留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东天山东段国宝山晚二叠世—中三叠世花岗质岩石成因与构造意义——年代学和地球化学约束

贺昕宇 方同辉 薄贺天 刘海鹏 张忠义 肖文进

贺昕宇, 方同辉, 薄贺天, 等, 2022. 东天山东段国宝山晚二叠世—中三叠世花岗质岩石成因与构造意义——年代学和地球化学约束. 地质力学学报, 28 (1): 126-142. DOI: 10.12090/j.issn.1006-6616.20222807
引用本文: 贺昕宇, 方同辉, 薄贺天, 等, 2022. 东天山东段国宝山晚二叠世—中三叠世花岗质岩石成因与构造意义——年代学和地球化学约束. 地质力学学报, 28 (1): 126-142. DOI: 10.12090/j.issn.1006-6616.20222807
HE Xinyu, FANG Tonghui, BO Hetian, et al., 2022. Petrogenesis and tectonic significance of Late Permian-Middle Triassic granitoids in Guobaoshan, eastern section of the eastern Tianshan mountains: Constraints from geochronology and geochemistry. Journal of Geomechanics, 28 (1): 126-142. DOI: 10.12090/j.issn.1006-6616.20222807
Citation: HE Xinyu, FANG Tonghui, BO Hetian, et al., 2022. Petrogenesis and tectonic significance of Late Permian-Middle Triassic granitoids in Guobaoshan, eastern section of the eastern Tianshan mountains: Constraints from geochronology and geochemistry. Journal of Geomechanics, 28 (1): 126-142. DOI: 10.12090/j.issn.1006-6616.20222807

东天山东段国宝山晚二叠世—中三叠世花岗质岩石成因与构造意义——年代学和地球化学约束

doi: 10.12090/j.issn.1006-6616.20222807
基金项目: 

全国公益性基础地质调查项目 DD20160011

详细信息
    作者简介:

    贺昕宇(1989-), 男, 博士, 高级工程师, 主要从事岩石学、矿床学研究。E-mail: xinyuhe2@hotmail.com

  • 中图分类号: P588.1

Petrogenesis and tectonic significance of Late Permian-Middle Triassic granitoids in Guobaoshan, eastern section of the eastern Tianshan mountains: Constraints from geochronology and geochemistry

Funds: 

the Public Welfare Project of the China Geological Survey DD20160011

  • 摘要: 东天山—北山地区是中国重要的金属成矿带,对于其晚二叠世—中三叠世构造演化的认识,仍存在较大分歧。东天山东段国宝山地区出露有一系列晚二叠世—中三叠世花岗质岩石,包括花岗闪长岩、二长花岗岩、石英正长岩、正长花岗岩和天河石花岗岩。该系列岩体整体以富硅、富碱为特征,其中花岗闪长岩、二长花岗岩和石英正长岩具有钾质和富镁特征,轻稀土相对重稀土更富集(LREE/HREE=0.86),稀土配分曲线整体右倾,呈弱Eu负异常(δEu=0.40~0.68);而正长花岗岩与天河石花岗岩类似,具钠质和铁质特征,富集Ta、Rb,重稀土元素较轻稀土更富集(LREE/HREE=5.11~17.17),稀土配分曲线呈海鸥式,具明显Eu负异常(δEu=0.03)。花岗闪长岩锆石206Pb/238U表面年龄集中于255~250 Ma,早于天河石花岗岩247~240 Ma的年龄。岩石地球化学特征表明正长花岗岩与天河石花岗岩同属A型花岗岩,形成于板内构造环境;花岗闪长岩、二长花岗岩和石英正长岩属Ⅰ型花岗岩,形成于后碰撞环境,两个岩石组合属不同的岩浆系列,无成因关系。研究认为东天山东段国宝山地区在255~250 Ma仍处于后碰撞环境,~247 Ma进入板内伸展构造环境。

     

  • 图  1  中亚造山带和东天山地质简图

    a—中亚造山带地质简图(据Xiao et al., 2010修改); b—东天山地质简图(据Zhang et al., 2016修改)

    Figure  1.  Geological sketch map of the Central Asian Orogen Belt and the eastern Tianshan Mountains

    (a) The Central Asian Orogenic Belt (CAOB) (modified after Xiao et al., 2010); (b) The eastern Tianshan Mountains (modified after Zhang et al., 2016)

    图  2  国宝山地区地质简图

    Figure  2.  Geological sketch map of the Guobaoshan area

    图  3  国宝山晚二叠世—中三叠世花岗质岩石野外照片

    a—花岗闪长岩; b—中细粒二长花岗岩; c—斑状花岗闪长岩与中细粒花岗闪长岩接触部位; d—斑状花岗闪长岩中暗色包体; e—正长花岗质细晶岩脉切穿中细粒花岗闪长岩; f—天河石花岗岩; g—中细粒花岗闪长岩与天湖岩群接触部位; h—中细粒花岗闪长岩中天湖岩群片麻岩捕虏体; i—斑状花岗闪长岩中泥盆纪花岗闪长岩捕虏体, 二者接触部位发育钾化烘烤边

    Figure  3.  Photos of Late Permian-Middle Triassic granitoid outcrops in the Guobaoshan area

    (a) Granodiorite; (b) Medium-fine grained monzonitic granite; (c) Contact segment between porphyroid and medium-fine grained granodiorites; (d) Mafic microgranular enclave in porphyroid granodiorite; (e) Medium-fine grained granodiorite cut by aplitic syenogranite dyke; (f) Amazonite granite; (g) Contact segment between medium-fine grained granodiorite and gneiss of the Tianhu Complex; (h) Xenolith of gneiss of the Tianhu Complex in medium-fine grained granodiorite; (i) Xenolith of middle Devonian granodiorite in Permian porphyroid granodiorite

