plate and the East Asian lithospheric destruction mechanism of hydration, weakening and thinning east of the N-S-trending Gravity Gradient Line (NSGL; modified from Liu et al.,2021 b; Li et al.,2021)

    图  9  东亚燕山晚期(125 Ma)板块构造重建与古太平洋板块斜向俯冲

    箭头为板块运动方向

    Figure  9.  Plate tectonic reconstruction and oblique subduction of the Paleo-Pacific plates in the late Yanshanian (125 Ma) in East Asia (Arrow is plate motion sense)

    图  10  东亚喜山早期(55~45 Ma)板块构造重建与依泽奈崎(Izanagi)–太平洋洋中脊的俯冲

    箭头为板块运动方向

    Figure  10.  Plate tectonic reconstruction and ridge subduction of the Izanagi−Pacific Ridge in early Himalayan (55~45 Ma) in East Asia (Arrow is plate motion sense)

    图  11  东亚喜山晚期(33~24 Ma)板块构造重建与南海东部次海盆形成

    箭头为板块运动方向

    Figure  11.  Plate tectonic reconstruction and opening of the East Sub-basin of the South China Sea in the late Himalayan (33~24 Ma) in East Asia (Arrow is plate motion sense)

    图  12  东亚超级汇聚系统最终形成过程的新生代板块重建(据Honza and Fujioka,2004修改)

    1—火山活动;2—扩张中心;3—俯冲带;4—不活动的扩张中心;5—走滑断层;6—地堑;7—板块运动方向a—早始新世(约52 Ma);b—中始新世(约45 Ma);c—早渐新世(约35 Ma);d—渐新世末(约25 Ma);e—中中新世(约15 Ma);f—上新世(约5 Ma);

    Figure  12.  Cenozoic plate reconstruction of final processes to form the East Asian superconvergent tectonic system(modified from Honza and Fujioka,2004

    (a) Early Eocene(about 52 Ma); (b) Middle Eocene(about 45 Ma); (c) Early Oligocence(about 35 Ma); (d) At the end of Oligocene(about 25 Ma); (e) Middle Miocene(about 15 Ma); (f) Pliocene(about 5 Ma) 1−Volcanism, 2−Spreading center, 3−Subduction zone, 4−Unactive spreading center, 5−Strike-slip fault, 6−Graben, 7−Plate motion sense

    图  13  珠江口盆地文昌期构造模式的类似物理模拟结果

    a—文三期构造对应构造物理模拟的90°夹角左行右阶叠接的区域性基底卷入型断裂所产生收缩区内的推隆和次级走滑构造组合;b—文二期构造对应构造物理模拟的90°夹角左行右阶叠接的区域性基底卷入型断裂所产生收缩区内的推隆和次级走滑构造组合;c—文一期构造对应构造物理模拟的150°夹角左行右阶叠接的区域性基底卷入型断裂所产生收缩区内的推隆和次级走滑构造组合(据McClay and Bonora,2001修改)

    Figure  13.  Fault patterns during the Wenchang Period in the Pearl River Mouth Basin and their corresponding physical analog results

    (a) Fault pattern in the Wensan Period similar to the physical analog of restraining double bends and secondary strike-slip faults in the pop-ups region of the regional-scale basement-involved sinistral right-stepover fault system after 10 cm sinistral strike-slip displacement on the basement fault system with 90°neutral non-overlapping; (b) Fault pattern in the Wener Period similar to the physical analog of Restraining double bends and secondary strike-slip faults in the pop-ups region of the regional-scale basement-involved sinistral right-stepover fault system after 10 cm sinistral strike-slip displacement on the basement fault system with 90°neutral non-overlapping; (c) Fault pattern in the Wenyi Period similar to the physical analog after 10 cm sinistral strike-slip displacement on the basement fault system with 150° underlapping(modified from McClay and Bonora,2001

    图  14  西太平洋洋陆过渡带层析结构(据Wu and Suppe,2018修改)

    Figure  14.  Tomographic image under the West Pacific Ocean-Continent Connection Zone (modified from Wu and Suppe,2018)

