留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

川西高原活动性滑坡识别与空间分布特征研究

刘星洪 姚鑫 杨波 汤文坤 周振凯

刘星洪,姚鑫,杨波,等,2023. 川西高原活动性滑坡识别与空间分布特征研究[J]. 地质力学学报,29(1):111−126 doi: 10.12090/j.issn.1006-6616.2022024
引用本文: 刘星洪,姚鑫,杨波,等,2023. 川西高原活动性滑坡识别与空间分布特征研究[J]. 地质力学学报,29(1):111−126 doi: 10.12090/j.issn.1006-6616.2022024
LIU X H,YAO X,YANG B,et al.,2023. InSAR-based indentification and spatial distribution analysis of active landslides in the Western Sichuan Plateau[J]. Journal of Geomechanics,29(1):111−126 doi: 10.12090/j.issn.1006-6616.2022024
Citation: LIU X H,YAO X,YANG B,et al.,2023. InSAR-based indentification and spatial distribution analysis of active landslides in the Western Sichuan Plateau[J]. Journal of Geomechanics,29(1):111−126 doi: 10.12090/j.issn.1006-6616.2022024

川西高原活动性滑坡识别与空间分布特征研究

doi: 10.12090/j.issn.1006-6616.2022024
基金项目: 国家自然科学基金项目(41731287);中国地质调查局地质调查项目(DD20221738-2)
详细信息
    作者简介:

    刘星洪(1994—),女,在读博士,主要从事地质构造与地质灾害研究。E-mail: 811981187@qq.com

    通讯作者:

    姚鑫(1978—),男,博士,研究员,主要从事地质灾害与InSAR研究。E-mail: yaoxingphd@163.com

  • 中图分类号: P642.22

InSAR-based indentification and spatial distribution analysis of active landslides in the Western Sichuan Plateau

Funds: This research is financially supported by the National Natural Science Foundation of China (Grant No. 41731287), and the Geological Survey Project of the China Geological Survey (Grant DD20221738-2).
  • 摘要: 成都平原向西至松潘−甘孜褶皱带完成了从平原到高山峡谷区的转变,区域内起伏落差巨大,地势奇峻,河流下切侵蚀严重,构造活动频繁,地震频发,内外动力作用强烈,地质灾害众多。文章利用覆盖全区的Sentinel-1A升降轨数据以及重点区域的ALOS-2数据进行InSAR技术处理,结合GIS空间分析,对研究区活动性滑坡进行早期识别以及空间分布规律的探索,再辅以部分野外调查佐证,获得了以下认识:研究区滑坡集中分布地区按其诱因可分为水库蓄水诱发灾害区(黑水县毛尔盖水库)、震后破碎山体灾害区(茂县岷江与黑水沟交界、汶川至理县一带、九寨沟至石鸡坝镇一线)和重要河流灾害区(舟曲、腊子口镇、小金县和丹巴县);区域内活动性滑坡主要分布于千枚岩等变质岩和泥页岩等碎屑岩中;主要地形范围为坡向南东、东、北东向,坡度15°~40°,高程区间1000~3000 m,相对高差>1000 m;主要分布断裂有岷江断裂、玛曲−荷叶断裂、光盖山−迭山北麓断裂和茂汶−汶川断裂。Sentinel-1A升降轨数据的结合,使得有效观测区域提高到研究区面积的73.41%。在川西高原区ALOS-2数据相对优于Sentinel-1A数据,ALOS-2和Sentinel-1A数据在九寨沟和茂县重叠区识别的结果重合率为58.7%和44.8%,识别数量前者分别是后者的3.98倍和1.39倍。

     

  • 图  1  研究区及其周边地形地貌、活动断裂及MS 5.0级以上地震分布图

    Figure  1.  Map showing the surrounding topography , active faults and earthquakes(≥MS 5.0) in the study area