    图  4  国宝山晚二叠世—中三叠世花岗质岩石镜下照片

    矿物缩写: Or—钾长石; Qtz—石英; Pl—斜长石; Bt—黑云母; Hbl—角闪石a—花岗闪长岩; b—二长花岗岩; c—石英正长岩; d—正长花岗岩

    Figure  4.  Microphotographs of the Late Permian-Middle Tirassic granitoids in the Guobaoshan area

    (a) Granodiorite; (b)Monzogranite; (c) Quartz syenite; (d) Syenogranite Or-Orthoclase; Qtz-Quartz; Pl-Plagioclase; Bt-Biotite; Hbl-Hornblende

    图  5  国宝山晚二叠世—中三叠世花岗质岩石岩性判别图解(天河石花岗岩数据贺昕宇, 2019)

    1—碱性辉长岩(碱性玄武岩); 2—橄榄辉长岩(橄榄玄武岩); 3—辉长苏长岩(拉斑玄武岩); 4—正长辉长岩(粗石玄武岩); 5—二长辉长岩(粗安玄武岩); 6—辉长岩(玄武岩); 7—闪长正长岩(橄榄安粗岩); 8—二长岩(安粗岩); 9—二长闪长岩(粗安岩); 10—闪长岩(安山岩); 11—霞石正长岩(粗石质响岩); 12—正长岩(粗石岩); 13—石英正长岩(石英粗石岩); 14—石英二长岩(石英安粗岩); 15—英云闪长岩(英安岩); 16—碱性花岗岩(碱性流纹岩); 17—正长花岗岩(流纹岩); 18—二长花岗岩(英安流纹岩); 19—花岗闪长岩(流纹英安岩)
    a—R1-R2图解(底图据De La Roche et al., 1980); b—AR-SiO2图解(底图据Wright, 1969)

    Figure  5.  Geochemical discrimination diagrams for the Late Permian-Middle Tirassic granitoid in the Guobaoshan area(Data of amazonite granite are from He, 2019).

    (a) R1-R2 diagram (after De La Roche et al., 1980); (b) AR-SiO2 diagram (after Wright, 1969)
    1-Alkali gabbro; 2-Olivine gabbro; 3-Norite gabbro; 4-Syenogabbro; 5-Monzogabbro; 6-Gabbro; 7-Syenodiorite; 8-Monzonite; 9-Monzodiorite; 10-Diorite; 11-Nepheline syenite; 12-Syenite; 13-Quartz syenite; 14-Quartz monzonite; 15-Tonalite; 16-Alkali granite; 17-Syenogranite; 18-Monzogranite; 19-Granodiorite

    图  6  国宝山晚二叠世—中三叠世花岗质岩石蜘蛛图(天河石花岗岩数据贺昕宇, 2019)

    a—微量元素蜘蛛图(原始地幔数据来自Sun and McDonough, 1989); b—稀土元素蜘蛛图(球粒陨石数据来自Boynton, 1984)

    Figure  6.  Spidergrams of the Late Permian-Middle Tirassic granitoids in the Guobaoshan area (Data of amazonite granite are from He, 2019).

    (a) Primitive mantle normalized spidergram of Late Permian-Middle Tirassic granitoid (The primitive mantle normalization values are from Sun and McDonough, 1989); (b) Chondrite normalized REE distribution pattern of Triassic granitoid (The chondrite normalization values are from Boynton, 1984).

    图  7  国宝山花岗闪长岩锆石CL图像和测年结果

    a、b—阴极发光图像; c、d—锆石U-Pb年龄谐和图

    Figure  7.  Cathodoluminescence images and dating results of the granodiorites in the Guobaoshan area

    (a and b) CL images of the zircons; (c and d) Concordia diagrams for LA-ICP-MS zircon U-Pb ages of the granodiorites

    图  8  国宝山晚二叠世—中三叠世花岗质岩石判别图解(天河石花岗岩数据贺昕宇, 2019)

    a—SiO2-FeO/(FeO+MgO)图解(底图据Frost et al., 2001); b—SiO2-FeOT/(FeOT+MgO)图解(底图据Frost et al., 2001); c—SiO2-Zn图解(底图据Collins et al., 1982); d—1000Ga/Al-R1图解(底图据洪大卫等, 1995; PA—后造山; AA—非造山); e—Nb-Y-3Ga图解(底图据Eby, 1992); f—Nb/Yb-Th/Yb图解(底图据Condie, 2005; UC—上地壳; MC—中地壳; LC—下地壳; PM—初始地幔; OIB—洋岛玄武岩; N-MORB—N型洋中脊玄武岩; E-MORB—E型洋中脊玄武岩)

    Figure  8.  Discrimination diagrams for Late Permian-Middle Tirassic granitoids in the Guobaoshan area (Data of amazonite granite are from He, 2019).

    (a) SiO2-FeO/(FeO+MgO) diagram (after Frost et al., 2001); (b) SiO2-FeOT/(FeOT+MgO) diagram (after Frost et al., 2001); (c) SiO2-Zn diagram (after Collins et al., 1982); (d) 1000Ga/Al-R1 diagram (after Hong et al., 1995; PA-Post orogenic A-type granite; AA-Anorogenic A-type granite); (e) Nb-Y-3Ga diagram (after Eby, 1992); (f) Nb/Yb-Th/Yb diagram (after Condie, 2005; UC-Upper crust; MC-Middle crust; LC-Lower crust; PM-primary mantle; OIB-Oceanic island basalt; N-MORB-Normal Mid-ocean ridge basalt; E-MORB-Enriched Mid-ocean ridge basalt)

    图  9  国宝山晚二叠世—中三叠世花岗质岩石哈克图解(天河石花岗岩数据贺昕宇, 2019)

    a—SiO2-Fe2O3图解; b—SiO2-TiO2图解; c—SiO2-FeO图解; d—SiO2-CaO图解; e—SiO2-MgO图解; f—SiO2-P2O5图解

    Figure  9.  Representative variation diagrams of major element compositions versus SiO2 for Late Permian-Middle Tirassic granitoid in the Guobaoshan area (Data of amazonite granite are from He, 2019)