  • CAO X Z, FLAMENT N, LI S Z, et al. , 2021. Spatio-temporal evolution and dynamic origin of Jurassic-Cretaceous magmatism in the South China Block[J]. Earth-Science Reviews, 217: 103605. doi: 10.1016/j.earscirev.2021.103605
    CAO X Z, FLAMENT N, MUELLER R D, et al. , 2018. The Dynamic Topography of Eastern China Since the Latest Jurassic Period[J]. Tectonics, 37(5): 1274-1291. doi: 10.1029/2017TC004830
    CHEN L, LIANG C Y, NEUBAUER F, et al. , 2022. Sedimentary processes and deformation styles of the Mesozoic sedimentary succession in the northern margin of the Mohe basin, NE China: Constraints on the final closure of the Mongol–Okhotsk Ocean[J]. Journal of Asian Earth Sciences, in press.
    CULLEN A, REEMST P, HENSTRA G, et al. , 2010. Rifting of the South China Sea: new perspectives[J]. Petroleum Geoscience, 16(3): 273-282. doi: 10.1144/1354-079309-908
    DAI L M, LI S Z, LI Z H, et al. , 2018. Dynamics of exhumation and deformation of HP-UHP orogens in double subduction-collision systems: Numerical modeling and implications for the Western Dabie Orogen[J]. Earth-Science Reviews, 182: 68-84. doi: 10.1016/j.earscirev.2018.05.005
    DAI L M, WANG L L, LOU D, et al. , 2020. Slab Rollback Versus Delamination: Contrasting Fates of Flat-Slab Subduction and Implications for South China Evolution in the Mesozoic[J]. Journal of Geophysical Research-Solid Earth, 125: e2019 JB019164
    DONG S W, GAO R, CONG B L, et al. , 2004. Crustal structure of southern Dabieshan and Yangtze foreland interpreted from deep seismic reflection profiling[J]. Terra Nowa, 16: 319-324.
    FAURE M, LIN W, CHU Y, et al. , 2016. Triassic tectonics of the southern margin of the South China Block[J]. Comptes Rendus Geoscience, 348: 5-14. doi: 10.1016/j.crte.2015.06.012
    GUO L Z, SHI Y S, MA R S, 2013. On the formation and evolution of the Mesozoic-Cenozoic active continental margin and island arc tectonics of the western Pacific Ocean[J]. Acta Geologica Sinica, 62(1): 11-21. (in Chinese with English abstract)
    HALL R, 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 20: 353-431. doi: 10.1016/S1367-9120(01)00069-4
    HALL R, 2012. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean[J]. Tectonophysics, 570-571: 1-41. doi: 10.1016/j.tecto.2012.04.021
    HONZA E, FUJIOKA K, 2004. Formation of arcs and backarc basins inferred from the tectonic evolution of Southeast Asia since the Late Cretaceous[J]. Tectonophysics, 384(1-4): 23-53. doi: 10.1016/j.tecto.2004.02.006
    JIANG H, WANG H, LI J L, et al. , 2009. Sequence stratigraphy analysis of Zhu-3 depression, Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 29(1): 87-93. (in Chinese)
    JIANG S H, JIANG Y, LIU Y M, et al. , 2021. The Bangong-Nujiang Suture Zone, Tibet Plateau: Its role in the tectonic evolution of the eastern Tethys Ocean[J]. Earth-Science Reviews, 218: 103656. doi: 10.1016/j.earscirev.2021.103656
    JIN C, LI S Z, WANG Y J, et al. , 2009. Diachronous and progressive deformation during the Indosinian-Yanshanian movements of the Xuefeng Mountain in intracontinental composite tectonic system[J]. Oil & Gas Geology, 30(5): 598-607. (in Chinese with English abstract)
    LAN H Y, LI S Z, GUO L L, et al. , 2022. Mesozoic deformation of the Nadanhada Terrane and its implications on the subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 105166.
    LI J B, DING W W, LIN J, et al. , 2021. Dynamic processes of the curved subduction system in Southeast Asia: A review and future perspective[J]. Earth-Science Reviews, 217: 103647. doi: 10.1016/j.earscirev.2021.103647
    LI J Y, LIU J F, QU J F, et al. , 2019 b. Paleozoic tectonic units of Northeast China: continental blocks or orogenic belts?[J]. Earth Science, 44(10): 3157-3177. (in Chinese with English abstract)
    LI P L, 1993. Cenozoic tectonic movement in the Pearl River Mouth Basin[J]. China Offshore Oil and Gas (Geology), 25(06): 11-17. (in Chinese with English abstract)
    LI S Z, CAO X Z, WANG G Z, et al. , 2019 d. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific Plate[J]. Journal of Geomechanics, 25(05): 642-677. (in Chinese with English abstract)