    图  2  活动性滑坡研究的技术流程图

    Figure  2.  Workflow of studying active landslides

    图  3  所选SAR数据的覆盖范围示意图

    Figure  3.  Coverage of the selected SAR data

    图  4  依据InSAR地表形变结果解译的活动性滑坡分布图

    Figure  4.  Distribution of active landslides interpreted by the InSAR technology

    图  5  解译滑坡地貌因子统计

    a—坡向;b—坡度;c—高程;d—滑坡相对高差

    Figure  5.  Statistics of geomorphologic factors of interpreted landslides

    (a) Aspect ; (b) Slope ; (c) Elevation ; (d) Relative height

    图  6  解译滑坡与相邻断裂距离统计分析

    Figure  6.  Statistics of distance between landslide points and adjacent fractures

    图  7  解译滑坡地层岩性统计

    Figure  7.  Statistical analysis of formation lithology of interpreted landslides

    图  8  A区滑坡分布及野外典型照片

    a—InSAR变形图;b—解译结果图;c、d—野外典型照片

    Figure  8.  Distribution map of landslides and typical field photos of Zone A

    (a) InSAR-observed deformation map; (b) Distribution map of landslides; (c and d) Typical field photos

    图  9  B区滑坡分布及野外典型照片

    a—InSAR变形图;b—解译结果图;c、d—野外典型照片

    Figure  9.  Distribution map of landslides and typical field photos of Zone B

    (a) InSAR-observed deformation map; (b) Distribution map of landslides; (c and d) Typical field photos

    图  10  C区滑坡分布及野外典型照片

    a—InSAR变形图;b—解译结果图;c、d—野外典型照片

    Figure  10.  Distribution map of landslides and typical field photos of Zone C

    (a) InSAR-observed deformation map; (b) Distribution map of landslides; (c and d) Typical field photos

    图  11  D区滑坡分布及野外典型照片

    a—InSAR变形图;b—解译结果图;c、d—野外典型照片

    Figure  11.  Distribution map of landslides and typical field photos of Zone D

    (a) InSAR-observed deformation map; (b) Distribution map of landslides; (c and d) Typical field photos

    图  12  E—H区InSAR变形图及解译滑坡分布图

    a—E区InSAR变形图;b—E区解译结果图;c—F区InSAR变形图;d—F区解译结果图;e—G区InSAR变形图;f—G区解译结果图;g—H区InSAR变形图;h—H区解译结果图

    Figure  12.  InSAR-observed deformation map and distribution map of landslides in Zones E−H

    (a) InSAR-observed deformation map of Zone E; (b) Distribution map of landslides in Zone E; (c) InSAR-observed deformation map of Zone F; (d) Distribution map of landslides in Zone F; (e) InSAR-observed deformation map of Zone G; (f) Distribution map of landslides in Zone G; (g) InSAR-observed deformation map of Zone H; (h) Distribution map of landslides in Zone H