    (a) SiO2-Fe2O3 diagram; (b) SiO2-TiO2 diagram; (c) SiO2-FeO diagram; (d) SiO2-CaO diagram; (e) SiO2-MgO diagram; (f) SiO2-P2O5 diagram

    图  10  国宝山晚二叠世—中三叠世花岗质岩石构造环境判别图解(天河石花岗岩数据贺昕宇, 2019)

    a—SiO2-FeOT/(FeOT+MgO)图解(底图据Maniar and Piccoli, 1989; RRG—与裂谷有关的花岗岩; CEUG—造陆抬升有关的花岗岩; POG—造山后花岗岩; IAG—岛弧花岗岩; CAG—大陆弧花岗岩; CCG—大陆碰撞花岗岩); b—SiO2-TiO2图解(底图据Maniar and Piccoli, 1989); c—SiO2-Nb图解(底图据Pearce et al., 1984; WPG—板内花岗岩; ORG—洋脊花岗岩; VAG—火山弧花岗岩; COLG—碰撞花岗岩); d—Rb/10-Hf-3Ta图解(底图据Harris et al., 1986); e—Y+Nb-Rb图解(底图据Pearce et al., 1984; syn-COLG—同碰撞花岗岩; post-COLG—后碰撞花岗岩); f—SiO2-Rb图解(底图据Pearce et al., 1984)

    Figure  10.  Tectonic setting discrimination diagrams for Late Permian-Middle Tirassic granitoid in the Guobaoshan area (Data of amazonite granite are from He, 2019).

    (a) SiO2-FeOT/(FeOT+MgO) diagram (after Maniar and Piccoli, 1989; RRG-Rift-related granitoids; CEUG-Continental epeirogenic uplift granitoids; POG-Postorogenic granitoids; IAG-Island arc granitoids; CAG-Continental arc granitoids; CCG-Continental collision granitoids); (b) SiO2-TiO2 diagram(after Maniar and Piccoli, 1989); (c) SiO2-Nb diagram (after Pearce et al., 1984; WPG-Within plate granites; ORG-Ocean ridge granites; VAG-Volcanic arc granites; COLG-Collision granites); (d) Rb/10-Hf-3Ta diagram(after Harris et al., 1986); (e) Y+Nb-Rb diagram (after Pearce et al., 1984; syn-COLG-Syn-collision granites; post-COLG-Post-collision granites); (f) SiO2-Rb diagram (after Pearce et al., 1984)

    表  1  国宝山花岗质岩石主量元素(%)、微量元素(×10-6)分析结果

    Table  1.   Major (%) and trace (×10-6) elements compositions of the granitoids in the Guobaoshan area

    样品号 2-1 2-4 2-6 11-12 11-14 12-2 12-4 30-2 38-1 38-2
    SiO2 69.20 73.10 71.20 75.70 72.90 73.10 73.70 74.40 72.30 72.10
    TiO2 0.40 0.30 0.32 0.03 0.25 0.27 0.23 0.37 0.43 0.45
    Al2O3 14.40 13.20 14.10 12.50 13.30 12.30 11.90 11.80 11.70 11.20
    FeOT 3.43 2.50 2.67 1.38 1.81 2.91 2.60 2.56 3.09 2.78
    Fe2O3 0.54 0.64 0.54 0.30 0.40 0.53 0.59 0.40 0.59 0.24
    FeO 2.94 1.92 2.18 1.11 1.45 2.43 2.07 2.20 2.56 2.56
    MnO 0.05 0.04 0.05 0.11 0.04 0.06 0.05 0.04 0.05 0.05
    MgO 1.31 0.88 0.93 0.10 0.44 0.73 0.63 0.35 0.96 1.01
    CaO 2.62 2.00 1.92 0.77 1.81 1.79 1.53 1.66 2.22 2.43
    Na2O 3.55 3.02 3.28 4.40 3.12 3.53 3.55 3.22 3.46 4.00
    K2O 3.68 4.11 4.32 3.85 5.10 3.90 4.02 4.55 3.53 3.06
    P2O5 0.12 0.09 0.09 0.01 0.07 0.08 0.08 0.07 0.11 0.13
    LOI 1.09 0.69 1.12 1.14 1.10 0.83 1.09 0.80 1.60 2.32
    合计 99.90 99.90 100.00 100.00 99.90 99.60 99.50 99.90 99.40 99.50
    DI 78.30 84.10 83.40 94.30 88.40 85.80 88.10 88.70 84.50 86.50
    Rb 212.00 187.00 239.00 617.00 404.00 254.00 242.00 203.00 147.00 140.00
    Th 22.90 31.10 38.60 21.20 29.20 29.70 29.50 22.30 28.20 29.10
    U 2.83 4.21 3.60 5.41 4.97 4.25 3.78 1.56 2.48 2.04
    Nb 14.00 10.40 11.60 32.30 17.00 20.60 16.20 15.80 12.40 14.40
    Ta 1.20 0.95 1.05 5.77 1.98 2.40 1.58 1.09 1.47 1.22
    La 36.80 32.30 16.80 6.80 52.60 28.30 27.80 43.40 28.90 36.10
    Ce 66.80 62.40 35.00 19.60 94.20 60.30 54.30 85.10 54.10 73.00
    Pb 28.60 28.50 36.20 95.20 56.30 38.10 38.90 28.70 25.20 20.40
    Pr 7.43 6.98 4.05 3.00 9.75 7.63 6.65 9.17 6.24 7.84
    Sr 268.00 206.00 219.00 15.00 168.00 171.00 148.00 174.00 196.00 188.00
    Nd 28.90 26.00 16.40 14.70 35.50 28.10 24.50 32.30 22.60 27.70
    Zr 158.00 110.00 110.00 191.00 170.00 167.00 140.00 191.00 161.00 184.00
    Hf 7.08 3.96 3.62 5.02 5.12 7.37 5.34 6.11 5.27 4.75
    Sm 5.84 4.91 3.40 8.11 6.62 6.62 4.77 4.94 3.91 4.45
    Eu 1.55 0.93 0.68 0.09 0.85 0.84 0.74 0.86 0.74 0.79
    Gd 5.93 4.20 2.79 10.12 4.82 6.08 4.23 4.23 3.24 3.75
    Tb 1.05 0.66 0.43 2.62 0.73 1.08 0.69 0.57 0.46 0.54
    Dy 7.21 3.58 2.43 18.20 3.75 6.99 4.28 2.68 2.68 2.97
    Y 47.70 21.60 14.80 19.60 19.60 37.50 24.20 10.70 13.00 15.00
    Ho 1.62 0.71 0.48 3.62 0.66 1.42 0.87 0.44 0.50 0.57
    Er 5.11 2.14 1.39 10.13 1.75 4.41 2.72 1.11 1.50 1.68
    Tm 0.82 0.33 0.22 1.75 0.26 0.62 0.45 0.14 0.22 0.25
    Yb 5.93 2.38 1.54 12.60 1.87 4.57 3.16 0.94 1.51 1.83
    Lu 0.91 0.37 0.24 1.85 0.29 0.62 0.48 0.13 0.22 0.27
    LREE 134.00 76.00 106.00 52.00 199.00 132.00 119.00 176.00 116.00 150.00
    HREE 14.40 9.50 10.00 60.90 14.10 25.80 16.90 10.20 10.30 11.90
    δEu 0.63 0.68 0.68 0.03 0.46 0.40 0.50 0.58 0.64 0.59
    下载: 导出CSV