    LI S Z, GUO L L, XU L Q, et al. , 2015. Coupling and transition of Meso-Cenzoic intraplate deformation between the Taihang and the Qinling Mountains[J]. Journal of Asian Earth Sciences, 114(Part I): 188-202.
    LI S Z, JAHN B M, ZHAO S J, et al. , 2017. Triassic southeastward subduction of North China Block to South China Block: insights from new geological, geophysical and geochemical data[J]. Earth-Science Reviews, 166: 270-285. doi: 10.1016/j.earscirev.2017.01.009
    LI S Z, KUSKY T M, LIU X C, et al. , 2009. Two-stage collision-related extrusion of the western Dabie HP-UHP metamorphic terranes, central China: evidence from quartz c-axis fabrics and microstructures[J]. Gondwana Research, 16: 294-309. doi: 10.1016/j.gr.2009.03.003
    LI S Z, KUSKY T M, WANG L, et al. , 2007. Collision leading to multiple-stage large-scale extrusion in the Qinling Orogen: insights from the Mianlue Suture[J]. Gondwana Research, 12(1-2): 121-143. doi: 10.1016/j.gr.2006.11.011
    LI S Z, KUSKY T M, ZHAO G C, et al. , 2010. Two-stage Triassic exhumation of HP-UHP terranes in the Dabie orogen of China: constraints from structural geology[J]. Tectonophysics, 490: 267-293. doi: 10.1016/j.tecto.2010.05.010
    LI S Z, KUSKY T M, ZHAO G C, et al. , 2011. Thermochronological constraints on Two-stage extrusion of HP/UHP terranes in the Dabie-Sulu orogen, east-central China[J]. Tectonophysics, 504: 25-42. doi: 10.1016/j.tecto.2011.01.017
    LI S Z, SANTOSH M, ZHAO G C, et al. , 2012 a. Intracontinental deformation in a frontier of super-convergence: A perspective on the tectonic milieu of the South China Block[J]. Journal of Asian Earth Sciecnes, 49: 311-327.
    LI S Z, SUO Y H, LIU X, et al. , 2012 d. Basic structural pattern and tectonic models of the South China Sea: problems, advances and controversies[J]. Marine Geology & Quaternary Geology, 32(06): 35-53. (in Chinese with English abstract)
    LI S Z, SUO Y H, LIU X, et al. , 2012 e. Basin dynamics and basin groups of the South China Sea[J]. Marine Geology & Quaternary Geology, 32(06): 55-78. (in Chinese with English abstract)
    LI S Z, SUO Y H, LI X Y, et al. , 2018 c. Mesozoic plate subduction in West Pacific and tectono-magmatic response in the East Asian ocean-continent connection zone[J]. Chinese Science Bulletin, 63: 1550-1593. (in Chinese with English abstract) doi: 10.1360/N972017-01113
    LI S Z, SUO Y H, LI X Y, et al. , 2018 b. Microplate Tectonics: new insights from micro-blocks in the global oceans, continental margins and deep mantle[J]. Earth-Science Reviews, 185: 1029-1064. doi: 10.1016/j.earscirev.2018.09.005
    LI S Z, SUO Y H, LI X Y, et al. , 2019 a. Mesozoic tectono-magmatic evolution in the East Asian ocean-continent connection zone and its relationship with Paleo-Pacific Plate subduction[J]. Earth-Science Reviews, 192: 91-137. doi: 10.1016/j.earscirev.2019.03.003
    LI S Z, SUO Y H, SANTOSH M, et al. , 2013. Mesozoic to Cenozoic intracontinental dynamics of the North China Block[J]. Geological Journal, 48(5): 543-560. doi: 10.1002/gj.2500
    LI S Z, SUO Y H, WANG G Z, et al. , 2019 c. Tripole on seafloor and tripole on Earth surface: dynamic connections[J]. Marine Geology & Quaternary Geology, 39 (5): 1-22. (in Chinese with English abstract)
    LI S Z, YU S, ZHAO S J, et al. , 2013. Tectonic transition and plate reconstructions of the East Asian Continental Margin[J]. Marine Geology & Quaternary Geology, 33(03): 65-94. (in Chinese with English abstract)
    LI S Z, ZHAO G C, DAI L M, et al. , 2012 b. Cenozoic faulting of the Bohai Bay Basin and its bearing on the destruction of the eastern North China Craton[J]. Journal of Asian Earth Sciences, 40: 80-93.
    LI S Z, ZHAO G C, DAI L M, et al. , 2012 c. Mesozoic Basins in eastern China and their Bearings on the deconstruction of the North China Craton[J]. Journal of Asian Earth Sciences, 47: 64-79. doi: 10.1016/j.jseaes.2011.06.008
    LI S Z, ZHAO S J, LIU X, et al. , 2018 a. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth-Science Reviews, 186: 37-75. doi: 10.1016/j.earscirev.2017.01.011