    图  13  ALOS-2解译结果与Sentinel-1A解译结果对比图

    a—九寨沟地区;b—茂县地区;c—丹巴−小金县地区

    Figure  13.  Comparison of landslides interpreted by ALOS-2 and Sentinel-1A

    (a) Jiuzhaigou; (b) Maoxian; (c) Danba–Xiaojin

    表  1  研究区SAR数据基本参数

    Table  1.   Basic parameters of the SAR data

    数据卫星数据类型数据区域获取日期入射角/(°)轨道状态SLC数据
    分辨率/(m×m)
    ALOS-2 Extra-fine 丹巴−小金县 20171117、20171229、20180209、
    20180323、20180504
    36.1791 升轨 1.43×2.13
    ALOS-2 Extra-fine 茂县 20171126、20171224、20180204、
    20180415、20180513、20180610、
    20180708
    36.1763 升轨 1.43×2.12
    ALOS-2 Extra-fine 茂县 20171207、20180104、20180201、
    20180301、20190329、20180426
    32.4006 降轨 1.43×1.82
    ALOS-2 Extra-fine 九寨沟 20180113、20180310、20180407、
    20180922、20181103、20181201、
    20190112、20190309、20190323、
    20190601、20190713、20190810、
    20190921、20200111、20200208、
    20200418
    39.6627 降轨 1.43×1.84
    ALOS-2 Extra-fine 九寨沟 20171210、20180121、20180304、
    20180429、20180624、20180819、
    20180916、20181028、20181223、
    20190120、20190203、20190414、
    20190512、20190707、20190901、
    20191013、20191208、20191222、
    20200119、20200216、20200301、
    20200329、20200412
    42.8997 升轨 1.43×2.21
    Sentinel-1A TOP 轨道55,窗口97、102、107
    轨道26, 窗口88、93、98
    轨道128, 窗口89、94、99、104
    201901—202003 39.56 升轨 13.98×2.33
    Sentinel-1A TOP 轨道62, 窗口479、484、489、494
    轨道135, 窗口483、488、493
    轨道164, 窗口485、490
    201901—202003 39.55 降轨 13.98×2.33
    下载: 导出CSV
  • CAO P J, CHENG S Y, LIN H X, et al. , 2021. DEM in quantitative analysis of structural geomorphology: application and prospect[J]. Journal of Geomechanics, 27(6): 949-962. (in Chinese with English abstract)
    CUI P, WEI F Q, HE S M, et al. , 2008. Mountain disasters induced by the earthquake of May 12 in Wenchuan and the disasters mitigation[J]. Mountain Research, 26(3): 280-282. (in Chinese with English abstract)
    DAI F C, XU C, YAO X, et al. , 2011. Spatial distribution of landslides triggered by the 2008 MS 8.0 Wenchuan earthquake, China[J]. Journal of Asian Earth Sciences, 40(4): 883-895. doi: 10.1016/j.jseaes.2010.04.010
    DAI F C, DENG J H, 2020. Development characteristics of landslide hazards in three-rivers basin of Southeast Tibetan Plateau[J]. Advanced Engineering Sciences, 52(5): 3-15. (in Chinese with English abstract)
    DUN J W, FENG W K, YI X Y, et al. , 2021. Detection and mapping of active landslides before impoundment in the Baihetan reservoir Area (China) based on the time-series InSAR method[J]. Remote Sensing, 13(16): 3213. doi: 10.3390/rs13163213
    GE D Q, DAI K R, GUO Z C, et al. , 2019. Early identification of serious geological hazards with integrated remote sensing technologies: thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 44(7): 949-956.
    GUO C B, DU Y B, ZHANG Y S, et al. , 2015. Geohazard effects of the Xianshuihe fault and characteristics of typical landslides in western Sichuan[J]. Geological Bulletin of China, 34(1): 121-134. (in Chinese with English abstract)
    GUO J P, 2019. Study on the influence of river erosion on landslide stability[J]. Gansu Water Resources and Hydropower Technology, 55(11): 38-41, 45. (in Chinese)