    表  2  国宝山花岗质岩石锆石U-Pb测年分析结果

    Table  2.   Results of zircon U-Pb dating for the granitoids in the Guobaoshan area

    样品编号 测点号 Th/×10-6 U/×10-6 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 208Pb/232Th ±1σ
    2-6 2-6-1 447 1084 同位素比值 0.0507 0.0009 0.2762 0.0059 0.0395 0.0006 0.0131 0.0005
    年龄/Ma 227.8 38.9 247.7 4.7 250.0 3.9 263.1 10.4
    2-6-2 530 1103 同位素比值 0.0534 0.0012 0.2932 0.0086 0.0397 0.0005 0.0138 0.0007
    年龄/Ma 346.4 50.0 261.1 6.8 250.9 3.3 277.5 13.1
    2-6-3 422 1033 同位素比值 0.0540 0.0016 0.2997 0.0075 0.0404 0.0006 0.0134 0.0005
    年龄/Ma 372.3 68.5 266.2 5.8 255.4 4.0 269.3 10.1
    2-6-4 399 789 同位素比值 0.0518 0.0011 0.3052 0.0086 0.0427 0.0008 0.0145 0.0006
    年龄/Ma 276.0 46.3 270.5 6.7 269.5 4.7 290.9 11.6
    2-6-5 984 1548 同位素比值 0.0520 0.0009 0.3405 0.0078 0.0476 0.0009 0.0158 0.0007
    年龄/Ma 283.4 40.7 297.5 5.9 300.0 5.6 317.3 14.1
    2-6-6 419 941 同位素比值 0.0532 0.0011 0.3438 0.0080 0.0468 0.0006 0.0135 0.0005
    年龄/Ma 338.9 41.7 300.1 6.1 294.9 3.4 271.5 9.2
    12-2 12-2-1 487 784 同位素比值 0.0515 0.0010 0.2638 0.0061 0.0372 0.0005 0.0119 0.0004
    年龄/Ma 261.2 44.4 237.7 4.9 235.2 3.2 238.7 8.7
    12-2-2 236 497 同位素比值 0.0542 0.0013 0.2762 0.0071 0.0371 0.0006 0.0126 0.0005
    年龄/Ma 388.9 55.6 247.7 5.6 234.8 4.0 252.2 9.5
    12-2-3 640 1720 同位素比值 0.0545 0.0016 0.2868 0.0130 0.0381 0.0013 0.0134 0.0006
    年龄/Ma 390.8 66.7 256.1 10.3 241.3 7.8 268.6 11.4
    12-2-4 643 1358 同位素比值 0.0541 0.0008 0.2889 0.0060 0.0388 0.0007 0.0125 0.0005
    年龄/Ma 376.0 35.2 257.7 4.7 245.3 4.2 250.6 9.9
    下载: 导出CSV
  • BAGAS L, BIERLEIN F P, ANDERSON J A C, et al., 2010. Collision-related granitic magmatism in the Granites-Tanami Orogen, Western Australia[J]. Precambrian Research, 177(1-2): 212-226. doi: 10.1016/j.precamres.2009.12.002
    BOYNTON W V, 1984. Geochemistry of the rare earth elements: meteorite studies[M]//HENDERSON P. Rare earth element geochemistry. Amsterdam: Elsevier: 63-114.
    CERNY P, MEINTZER R E, ANDERSON A J, 1985. Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms[J]. The Canadian Mineralogist, 23(3): 381-421.
    COLLINS W J, BEAMS S D, WHITE A J R, et al., 1982. Nature and origin of a-type granites with particular reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 80(2): 189-200. doi: 10.1007/BF00374895
    CONDIE K C, 2005. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes?[J]. Lithos, 79(3-4): 491-504. doi: 10.1016/j.lithos.2004.09.014
    CUI J G, WANG M C, ZHAO P B, et al., 2014. Report of 1: 250000 regional geological survey of Xingxingxia (revision)[R]. Shaanxi Institute of Geological Survey, 1-372. (in Chinese)
    DE LA ROCHE H, LETERRIER J, GRANDCLAUDE P, et al., 1980. A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses-its relationships with current nomenclature[J]. Chemical Geology, 29(1-4): 183-210. doi: 10.1016/0009-2541(80)90020-0
    DENG J F, ZHAO H L, MO X X, et al., 1996. Continental roots plume tectonics of China-Key to the continental dynamics[M]. Beijing: Geological Publishing House: 1-110. (in Chinese)
    DENG J F, MO X X, LUO Z H, et al., 1999. Igneous petrotectonic assemblage and crust-mantle metallogenic system[J]. Earth Science Frontiers, 6(2): 259-270. (in Chinese with English abstract)
    DENG J, WANG Q F, 2016. Gold mineralization in China: metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research, 36: 219-274. doi: 10.1016/j.gr.2015.10.003
    DENG J, WANG Q F, LI G J. 2017a. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China[J]. Gondwana Research, 50: 216-266. doi: 10.1016/j.gr.2017.02.005
    DENG X H, CHEN Y J, SANTOSH M, et al., 2017b. U-Pb zircon, Re-Os molybdenite geochronology and Rb-Sr geochemistry from the Xiaobaishitou W (-Mo) deposit: implications for Triassic tectonic setting in eastern Tianshan, NW China[J]. Ore Geology Reviews, 80: 332-351.
    EBY G N, 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications[J]. Geology, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
    FANG W X, GAO Z Q, JIA R X, et al., 2006a. Geological exploration potentials and geochemical study on rocks and ores in Shaquanzi copper and copper-iron deposits, east Xinjiang[J]. Acta PetrologicaSinica, 22(5): 1413-1424. (in Chinese with English abstract)