    LI Y J, WANG J F, WANG G H, et al. , 2018 d. Discovery and significance of the Dahate fore-arc basalts from the Diyanmiao ophiolite in Inner Mongolia[J]. Acta Petrologica Sinica, 34(2): 469-482. (in Chinese with English abstract)
    LI Z X, LI X H, 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model[J]. Geology, 35: 179-182.
    LIU B, LI S Z, WANG P C, et al. , 2018. Deep-seated structural styles and Mesozoic metallogenic dynamic model in the Middle-Lower Yangtze Region, China[J]. Acta Petrologica Sinica, 34(3): 799-812. (in Chinese with English abstract)
    LIU H L, YAN P, LIU Y C, et al. , 2006. Existence of Qiongnan Suture Zone in northern margin of South China Sea. Chinese Science Bulletin, 52(SII): 92-101. (in Chinese)
    LIU J F, LI J Y, SUN L X, et al. , 2016. Zircon U-Pb dating of the Jiujingzi ophiolite in Bairin Left Banner, Inner Mongolia: Constraints on the formation and evolution of the Xar Moron River suture zone[J]. Geology in China, 43(6): 1947-1962. (in Chinese with English abstract)
    LIU J L, TRAN M D, TANG Y, et al. , 2012. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam: Geochronology, geochemistry and tectonic implications[J]. Gondwana Research, 22: 628-644. doi: 10.1016/j.gr.2011.10.011
    LIU K, ZHANG J J, XIAO W J, et al. , 2020. A review of magmatism and deformation history along the NE Asian margin from ca. 95 to 30 Ma: Transition from the Izanagi to Pacific plate subduction in the early Cenozoic[J]. Earth-Science Reviews, 209: 103317. doi: 10.1016/j.earscirev.2020.103317
    LIU K, ZHANG J J, WILDE S A, et al. , 2017 a. Initial subduction of the Paleo-Pacific Oceanic plate in NE China: Constraints from whole-rock geochemistry and zircon U–Pb and Lu–Hf isotopes of the Khanka Lake granitoids[J]. Lithos, 274-275: 254-270. doi: 10.1016/j.lithos.2016.12.022
    LIU M, CUI X J, LIU F T, 2004. Cenozoic rifting and volcanism in eastern china: a mantle dynamic link to the indo–asian collision? [J] Tectonophysics, 393(1-4): 29-42.
    LIU L J, PENG D D, LIU L, et al. , 2021 b. East Asian lithospheric evolution dictated by multistage Mesozoic flat-slab subduction[J]. Earth-Science Reviews, 217: 103621. doi: 10.1016/j.earscirev.2021.103621
    LIU X C, WEI C J, LI S Z, et al. , 2004 a. Thermobaric structure of a traverse across the western Dabieshan: implications for collisional tectonics of the Sino-Korean and Yangtze cratons[J]. Journal of Metamorphic Geology, 22: 361-379. doi: 10.1111/j.1525-1314.2004.00519.x
    LIU X C, JAHN B M, LIU D Y, et al. , 2004 b. U-Pb SHRIMP-dating of zircons from eclogites and a metagabbro in the western Dabieshan (China) and its tectonic implications[J]. Tectonophysics, 394: 171-192. doi: 10.1016/j.tecto.2004.08.004
    LIU X Y, WU J, ZHU D W, et al. , 2021 c. Superimposition of strike-slip faults and pull-apart basins in the Pearl River Mouth Basin: a case study from the eastern Yangjiang Sag[J]. Geotectonica et Metallogenia, 45(1): 6-19. (in Chinese with English abstract)
    LIU Y J, LI W M, FENG Z Q, et al. , 2017 b. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123-148. doi: 10.1016/j.gr.2016.03.013
    LIU Y J, LI W M, MA Y F, et al. , 2021 a. An orocline in the eastern Central Asian Orogenic Belt[J]. Earth-Science Reviews, 221: 103808. doi: 10.1016/j.earscirev.2021.103808
    LIU Y J, ZHANG X Z, JIN W, et al. , 2010. Late Paleozoic tectonic evolution in Northeast China[J]. Geology in China, 37(4): 943-951. (in Chinese with English abstract)
    LIU Y M, LI S Z, SANTOSH M, et al. , 2019 a. The generation and reworking of continental crust during early Paleozoic in Gondwanan affinity terranes from the Tibet Plateau[J]. Earth-Science Reviews, 190: 486-497. doi: 10.1016/j.earscirev.2019.01.019
    LIU Y M, LI S Z, YU S Y, et al. , 2019 b. The Mesozoic collage and orogeny process of Micro-blocks in Bangong-Nujiang Suture Zone, Tibetan Plateau[J]. Geotectonica et Metallogenia, 43(4): 824-838. (in Chinese with English abstract)
    LIU Y M, WANG M, LI C, et al. , 2019 c. Late Cretaceous tectono-magmatic activity in the Nize region, central Tibet: evidence for lithospheric delamination beneath the Qiangtang-Lhasa collision zone[J]. International Geology Review. 61: 562-583.