    GUO X, 2009. Characteristics and mechanism analysis of the great Wenchuan earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration, 29(6): 74-87. (in Chinese with English abstract)
    LI C D, LONG J J, JIANG X H, et al. , 2020. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 39(1): 67-77. (in Chinese with English abstract)
    LI S Z, DAI S, WANG H W, et al. , 2015. Fault features and their implications on distribution and formation of landslides in Bailongjiang Region[J]. Journal of Lanzhou University (Natural Sciences), 51(2): 145-152. (in Chinese with English abstract)
    LI Y X, ZHANG Y, SU X J, et al. , 2021. Early identification and characteristics of potential landslides in the Bailong River Basin using InSAR technique[J]. National Remote Sensing Bulletin, 25(2): 677-690. (in Chinese with English abstract)
    LIU X H, YAO X, ZHOU Z K, et al. , 2018. Study of the technique for landslide rapid recognition by InSAR[J]. Journal of Geomechanics, 24(2): 229-237. (in Chinese with English abstract)
    LUO X H, LI J Y, 2003. Analysis of reservoir impoundment influence on reservoir bank slide[J]. Design of Hydroelectric Power Station, 19(3): 61-64, 69. (in Chinese with English abstract)
    LV J, WANG X S, SU J R, et al. , 2013. Hypocentral location and source mechanism of the MS7.0 Lushan earthquake sequence[J]. Chinese Journal of Geophysics, 56(5): 1753-1763. (in Chinese with English abstract)
    PENG J B, MA R Y, LU Q Z, et al. , 2004. Geological hazards effects of uplift of Qinghai-Tibet Plateau[J]. Advance in Earth Sciences, 19(3): 457-466. (in Chinese with English abstract)
    QI S W, XU Q, LIU C L, et al. , 2009. Slope instabilities in the severest disaster areas of 5·12 Wenchuan earthquake[J]. Journal of Engineering Geology, 17(1): 39-49. (in Chinese with English abstract)
    QIAO Y X, MA Z S, LV F J, 2009. Characteristics and dynamic cause mechanism of the Wenchuan Earthquake geological hazards[J]. Geology in China, 36(3): 736-741. (in Chinese with English abstract)
    QIN H B, 2011. The mechanism of landslide influenced by rainfall and reservoir water level fluctuation and renewed criterion research in Three-Gorges reservoir[D]. Yichang: China Three Gorges University. (in Chinese with English abstract)
    QIN Y L, WU J L, ZHAN H J, et al. , 2021. Discussion on the correlation between active fault and geological disaster distribution in the Ganzi area, western Sichuan province, China[J]. Journal of Geomechanics, 27(3): 463-474. (in Chinese with English abstract)
    TANG H M, 2008. Gong Cheng Di Zhi Xue Ji Chu[M]. Beijing: Chemical Industry Press: 92-96. (in Chinese)
    WANG Z D, WEN X H, TANG W, et al. , 2020. Early detection of geological hazards in Longmenshan-Dadu river Area using various InSAR techniques[J]. Geomatics and Information Science of Wuhan University, 45(3): 451-459. (in Chinese with English abstract)
    XU C, XIAO J Z, 2013. Spatial analysis of landslides triggered by the 2013 MS7.0 Lushan earthquake: a case study of a typical rectangle area in the northeast of Taiping town[J]. Seismology and Geology, 35(2): 436-451. (in Chinese with English abstract)