    FANG W X, HUANG Z Y, TANG H F, et al., 2006b. Lithofacies, geological and geochemical characteristics and tectonic setting of Late Carboniferous volcanic-sedimentary rocks in the Kumtag-Shaquanzi area, East Tianshan[J]. Geology in China, 33(3): 529-544. (in Chinese with English abstract)
    FANG W X, ZHENG X M, FANG T H, et al., 2021. Restoration of the Devonian-Carboniferous limited ocean basin and deep structure of ophiolitic melange in the Hongshishan area of Gansu province[J]. Geological Bulletin of China, 40(5): 649-673. (in Chinese with English abstract)
    FENG W Y, ZHENG J H, 2021. Triassic magmatism and tectonic setting of the eastern Tianshan, NW China: constraints from the Weiya intrusive complex[J]. Lithos, 394-395: 106171. doi: 10.1016/j.lithos.2021.106171
    FROST B R, BARNES C G, COLLINS W J, et al. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033
    GU L X, GOU X Q, ZHANG Z Z, et al. 2003. Geochemistry and petrogenesis of a multi-zoned high Rb and F granite in eastern Tianshan. Acta Petrologica Sinica, 19(4): 585-600. (in Chinese with English abstract)
    GU L X, ZHANG Z Z, WU C Z, et al., 2007. Permian geological, metallurgical and geothermal events of the Huangshan-Jing'erquan area, eastern Tianshan: indications for mantle magma intraplating and its effect on the crust[J]. Acta Petrologica Sinica, 23(11): 2869-2880. (in Chinese with English abstract)
    HAN C M, MAO J W, YANG J M, et al., 2002. Types of Late Palaeozoic endogenetic metal deposits and related geodynamical evolution in the East Tianshan[J]. Acta Geologica Sinica, 76(2): 222-234. (in Chinese with English abstract)
    HARRIS N B W, PEARCE J A, TINDLE A G, 1986. Geochemical characteristics of collision-zone magmatism[J]. Geolocon, Special Publications, 19(1): 67-81. doi: 10.1144/GSL.SP.1986.019.01.04
    HE X Y, 2019. Geochronology and geochemistry of Triassic high Rb amazonite granite from Guobaoshan in eastern segment of the middle Tianshan[J]. Mineral Exploration, 10(12): 2899-2905. (in Chinese with English abstract)
    HONG D W, WANG S G, HAN B F, et al., 1995. Classification and identification of the tectonic circumstances for alkaline granitoid[J]. Science in China(Series B), 25(4): 418-426. (in Chinese)
    JAHN B M, 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[M]//MALPAS J, FLETCHER C J N, ALI J R, et al. Aspects of the tectonic evolution of China. London: Geological Society of London: 73-100.
    JI W H, YANG B, JIANG H B, et al., 2017. Progresses of geological and mineral survey project in main metallogenic belts of Northwest China[J]. Geological Survey of China, 4(6): 1-8. (in Chinese with English abstract)
    JI W H, LI R S, CHEN F N, et al., 2020. Tectonic reconstruction of northwest China in the Nanhua-Paleozoic and discussions on key issues[J]. Journal of Geomechanics, 26(5): 634-655. (in Chinese with English abstract)
    JIA Z L, 2014. Geochemical and metallogenetical characteristics of Nb-Ta-Rb deposits, South Qilian-Beishan area, Gansu province, China[D]. Lanzhou: Lanzhou University: 1-154. (in Chinese with English abstract)
    LEI R X, BRZOZOWSKI M J, FENG Y G, et al., 2020. Triassic crust-mantle interaction in the Eastern Tianshan, southern Altaids: insights from microgranular enclaves and their host Tianhu granitoids[J]. Lithos, 402-403: 105879.
    LI H F, Gao P. 2009. Report of 1: 50000 regional geological survey of Baishiduquan[R]. Institute of Xinjiang Geological Survey, Urumqi, Xinjiang, 1-42. (in Chinese)
    LI T G, LIANG M H, YU J P, et al., 2018. Study on metallogenic geological background of rare (rare earth) metals in Gansu province[M]. Beijing: Geological Publicating House: 1-158. (in Chinese)
    LIU Y S, GAO S, HU Z C, et al., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082
    LONG L L, WANG J B, WANG Y W, et al., 2019. Metallogenic regularity and metallogenic model of the paleo arc-basin system in eastern Tianshan[J]. Acta PetrologicaSinica, 35(10): 3161-3188. (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.10.13
    MANIAR P D, PICCOLI P M, 1989. Tectonic discrimination of granitoids[J]. GSA Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
    MIAO L C, ZHU M S, ZHANG F Q. 2014. Tectonic setting of Mesozoic magmatism and associated metallogenesis in Beishan area[J]. Geology in China, 41(4): 1190-1204. (in Chinese with English abstract)