    LIUDMILA V D, WANG P C, LI S Z, et al. , 2018. Meso-Cenozoic Evolution of Earth Surface System under the East Asian Tectonic Superconvergence[J]. Acta Geologica Sinica-English Edition, 92(2): 814-849. doi: 10.1111/1755-6724.13556
    MA X Q, LIU J, ZHU D W, et al. , 2021. Sedimentary response of multi-stage pull-apart basin: insights from the Pearl River Mouth Basin in the northern South China Sea Margin[J]. Geotectonica et Metallogenia, 45(1): 64-78. (in Chinese with English abstract)
    MARUYAMA S, 1994. Plume tectonics[J]. Journal of the Geological Society of Japan, 100(1): 24-49.
    METCALFE I, 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context[J]. Gondwana Research, 9: 24-46. doi: 10.1016/j.gr.2005.04.002
    METCALFE I, 2013. Tectonic evolution of the Malay Peninsula[J]. Journal of Asian Earth Sciences, 76: 195-213. doi: 10.1016/j.jseaes.2012.12.011
    MCCLAY K, BONORA M, 2001. Analog models of restraining stpeovers in strike-slip fault systems[J]. AAPG Bulletin, 85(2): 233-260.
    MORLEY C K, 2012. Late Cretaceous–Early Palaeogene tectonic development of SE Asia[J]. Earth-Science Reviews, 115: 37-75. doi: 10.1016/j.earscirev.2012.08.002
    MORLEY C K, 2016. Major unconformities/termination of extension events and associated surfaces in the South China Seas: Review and implications for tectonic development[J]. Journal of Asian Earth Sciences, 120: 62-86. doi: 10.1016/j.jseaes.2016.01.013
    PENG Y B, YU S Y, LI S Z, et al. , 2019. Early Neoproterozoic magmatic imprints in the Altun-Qilian-Kunlun region of the Qinghai-Tibet Plateau: Response to the assembly and breakup of Rodinia supercontinent[J]. Earth-Science Reviews,https://doi.org/10.1016/j.earscirev.2019.102954
    PEI J L, ZHAO Y, ZHOU Z J, et al. , 2021. Impact of Cenozoic Antarctic continent-ocean configuration patterns on global climate change[J]. Journal of Geomechanics, 7(5): 867-879. (in Chinese with English abstract)
    PUBELLIER M, MONNIER C, MAURY R, et al. , 2004. Plate kinematics, origin and tectonic emplacement of supra-subduction ophiolites in SE Asia[J]. Tectonophysics, 392: 9-36. doi: 10.1016/j.tecto.2004.04.028
    QI J F, WU J F, MA B S, et al. , 2019. The structural model and dynamics concerning middle section, Pearl River Mouth Basin in north margin og South China Sea[J]. Earth Science Frontiers, 26(02): 203-221. (in Chinese with English abstract)
    SETON M, MÜLLER R D, ZAHIROVIC S, et al. , 2012. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 113: 212-270. doi: 10.1016/j.earscirev.2012.03.002
    SIBUET J C, YEH Y C, et al. , 2016. Geodynamics of the South China Sea[J]. Tectonophysics, 692: 98-119. doi: 10.1016/j.tecto.2016.02.022
    SUO Y H, LI S Z, CAO X Z, et al. , 2020. Two-stage eastward diachronous model of India-Eurasia collision: Constraints from the intraplate tectonic records in Northeast Indian Ocean[J]. Gondwana Research, https://doi.org/10.1016/j.gr.2020.01.006.
    SUO Y H, LI S Z, CAO X Z, et al. , 2021. Mantle micro-block beneath the Indian Ocean and its implications on the continental rift-drift-collision of the Tethyan evolution[J]. Earth-Science Reviews, 217: 103622. doi: 10.1016/j.earscirev.2021.103622
    SUO Y H, LI S Z, JIN C, et al. , 2019. Eastward tectonic migration and transition of the Jurassic-Cretaceous Andean-type continental margin along Southeast China[J]. Earth-Science Reviews, 196: 102884. doi: 10.1016/j.earscirev.2019.102884
    SUO Y H, LI S Z, PENG G R, et al. , 2022. Cenozoic basement-involved rifting of the northern South China Sea margin[J]. Gondwana Research, https://doi.org/10.1016/j.gr.2022.02.017.
    SUO Y H, LI S Z, YU S, et al. , 2014. Cenozoic tectonic jumping and implications for hydrocarbon accumulation in basins in the East Asia Continental Margin[J]. Journal of Asian Earth Sciences, 88: 28-40. doi: 10.1016/j.jseaes.2014.02.019
    SUO Y H, LI S Z, ZHAO S J, et al. , 2015. Continental margin basins in East Asia: tectonic implications of the Meso-Cenozoic East China Sea pull-apart basins[J]. Geological Journal, 50: 139-156. doi: 10.1002/gj.2535