    XU C, XU X W, 2014. The spatial distribution pattern of landslides triggered by the 20 April 2013 Lushan earthquake of China and its implication to identification of the seismogenic fault[J]. Chinese Science Bulletin, 59(13): 1416-1424. (本条文献在正文中未被引用) doi: 10.1007/s11434-014-0202-0
    XU C, XU X W, YAO X, et al. , 2014. Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan MW7.9 earthquake of China and their spatial distribution statistical analysis[J]. Landslides, 11(3): 441-461. doi: 10.1007/s10346-013-0404-6
    XU L, LI J H, LIU C H, et al. , 2017. Research on geomorphological morphology and regionalization of Hoh Xil Based on digital elevation model (DEM)[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 53(5): 833-842. (in Chinese with English abstract)
    XU Q, DONG X J, LI W L, 2019. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 44(7): 957-966. (in Chinese with English abstract)
    XU X W, WEN X Z, YE J Q, et al. , 2008. The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure[J]. Seismology and Geology, 30(3): 597-629. (in Chinese with English abstract)
    YANG G H, HAN Y P, WANG M, et al. , 2003. Horizontal deformation in several major seismically active areas in Chinese mainland[J]. Journal of Geodesy and Geodynamics, 23(3): 42-49. (in Chinese with English abstract)
    YANG Z, 2017. Study on fault activity in Western Sichuan based on InSAR data[D]. Xi’an: Changan University. (in Chinese with English abstract)
    YAO C C, YAO X, GU Z K, et al. , 2022. Analysis on the development law of active geological hazards in the Loess Plateau based on InSAR identification[J]. Journal of Geomechanics, 28(2): 257-267. (in Chinese with English abstract)
    YAO J M, YAO X, LIU X H, et al. , 2022. Identification and analysis of active landslide disaster in Tianshui city using InSAR technology[J]. Science of Surveying and Mapping, 47(1): 121-132. (in Chinese with English abstract)
    YAO X, ZHOU Z K, LI L J, et al. , 2017. InSAR co-seismic deformation of 2017 MS7.0 Jiuzhaigou earthquake and discussions on seismogenic tectonics[J]. Journal of Geomechanics, 23(4): 507-514. (in Chinese with English abstract)
    YAO X, DENG J H, LIU X H, et al. , 2020. Primary recognition of active landslides and development rule analysis for Pan Three-river-parallel territory of Tibet Plateau[J]. Advanced Engineering Sciences, 52(5): 16-37. (in Chinese with English abstract)
    YIN Y P, 2009. Features of landslides triggered by the Wenchuan earthquake[J]. Journal of Engineering Geology, 17(1): 29-38. (in Chinese with English abstract)
    ZHANG Y S, GUO C B, YAO X, et al. , 2016. Research on the geohazard effect of active fault on the eastern margin of the Tibetan Plateau[J]. Acta Geoscientica Sinica, 37(3): 277-286. (in Chinese with English abstract)
    ZHAO B Q, 2019. Surface deformation characteristics and early identification of potential landslides based on In SAR technology in Bailong river basin[D]. Lanzhou: Lanzhou University. (in Chinese with English abstract)
    曹鹏举, 程三友, 林海星, 等, 2021. DEM在构造地貌定量分析中的应用与展望[J]. 地质力学学报, 27(6): 949-962. doi: 10.12090/j.issn.1006-6616.2021.27.06.077