    MO X X, DENG J F, DONG F L, et al., 2001. Volcanic petrotectonic assemblages in Sanjiang Orogenic Belt, SW China and implication for tectonics[J]. Geological Journal of China University, 7(2): 121-138. (in Chinese with English abstract)
    MUHTAR M N, WU C Z, BRZOZOWSKI M J, et al., 2021. Sericite 40Ar/39Ar dating and S-Pb isotope composition of the Kanggur gold deposit: implications for metallogenesis of late Paleozoic gold deposits in the Tianshan, central Asian Orogenic belt[J]. Ore Geology Reviews, 131: 104056, doi: 10.1016/j.oregeorev.2021.104056.
    PEARCE J A, HARRIS N B W, TINDLE A G, 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
    PONADER C W, BROWN G E., 1989. Rare earth elements in silicate, glass/melt systems: Ⅰ. Effects of composition on the coordination environments of La, Gd, and Yb[J]. Geochimica et Cosmochimica Acta, 53(11): 2893-2903. doi: 10.1016/0016-7037(89)90166-X
    QIN K Z, ZHAI M G, LI G M, et al., 2017. Links of collage orogenesis of multiblocks and crust evolution to characteristic metallogeneses in China[J]. Acta Petrologica Sinica, 33(2): 305-325. (in Chinese with English abstract)
    SHU L S, GUO Z J, ZHU W B, et al., 2004. Post-collision Tectonism and basin-range evolution in the Tianshan Belt[J]. Geological Journal of China Universities, 10(3): 393-404. (in Chinese with English abstract)
    SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    WANG C M, BAGAS L, LU Y J, et al., 2016a. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen: insights from zircon Hf-isotopic mapping[J]. Earth-Science Reviews, 156: 39-65. doi: 10.1016/j.earscirev.2016.02.008
    WANG C M, CHEN L, BAGAS L, et al., 2016b. Characterization and origin of the Taishanmiao aluminous A-type granites: implications for Early Cretaceous lithospheric thinning at the southern margin of the North China Craton[J]. International Journal of Earth Sciences, 105(5): 1563-1589. doi: 10.1007/s00531-015-1269-9
    WANG C M, DENG J, BAGAS L, et al., 2017. Zircon Hf-isotopic mapping for understanding crustal architecture and metallogenesis in the Eastern Qinling Orogen[J]. Gondwana Research, 50: 293-310. doi: 10.1016/j.gr.2017.04.008
    WANG G C, ZHANG M, FENG J L, et al., 2019. New understanding of the tectonic framework and evolution during the Neoproterozoic-Paleozoic era in the East Tianshan Mountains[J]. Journal of Geomechanics, 25(5): 798-819. (in Chinese with English abstract)
    WANG Q S, 2019. Magmatism and mineralization of Mazhuangshan-Nanjinshan gold ore belt in Eastern Tianshan Area[D]. Beijing: China University of Geosciences (Beijing): 1-133. (in Chinese with English abstract)
    WANG Y, SUN G H, Li J Y, 2010. U-Pb (SHRIMP) and 40Ar/39Ar geochronological constraints on the evolution of the Xingxingxia shear zone, NW China: a Triassic segment of the Altyn Tagh fault system[J]. GSA Bulletin, 122(3-4): 487-505. doi: 10.1130/B26347.1
    WANG Y H, ZANG F F, LIU J J, et al., 2015. Petrogenesis of granites in Baishan molybdenum deposit, eastern Tianshan, Xinjiang: zircon U-Pb geochronology, geochemistry, and Hf isotope constraints[J]. Acta Petrologica Sinica, 31(7): 1962-1976. (in Chinese with English abstract)
    WANG Y W, WANG J B, WANG L J, et al., 2008. Zircon U-Pb age, Sr-Nd isotope geochemistry and geological significances of the Weiya mafic-ultramafic complex, Xinjiang[J]. Acta Petrologica Sinica, 24(4): 781-792. (in Chinese with English abstract)
    WANG Z X, ZHOU G Z, LI T, 2003. The consideration on ophiolite and interrelated issue in northern Xinjiang, northwestern China[J]. Acta Petrologica Sinica, 19(4): 683-691. (in Chinese with English abstract)
    WANG Z X, LI T, ZHANG J, et al., 2008. The uplifting process of the Bogda Mountain during the Cenozoic and its tectonic implication[J]. Science in China Series D: Earth Sciences, 51(4): 579-593. doi: 10.1007/s11430-008-0038-z
    WHALEN J B, CURRIE K L, CHAPPELL B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202
    WINDLEY B F, ALEXEIEV D, XIAO W J, et al., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31-47. doi: 10.1144/0016-76492006-022
    WRIGHT J B, 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine, 106(4): 370-384. doi: 10.1017/S0016756800058222