    TANG S L, YAN D P, QIU L, et al. , 2014. Partitioning of the Cretaceous Pan-Yangtze Basin in the central South China Block by exhumation of the Xuefeng Mountains during a transition from extensional to compressional tectonics? [J] Gondwana Research, 25: 1644-1659.
    VAN D, TORSVIK T H, SPAKMAN W, et al. , 2012. Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure[J]. Nature Geoscience, 5: 215-219. doi: 10.1038/ngeo1401
    WANG H, 2008. Basic principles, methods and applications of sequence stratigraphy[M]. Wuhan: China University of Geosciences Press. (in Chinese)
    WANG H, LIN F C, LI X Z, et al. , 2015. The division of tectonic units and tectonic evolution in Laos and its adjacent regions[J]. Geology in China, 42(1): 71-84. (in Chinese with English abstract)
    WANG J, LI S Z, JIN C, et al. , 2010. Dome and basin pattern in central Hunan Province: stages and genesis of fold superposition[J]. Geotectonica et Metallogenia, 34(02): 159-165. (in Chinese with English abstract)
    WANG P C, LI S Z, GUO L L, et al. , 2017. Opening of the South China Sea (SCS): a joint effect of dextral strike-slip pull-apart and proto-SCS slab pull[J]. Earth Science Frontiers, 24(04): 294-319. (in Chinese with English abstract)
    WANG P C, LI S Z, LIU X, et al. , 2012. Yanshanian fold-thrust tectonics and dynamics in the Middle-Lower Yangtze River area, China[J]. Acta Petrologica Sinica, 28(10): 3418-3430. (in Chinese with English abstract)
    WANG P C, LI S Z, SUO Y H, et al. , 2020. Plate tectonic control on the formation and tectonic migration of Cenozoic basins in northern margin of the South China Sea[J]. Geoscience frontiers, 11: 1231–1251. doi: 10.1016/j.gsf.2019.10.009
    WANG P C, ZHAO S J, LI S Z, et al. , 2015. The styles and dynamics of thrust in the south of the Middle-Lower Yangtze River area, China[J]. Acta Petrologica Sinica, 31(1): 230-244. (in Chinese with English abstract)
    WANG Y J, ZHANG F F, FAN W M, et al. , 2010. Tectonic setting of the South China Block in the early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology[J]. Tectonics 29: doi: 10.1029/ 2010 TC002750
    WU F Y, SUN D Y, LI H, et al. , 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 187: 143-173. doi: 10.1016/S0009-2541(02)00018-9
    WU J, SUPPE J, 2018. Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography[J]. Journal of Earth Science, 29(6): 1304-1318. doi: 10.1007/s12583-017-0813-x
    WU J, SUPPE J, LU R, et al. , 2016. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods[J]. Journal of Geophysical Research-Solid Earth, 121: 4670-4741,doi:10.1002/2016 JB012923.
    XIAO W J, HE H Q, LI J L, et al. , 1997. A preliminary study of NW Zhejiang foreland fold and thrust belt in Southeast China[J]. Science in China (Series D: Earth Sciences), (4): 418-423.
    XIAO W J, SUN S, LI J L, et al. , 2001. Chapter 2-Early Mesozoic Collapse of the Late Paleozoic Archipelago in South China[M]. Paradoxes in Geology. pp. 15-37.
    XIAO W J, WINDLEY B F, SUN S, et al. , 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion[J]. Annual Review of Earth and Planetary Sciences, 43(1): 477-507. doi: 10.1146/annurev-earth-060614-105254
    XIE X N, MÜLLER R D, REN J Y, et al. , 2008. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea[J]. Marine Geology, 247: 129-144. doi: 10.1016/j.margeo.2007.08.005
    XU J Y, ZHANG L Y, 1999. Genesis of Cenozoic basins in the eastern margin of Eurasia Plate: Dextral pulling-apart[J]. Oli & Gas Geology, 20(03): 187-191. (in Chinese with English abstract)
    YU S Y, LI S Z, ZHANG J X, et al. , 2019. Multistage anatexis during tectonic evolution from oceanic subduction to continental collision: A review of the North Qaidam UHP Belt, NW China[J]. Earth-Science Reviews, 191: 190-211. doi: 10.1016/j.earscirev.2019.02.016
    YU S Y, PENG Y B, ZHANG J X, et al. , 2021. Tectono-thermal evolution of the Qilian orogenic system: Tracing the subduction, accretion and closure of the Proto-Tethys Ocean[J]. Earth-Science Reviews, 215: 103547. doi: 10.1016/j.earscirev.2021.103547