    崔鹏, 韦方强, 何思明, 等, 2008. 5·12汶川地震诱发的山地灾害及减灾措施[J]. 山地学报, 26(3): 280-282. doi: 10.3969/j.issn.1008-2786.2008.03.006
    戴福初, 邓建辉, 2020. 青藏高原东南三江流域滑坡灾害发育特征[J]. 工程科学与技术, 52(5): 3-15.
    葛大庆, 戴可人, 郭兆成, 等, 2019. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报·信息科学版, 44(7): 949-956.
    郭长宝, 杜宇本, 张永双, 等, 2015. 川西鲜水河断裂带地质灾害发育特征与典型滑坡形成机理[J]. 地质通报, 34(1): 121-134. doi: 10.3969/j.issn.1671-2552.2015.01.010
    郭京平, 2019. 河流侵蚀对滑坡稳定性影响研究[J]. 甘肃水利水电技术, 55(11): 38-41, 45.
    郭迅, 2009. 汶川大地震震害特点与成因分析[J]. 地震工程与工程振动, 29(6): 74-87.
    李长冬, 龙晶晶, 姜茜慧, 等, 2020. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 39(1): 67-77.
    李淑贞, 戴霜, 王华伟, 等, 2015. 白龙江地区断裂构造与滑坡分布及发生关系[J]. 兰州大学学报(自然科学版), 51(2): 145-152.
    李媛茜, 张毅, 苏晓军, 等, 2021. 白龙江流域潜在滑坡InSAR识别与发育特征研究[J]. 遥感学报, 25(2): 677-690. doi: 10.11834/jrs.20210094
    刘星洪, 姚鑫, 周振凯, 等, 2018. 滑坡灾害InSAR应急排查技术方法研究[J]. 地质力学学报, 24(2): 229-237. doi: 10.12090/j.issn.1006-6616.2018.24.02.024
    罗晓红, 李进元, 2003. 水库蓄水对库岸滑坡影响分析[J]. 水电站设计, 19(3): 61-64, 69. doi: 10.3969/j.issn.1003-9805.2003.03.017
    吕坚, 王晓山, 苏金蓉, 等, 2013. 芦山7.0级地震序列的震源位置与震源机制解特征[J]. 地球物理学报, 56(5): 1753-1763. doi: 10.6038/cjg20130533
    彭建兵, 马润勇, 卢全中, 等, 2004. 青藏高原隆升的地质灾害效应[J]. 地球科学进展, 19(3): 457-466. doi: 10.3321/j.issn:1001-8166.2004.03.018
    祁生文, 许强, 刘春玲, 等, 2009. 汶川地震极重灾区地质背景及次生斜坡灾害空间发育规律[J]. 工程地质学报, 17(1): 39-49. doi: 10.3969/j.issn.1004-9665.2009.01.005
    乔彦肖, 马中社, 吕凤军, 2009. 汶川地震地质灾害发育特点及动因机制分析[J]. 中国地质, 36(3): 736-741. doi: 10.3969/j.issn.1000-3657.2009.03.020
    秦洪斌, 2011. 三峡库区库水与降雨诱发滑坡机理及复活判据研究[D]. 宜昌: 三峡大学.
    秦宇龙, 吴建亮, 詹涵钰, 等, 2021. 川西甘孜地区活动断裂与地质灾害分布相关性探讨[J]. 地质力学学报, 27(3): 463-474. doi: 10.12090/j.issn.1006-6616.2021.27.03.042
    唐辉明, 2008. 工程地质学基础[M]. 北京: 化学工业出版: 92-96.
    王之栋, 文学虎, 唐伟, 等, 2020. 联合多种InSAR技术的龙门山-大渡河区域地灾隐患早期探测[J]. 武汉大学学报·信息科学版, 45(3): 451-459.
    许冲, 肖建章, 2013. 2013年芦山地震滑坡空间分布分析: 以太平镇东北方向的一个典型矩形区为例[J]. 地震地质, 35(2): 436-451.
    许丽, 李江海, 刘持恒, 等, 2017. 基于数字高程模型(DEM)的可可西里地貌及区划研究[J]. 北京大学学报(自然科学版), 53(5): 833-842.
    许强, 董秀军, 李为乐, 2019. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报·信息科学版, 44(7): 957-966. doi: 10.13203/j.whugis20190088
    徐锡伟, 闻学泽, 叶建青, 等, 2008. 汶川MS8.0地震地表破裂带及其发震构造[J]. 地震地质, 30(3): 597-629. doi: 10.3969/j.issn.0253-4967.2008.03.003
    杨国华, 韩月萍, 王敏, 等, 2003. 中国大陆几个主要地震活动区的水平形变[J]. 大地测量与地球动力学, 23(3): 42-49. doi: 10.3969/j.issn.1671-5942.2003.03.009
    杨珍, 2017. 基于InSAR数据的川西地区断层活动研究[D]. 西安: 长安大学.
    姚闯闯, 姚鑫, 顾畛逵, 等, 2022. 基于InSAR识别的黄土高原活动性地质灾害发育规律分析[J]. 地质力学学报, 28(2): 257-267.
    姚佳明, 姚鑫, 刘星洪, 等, 2022. InSAR技术的天水市活动性滑坡灾害识别与分析[J]. 测绘科学, 47(1): 121-132.
    姚鑫, 周振凯, 李凌婧, 等, 2017. 2017年四川九寨沟MS7.0地震InSAR同震形变场及发震构造探讨[J]. 地质力学学报, 23(4): 507-514. doi: 10.3969/j.issn.1006-6616.2017.04.001
    姚鑫, 邓建辉, 刘星洪, 等, 2020. 青藏高原泛三江并流区活动性滑坡InSAR初步识别与发育规律分析[J]. 工程科学与技术, 52(5): 16-37.
    殷跃平, 2009. 汶川八级地震滑坡特征分析[J]. 工程地质学报, 17(1): 29-38. doi: 10.3969/j.issn.1004-9665.2009.01.004
    张永双, 郭长宝, 姚鑫, 等, 2016. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报, 37(3): 277-286. doi: 10.3975/cagsb.2016.03.03
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  460
  • HTML全文浏览量:  152
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 修回日期:  2022-08-02
  • 录用日期:  2022-08-06
  • 预出版日期:  2022-08-24

目录

    /

    返回文章
    返回