    WU C Z, JIA L, LEI R X, et al., 2021. Advances and general characteristics of the amazonite granite and related rubidium deposits in Central Asian Orogenic Belt[J]. Acta Petrologica Sinica, 37(9): 2604-2628. (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.09.02
    WU F Y, LIU X J, JI W Q, et al., 2017. Highly fractionated granites: recognition and research[J]. Science China Earth Sciences, 60(7): 1201-1219. doi: 10.1007/s11430-016-5139-1
    WU Y S, XIANG N, TANG H S, et al., 2013. Molybdenite Re-Os isotope age of the Donggebi Mo deposit and the Indosinian metallogenic event in eastern Tianshan[J]. Acta Petrologica Sinica, 29(1): 121-130. (in Chinese with English abstract)
    XIAO W J, HUANG B C, HAN C M, et al., 2010. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 18(2-3): 253-273. doi: 10.1016/j.gr.2010.01.007
    XIAO W J, WINDLEYBF, HANC M, et al., 2018. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 186: 94-128. doi: 10.1016/j.earscirev.2017.09.020
    XIAO W J, SONG D F, WINDLEY B F, et al., 2020. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: advances and perspectives[J]. Science China Earth Sciences, 63(3): 329-361. doi: 10.1007/s11430-019-9524-6
    YANG W, FENG Q, LIU Y Q, et al., 2010. Depositional environments and cyclo-and chronostratigraphy of uppermost Carboniferous-Lower Triassic fluvial-lacustrine deposits, southern Bogda Mountains, NW China-A terrestrial paleoclimatic record of mid-latitude NE Pangea[J]. Global and Planetary Change, 73(1-2): 15-113. doi: 10.1016/j.gloplacha.2010.03.008
    YANG X W, JIA Z L, WANG J R, 2017. The tetrad effect and magmatic evolutionin Guobaoshan granite of Beishanarea, Gansu province[J]. Gansu Geology, 26(1): 25-31. (in Chinese with English abstract)
    YU J B, 2015. A study of geochemical characteristics of the Baitoushan Rb deposit in Beishan metallogenic Belt, Gansu province[D]. Beijing: Chinese Academy of Geological Sciences: 1-94. (in Chinese with English abstract)
    ZHANG D, 2015. Geochemical characteristics and Mineralization of Rb-bearing Granite-pegmatite in Xingxingxia, Beishan Area, Western China[D]. Lanzhou: Lanzhou University: 1-67. (in Chinese with English abstract)
    ZHANG D Y, ZHOU T F, YUAN F, et al., 2009. A genetic analysis of Baishan molybdenum deposit in East Tianshan area, Xinjiang[J]. Mineral Deposits, 28(5): 663-672. (in Chinese with English abstract)
    ZHANG L C, DONG Z G, CHEN B, et al., 2021. Ore-forming system and regularity of important metallogenetic belts in East Tianshan, China[J]. Journal of Earth Sciences and Environment, 43(1): 12-35. (in Chinese with English abstract)
    ZHANG X R, ZHAO G C, EIZENHÖFER P R, et al., 2016. Tectonic transition from Late Carboniferous subduction to Early Permian post-collisional extension in the Eastern Tianshan, NW China: insights from geochronology and geochemistry of mafic-intermediate intrusions[J]. Lithos, 256-257: 269-281. doi: 10.1016/j.lithos.2016.04.006
    ZHANG X R, ZHAO G C, SUN M, et al., 2017. Triassic magmatic reactivation in Eastern Tianshan, NW China: evidence from geochemistry and zircon U-Pb-Hf isotopes of granites[J]. Journal of Asian Earth Sciences, 145: 446-459. doi: 10.1016/j.jseaes.2017.06.022
    ZHANG Z Z, GU L X, WU C Z, et al., 2005. Zircon SHRIMP dating for the Weiya pluton, eastern Tianshan: its geological implications[J]. Acta Geologica Sinica, 79(4): 481-490. doi: 10.1111/j.1755-6724.2005.tb00914.x
    ZHAO Z H, XIONG X L, WANG Q, et al., 2008. Some aspects on geochemistry of Nb and Ta[J]. Geochimica, 37(4): 304-320. (in Chinese with English abstract)
    ZHAO Z H, 2016. Geochemical principles of trace elements[M]. 2nd ed. Beijing: Science Press: 1-495. (in Chinese)
    ZHU J, LU X B, CHEN C, et al., 2013. Geological characteristics, metallogenic time and tectonic setting of the Triassic molybdenum deposits in the east part of the East Tianshan and the Beishan Area, NW China[J]. Xinjiang Geology, 31(1): 21-28. (in Chinese with English abstract)
    崔继岗, 王满仓, 赵鹏彬, 等, 2014. 星星峡幅K46C003004 1: 25万区域地质调查报告(修测)[R]. 陕西省地质调查院, 西安, 1-372.
    邓晋福, 赵海玲, 莫宣学, 等, 1996. 中国大陆根-柱构造-大陆动力学的钥匙[M]. 北京: 地质出版社: 1-110.
    邓晋福, 莫宣学, 罗照华, 等, 1999. 火成岩构造组合与壳-幔成矿系统[J]. 地学前缘, 6(2): 259-270. doi: 10.3321/j.issn:1005-2321.1999.02.005
    方维萱, 高珍权, 贾润幸, 等, 2006a. 东疆沙泉子铜和铜铁矿床岩(矿)石地球化学研究与地质找矿前景[J]. 岩石学报, 22(5): 1413-1424. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605031.htm