    ZAHIROVIC S, MATTHEWS K J, FLAMENT N, et al. , 2016. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic[J]. Earth-Science Reviews, 162 : 293-337. doi: 10.1016/j.earscirev.2016.09.005
    ZHANG C M, SUN Z, GIANRETO M, et al. , 2021. Ocean-continent transition architecture and breakup mechanism at the mid-northern South China Sea[J]. Earth-Science Reviews, 217: 103620. doi: 10.1016/j.earscirev.2021.103620
    ZHANG G W, DONG Y P, LAI S C, et al. , 2004. Mianlue tectonic zone and Mianlue suture zone on southern margin of Qinling-Dabie orogenic belt[J]. Science in China (Series D-Earth Sciences), 47: 300-316. doi: 10.1360/02YD0526
    ZHAO G C, WANG Y J, HUANG B C, et al. , 2018. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 186: 262-286. doi: 10.1016/j.earscirev.2018.10.003
    ZHENG Y F, FU B, GONG B, et al. , 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime[J]. Earth-Science Reviews, 62: 105-161. doi: 10.1016/S0012-8252(02)00133-2
    ZHONG L F, CAI G Q, KOPPERS A, et al. , 2018. 40Ar/39Ar dating of oceanic plagiogranite: constraints on the initiation of seafloor spreading in the south china sea[J]. Lithos, 302-303: 421-426. doi: 10.1016/j.lithos.2018.01.018
    ZHOU J, JIN C, SUO Y H, et al. , 2021. Yanshanian mineralization and geodynamic evolution in the Western Pacific Margin: a review of metal deposits of Zhejiang Province, China[J]. Ore Geology Reviews, 135: 104216. doi: 10.1016/j.oregeorev.2021.104216
    ZHOU J, LI S Z, SUO Y H, et al. , 2022. NE-trending transtensional faulting in the Pearl River Mouth Basin of the northern South China Sea margin[J]. Gondwana Research, https://doi.org/10.1016/j.gr.2022.02.016.
    郭令智, 施央申, 马瑞士, 1983. 西太平洋中、新生代活动大陆边缘和岛弧构造的形成及演化[J]. 地质学报, 62(01): 11-21.
    姜华, 王华, 李俊良, 等, 2009. 珠江口盆地珠三坳陷层序地层样式分析[J]. 海洋地质与第四纪地质, 29(1): 87-93.
    金宠, 李三忠, 王岳军, 等, 2009. 雪峰山陆内复合构造系统印支-燕山期构造穿时递进特征[J]. 石油与天然气地质, 30(5): 598-607. doi: 10.3321/j.issn:0253-9985.2009.05.010
    李锦轶, 刘建峰, 曲军峰, 等, 2019 b. 中国东北地区古生代构造单元: 地块还是造山带?[J]. 地球科学, 44(10): 3157-3177.
    李平鲁, 1993. 珠江口盆地新生代构造运动[J]. 中国海上油气, 25(06): 11-17.
    李三忠, 曹现志, 王光增, 等, 2019 d. 太平洋板块中-新生代构造演化及板块重建[J]. 地质力学学报. 25(5): 642-677.
    李三忠, 索艳慧, 李玺瑶, 等, 2018 c. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造-岩浆响应[J]. 科学通报, 63: 1550-1593.
    李三忠, 索艳慧, 刘鑫, 等, 2012 d. 南海的基本构造特征与成因模型: 问题与进展及论争[J]. 海洋地质与第四纪地质, 32(06): 35-53.
    李三忠, 索艳慧, 刘鑫, 等, 2012 e. 南海的盆地群与盆地动力学[J]. 海洋地质与第四纪地质, 32(06): 55-78.
    李三忠, 索艳慧, 王光增, 等, 2019 c. 海底“三极”与地表“三极”: 动力学关联[J]. 海洋地质与第四纪地质. 39 (5): 1-22.
    李三忠, 余珊, 赵淑娟, 等, 2013. 东亚大陆边缘的板块重建与构造转换[J]. 海洋地质与第四纪地质, 33(03): 65-94.
    李英杰, 王金芳, 王根厚, 等, 2018 d. 内蒙古迪彦庙蛇绿岩带达哈特前弧玄武岩的发现及其地质意义[J]. 岩石学报, 34(2): 469-482.
    刘博, 李三忠, 王鹏程, 等, 2018. 长江中下游深部构造及其中生代成矿动力学模式[J]. 岩石学报, 34(3): 799-812.
    刘海龄, 阎贫, 刘迎春, 等, 2006. 南海北缘琼南缝合带的存在[J]. 科学通报, 51(增刊II): 92-101.
    刘建峰, 李锦轶, 孙立新, 等, 2016. 内蒙古巴林左旗九井子蛇绿岩锆石U-Pb定年: 对西拉木伦河缝合带形成演化的约束[J]. 中国地质, 43(6): 1947-1962.
    刘欣颖, 吴静, 朱定伟, 等, 2021 c. 珠江口盆地多期走滑构造与叠合型拉分盆地: 以阳江东凹为例[J]. 大地构造与成矿学. 45(1): 6-19.
    刘一鸣, 李三忠, 于胜尧, 等, 2019 b. 青藏高原班公湖-怒江缝合带及周缘燕山期微地块聚合与增生造山过程[J]. 大地构造与成矿学, 43(4): 824-838.
    刘永江, 张兴洲, 金巍, 等, 2010. 东北地区晚古生代区域构造演化[J]. 中国地质, 37(4): 943-951. doi: 10.3969/j.issn.1000-3657.2010.04.010
    马晓倩, 刘军, 朱定伟, 等, 2021. 多期走滑拉分盆地的沉积响应: 以南海北部珠江口盆地为例[J]. 大地构造与成矿学. 45(1): 64-78.
    裴军令, 赵越, 周在征, 等, 2021. 南极新生代海陆格局变迁对全球气候变化的影响[J]. 地质力学学报, 7(5): 867-879. DOI:10.12090 /j.issn.1006-6616.2021.27.05.070.
    漆家福, 吴景富, 马兵山, 等, 2019. 南海北部珠江口盆地中段伸展构造模型及其动力学[J]. 地学前缘, 26(02): 203-221. doi: 10.13745/j.esf.sf.2019.1.16
    王宏, 林方成, 李兴振, 等, 2015. 老挝及邻区构造单元划分与构造演化[J]. 中国地质, 42(1): 71-84. doi: 10.3969/j.issn.1000-3657.2015.01.006
    王华, 2008. 层序地层学基本原理、方法与应用[M]. 武汉: 中国地质大学出版社.
    王建, 李三忠, 金宠, 等, 2010. 湘中地区穹盆构造: 褶皱叠加期次和成因[J]. 大地构造与成矿学, 34(2) : 159-165. doi: 10.3969/j.issn.1001-1552.2010.02.002
    王鹏程, 李三忠, 刘鑫, 等, 2012. 长江中下游燕山期逆冲推覆构造及成因机制[J]. 岩石学报, 28(10): 3418-3430.
    王鹏程, 李三忠, 郭玲莉, 等, 2017. 南海打开模式: 右行走滑拉分与古南海俯冲拖曳[J]. 地学前缘, 24(04): 294-319.
    王鹏程, 赵淑娟, 李三忠, 等, 2015. 长江中下游南部逆冲变形样式及其机制[J]. 岩石学报, 31(1): 230-244.
    许浚远, 张凌云, 1999. 欧亚板块东缘新生代盆地成因: 右行剪切拉分作用[J]. 石油与天然气地质, 20(3): 187-191. doi: 10.3321/j.issn:0253-9985.1999.03.001
  • 期刊类型引用(11)

    1. 索艳慧,付新建,李三忠,程昊皞,田子晗,韩续,宋双双. 古地貌动态模拟研究进展综述. 古地理学报. 2024(01): 165-171 . 百度学术
    2. 田子晗,索艳慧,李三忠,丁雪松,韩续,宋双双,付新建. 长江三峡贯通过程的动态古地貌重建. 古地理学报. 2024(01): 208-229 . 百度学术
    3. 张敏,李海龙,唐灵,祁士华,旷健,王文,张金龙. 粤东河源盆地的深部构造、沉积序列与盆地演化. 地球学报. 2024(03): 291-308 . 百度学术
    4. 刘小虎,王新宇,肖昌浩,张文高,刘向冲,于萍萍,毛承安,付伟. 桂西隆林-西林锑金矿集区成矿控制因素探讨. 地质力学学报. 2024(03): 427-442 . 本站查看
    5. 李波,于大潞,王楠,毕雯雯,高帅,胥芹,王昱玮,侯芃. 莱芜盆地岩溶地下水富集规律. 地质力学学报. 2024(04): 691-702 . 本站查看
    6. Weiwei DING,Rixiang ZHU,Bo WAN,Liang ZHAO,Xiongwei NIU,Pan ZHAO,Baolu SUN,Yanghui ZHAO. Geodynamic processes of the southeastern Neo-Tethys Ocean and the formation mechanism of the curved subduction system in Southeast Asia. Science China(Earth Sciences). 2023(04): 703-717 . 必应学术
    7. 丁巍伟,朱日祥,万博,赵亮,牛雄伟,赵盼,孙宝璐,赵阳慧. 新特提斯洋东南段动力过程及东南亚环形俯冲体系形成机制. 中国科学:地球科学. 2023(04): 687-701 . 百度学术
    8. 占华旺,索艳慧,朱俊江,李三忠,王鹏程,王光增,周洁,王秀娟. 南海海盆俯冲消亡机制:马尼拉海沟俯冲起始的启示. 岩石学报. 2023(09): 2569-2582 . 百度学术
    9. 李响,张宗言,李海勇,张楗钰,白秀娟. 雷州半岛中西部第四纪火山岩的~(40)Ar/~(39)Ar年龄及地质意义. 地质力学学报. 2023(04): 512-521 . 本站查看
    10. 田朝阳,陈虹,刘新社,公王斌,赵伟波,康锐. 鄂尔多斯西缘牛首山—罗山地区裂变径迹年龄与中生代构造抬升. 地质力学学报. 2023(05): 599-617 . 本站查看
    11. 张军生,杨扬,颜晓宇,龚辉. 孙吴—嘉荫盆地古近系物源及其地质意义. 吉林大学学报(地球科学版). 2022(06): 1762-1780 . 百度学术

    其他类型引用(3)

  • 加载中
图(14)
计量
  • 文章访问数:  2449
  • HTML全文浏览量:  351
  • PDF下载量:  392
  • 被引次数: 14
出版历程
  • 收稿日期:  2022-02-12
  • 修回日期:  2022-06-06
  • 预出版日期:  2022-11-02

目录

/

返回文章
返回