    方维萱, 黄转盈, 唐红峰, 等, 2006b. 东天山库姆塔格-沙泉子晚石炭世火山-沉积岩相学地质地球化学特征与构造环境[J]. 中国地质, 33(3): 529-544. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200603008.htm
    方维萱, 郑小明, 方同辉, 等, 2021. 甘肃红石山地区泥盆纪-石炭纪有限洋盆重建与蛇绿混杂岩深部结构[J]. 地质通报, 40(5): 649-673. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202105002.htm
    顾连兴, 苟晓琴, 张遵忠, 等, 2003. 东天山一个多相带高铷氟花岗岩的地球化学及成岩作用[J]. 岩石学报, 19(4): 585-600. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200304000.htm
    顾连兴, 张遵忠, 吴昌志, 等. 2007. 东天山黄山-镜儿泉地区二叠纪地质-成矿-热事件: 幔源岩浆内侵及其地壳效应[J]. 岩石学报, 23(11): 2869-288. doi: 10.3969/j.issn.1000-0569.2007.11.017
    韩春明, 毛景文, 杨建民, 等, 2002. 东天山晚古生代内生金属矿床类型和成矿作用的动力学演化规律[J]. 地质学报, 76(2): 222-234. doi: 10.3321/j.issn:0001-5717.2002.02.010
    贺昕宇, 2019. 中天山东段国宝山三叠纪高铷天河石花岗岩年代学及岩石地球化学研究[J]. 矿产勘查, 10(12): 2899-2905. doi: 10.3969/j.issn.1674-7801.2019.12.003
    洪大卫, 王式洸, 韩宝福, 等, 1995. 碱性花岗岩的构造环境分类及其鉴别标志[J]. 中国科学(B辑), 25(4): 418-426. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199504012.htm
    计文化, 杨博, 姜寒冰, 等, 2017. 西北主要成矿带地质矿产调查工程进展[J]. 中国地质调查, 4(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201706001.htm
    计文化, 李荣社, 陈奋宁, 等, 2020. 中国西北地区南华纪-古生代构造重建及关键问题讨论[J]. 地质力学学报, 26(5): 634-655. doi: 10.12090/j.issn.1006-6616.2020.26.05.055
    贾志磊, 2014. 甘肃南祁连-北山铌钽铷等稀有金属成矿地质特征与成矿规律的研究[D]. 兰州: 兰州大学: 1-154.
    李海峰, 高平. 2009. 白石渡泉幅K46E012022 1: 50000区域地质调查成果报告[R]. 新疆维吾尔自治区地质调查院, 乌鲁木齐, 1-42.
    李通国, 梁明宏, 余君鹏, 等, 2018. 甘肃省稀有(稀土)金属成矿地质背景研究[M]. 北京: 地质出版社: 1-158.
    龙灵利, 王京彬, 王玉往, 等, 2019. 东天山古弧盆体系成矿规律与成矿模式[J]. 岩石学报, 35(10): 3161-3188. doi: 10.18654/1000-0569/2019.10.13
    苗来成, 朱明帅, 张福勤. 2014. 北山地区中生代岩浆活动与成矿构造背景分析[J]. 中国地质, 41(4): 1190-1204. doi: 10.3969/j.issn.1000-3657.2014.04.013
    莫宣学, 邓晋福, 董方浏, 等, 2001. 西南三江造山带火山岩-构造组合及其意义[J]. 高校地质学报, 7(2): 121-138. doi: 10.3969/j.issn.1006-7493.2001.02.001
    秦克章, 翟明国, 李光明, 等, 2017. 中国陆壳演化、多块体拼合造山与特色成矿的关系[J]. 岩石学报, 33(2): 305-325. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201702001.htm
    舒良树, 郭召杰, 朱文斌, 等, 2004. 天山地区碰撞后构造与盆山演化[J]. 高校地质学报, 10(3): 393-404. doi: 10.3969/j.issn.1006-7493.2004.03.010
    王国灿, 张孟, 冯家龙, 等, 2019. 东天山新元古代-古生代大地构造格架与演化新认识[J]. 地质力学学报, 25(5): 798-819. doi: 10.12090/j.issn.1006-6616.2019.25.05.066
    王琦崧, 2019. 东天山地区马庄山-南金山金矿带岩浆-成矿作用[D]. 北京: 中国地质大学(北京): 1-133.
    王银宏, 张方方, 刘家军, 等, 2015. 东天山白山钼矿区花岗岩的岩石成因: 锆石U-Pb年代学、地球化学及Hf同位素约束[J]. 岩石学报, 31(7): 1962-1976. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201507013.htm
    王玉往, 王京彬, 王莉娟, 等, 2008. 新疆尾亚含矿岩体锆石U-Pb年龄、Sr-Nd同位素组成及其地质意义[J]. 岩石学报, 24(4): 781-792. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804018.htm
    王宗秀, 周高志, 李涛, 2003. 对新疆北部蛇绿岩及相关问题的思考和认识[J]. 岩石学报, 19(4): 683-691. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200304008.htm
    王宗秀, 李涛, 张进, 等, 2008. 博格达山链新生代抬升过程及意义[J]. 中国科学D辑: 地球科学, 38(3): 312-326. doi: 10.3321/j.issn:1006-9267.2008.03.005
    吴昌志, 贾力, 雷如雄, 等, 2021. 中亚造山带天河石花岗岩及相关铷矿床的主要特征与研究进展[J]. 岩石学报, 37(9): 2604-2628. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202109002.htm
    吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 47(7): 745-765. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707001.htm
    吴艳爽, 项楠, 汤好书, 等, 2013. 东天山东戈壁钼矿床辉钼矿Re-Os年龄及印支期成矿事件[J]. 岩石学报, 29(1): 121-130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201301010.htm
    杨兴武, 贾志磊, 王金荣, 等, 2017. 甘肃北山地区国宝山花岗岩稀土元素四分组效应及其意义[J]. 甘肃地质, 26(1): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201701004.htm
    于俊博, 2015. 甘肃北山成矿带白头山地球化学特征研究[D]. 北京: 中国地质科学院: 1-94.
    张达玉, 周涛发, 袁峰, 等, 2009. 新疆东天山地区白山钼矿床的成因分析[J]. 矿床地质, 28(5): 663-672. doi: 10.3969/j.issn.0258-7106.2009.05.012
    张岱, 2015. 北山星星峡地区含铷花岗岩-伟晶岩地球化学特征及成矿作用的初步研究[D]. 兰州: 兰州大学: 1-67.
    张连昌, 董志国, 陈博, 等, 2021. 东天山重要成矿区带、成矿系统与成矿规律[J]. 地球科学与环境学报, 43(1): 12-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101005.htm
    赵振华, 熊小林, 王强, 等, 2008. 铌与钽的某些地球化学问题[J]. 地球化学, 37(4): 304-320. doi: 10.3321/j.issn:0379-1726.2008.04.005
    赵振华, 2016. 微量元素地球化学原理[M]. 2版. 北京: 科学出版社: 1-495.
    朱江, 吕新彪, 陈超, 等, 2013. 东天山东段-北山地区三叠纪钼矿床地质特征、时空分布及含矿花岗岩成岩-成矿构造背景[J]. 新疆地质, 31(1): 21-28. doi: 10.3969/j.issn.1000-8845.2013.01.007
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  472
  • HTML全文浏览量:  148
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-24
  • 修回日期:  2021-12-01

目录

    /

    返回文章
    返回