Meso-Neoproterozoic tectono-thermal evolution in the northern margin of North China Craton: Constraints from zircon (U-Th)/He ages
-
摘要: 由于复杂的构造沉积史和缺乏有效古温标,华北克拉通北缘燕辽裂陷带中—新元古界热史研究很薄弱,造成古老烃源岩成熟演化过程一直存在争议。研究利用锆石(U-Th)/He热定年技术探讨了燕辽裂陷带自中元古代以来的构造-热演化史,并分析了中元古界两套烃源岩成熟演化期次。燕辽裂陷带中—新元古界单颗粒锆石(U-Th)/He年龄均小于地层年龄,有效地记录了研究区早期的热信息,其中新元古界龙山组单颗粒(U-Th)/He年龄与有效铀浓度具有负相关性。通过正、反演耦合模拟明确了燕辽裂陷带曾经历过440~310 Ma和~220 Ma至今两期快速冷却事件,分别由白乃庙岛弧碰撞和蒙古-鄂霍次克洋洋壳俯冲引起;并揭示出奥陶纪末期和三叠纪末期地层温度变化对古老烃源岩成熟演化具有重要影响。
-
关键词:
- 锆石(U-Th)/He /
- 燕辽裂陷带 /
- 中—新元古界 /
- 正演模拟 /
- 烃源岩成熟演化
Abstract: Due to the complicated tectonic and sedimentary history and the lack of effective paleo-thermal indicators, the Meso-Neoproterozoic thermal history of the Yanliao rift zone in the northern margin of the North China Craton is ambiguous, which causes the maturation evolution of ancient source rocks controversial. In this study, zircon (U-Th)/He dating is used to study the tectono-thermal evolution of the Yanliao rift zone since the Mesoproterozoic, and we also analyzed the maturation evolution stages of two sets of Mesoproterozoic source rocks. The single-grain zircon (U-Th)/He ages from the Meso-Neoproterozoic strata in the Yanliao rift zone are all younger than the corresponding stratigraphic ages and therefore recorded the thermal information in the past. Moreover, the single-grain zircon (U-Th)/He ages of the Neoproterozoic Longshan formation show a negative correlation with the effective uranium concentration. The forward and inverse coupling simulation revealed that the Yanliao rift zone experienced two rapid cooling events of 440~320 Ma and 220~0 Ma, probably related to the collision between the Bainaimiao island arc and the northern margin of the North China Craton and the subduction of Mongolia Okhotsk oceanic crust below the eastern North China Craton, respectively. In addition, the formation temperature variations at the end of Ordovician and the end of Triassic had an important influence on the maturation evolution of Mesoproterozoic source rock. -
图 1 华北克拉通北缘燕辽裂陷带构造单元及样品位置(据王铁冠等, 2016修改)
Figure 1. Tectonic units of the Yanliao rift zone in the northern margin of North China Carton, showing the sample locations (modified after Wang et al., 2016)
图 2 燕辽裂陷带中新元古界地层柱状图(据王浩等, 2019修改)
Figure 2. Stratigraphic column of Meso-Neoproterozoic strata in the Yanliao rift zone (modified after Wang et al., 2019)
图 3 华北克拉通北缘燕辽裂陷带样品单颗粒锆石(U-Th)/He年龄与有效铀浓度和颗粒半径关系图
图中虚线表示样品沉积年龄
a—锆石(U-Th)/He年龄与有效铀浓度关系; b—锆石(U-Th)/He年龄与颗粒半径关系Figure 3. Correlation of zircon (U-Th)/He age with effective uranium concentration (a) and particle radius (b) in the samples from the Yanliao rift zone
The dotted lines in the figures indicate the deposition age of the samples
图 4 青白口系龙山组样品热史模拟结果
a—正演模拟中输入的热史路径; b—e—分别表示不同热史路径下模拟得出的继承性包络线与实测年龄之间的关系(图中浅灰色、中灰色、深灰色区域分别对应起始时间为2500 Ma、1800 Ma和900 Ma的模拟结果); f—反演模拟得到的可能热史路径(其中绿色线代表拟合度较低的热史路径, 紫色线代表拟合度较高的热史路径, 黑色线为最佳热史路径, 黑色方框为反演模拟的约束条件)
Figure 4. Thermal history modeling results of the samples from the Longshan formation in the Qingbaikou system
(a) The input thermal history path in a forward modeling; (b-e) The inherited envelopes obtained from different thermal history paths; The light gray area, medium gray area and dark gray area in the figure represent the modeling results corresponding to the starting time of 2500 Ma, 1800 Ma, and 900 Ma, respectively; (f) The possible thermal history path obtained by inversion modeling, in which green lines represent the thermal history path with low fitting degree, purple lines represent the thermal history path with high fitting degree, black line is the most possible thermal history path, and black boxes are constraints of inverse modeling
图 5 长城系大红峪组样品热史模拟结果
a—正演模拟中输入的热史路径; b—e—分别表示不同热史路径下模拟得出的继承性包络线与实测年龄之间的关系(图中深灰色和灰色区域分别对应起始时间为2500 Ma和1620 Ma的模拟结果); f—反演模拟得到的可能热史路径(其中绿色线代表拟合度较低的热史路径, 紫色线代表拟合度较高的热史路径, 黑色线为最佳热史路径, 黑色方框为反演模拟的约束条件)
Figure 5. Thermal history modeling results of the samples from the Dahongyu formation in the Changcheng system
(a) The Input thermal history path in a forward modeling; (b-e) The inherited envelopes obtained from different thermal history paths; The dark gray area and the gray area in the figure represent the modeling results corresponding to the starting time of 2500 Ma and 1620 Ma, respectively; (f) The possible thermal history path obtained by inversion modeling, in which green lines represent the thermal history path with low fitting degree, purple lines represent the thermal history path with high fitting degree, black line is the most possible thermal history path, and black boxes are constraints of inverse modeling
图 6 常州沟组样品热史模拟结果
a—正演模拟中输入的热史路径; b—e—分别表示不同热史路径下模拟得出的继承性包络线与实测年龄之间的关系(图中深灰色和灰色区域分别对应起始时间为2500 Ma和1800 Ma的模拟结果); f—反演模拟得到的可能热史路径(其中绿色线代表拟合度较低的热史路径, 紫色线代表拟合度较高的热史路径, 黑色线为最佳热史路径, 黑色方框为反演模拟的约束条件)
Figure 6. Thermal history modeling results of the samples from the Changzhougou formation in the Changcheng system
(a) The input thermal history path in a forward modeling; (b-e) The inherited envelopes obtained from different thermal history paths; The dark gray area and the gray area in the figure represent the modeling results corresponding to the starting time of 2500 Ma and 1800 Ma, respectively; (f) The possible thermal history path obtained by inversion modeling, in which green lines represent the thermal history path with low fitting degree, purple lines represent the thermal history path with high fitting degree, black line is the most possible thermal history path, and black boxes are constraints of inverse modeling
表 1 燕辽裂陷带中新元古界锆石(U-Th)/He年龄测试结果
Table 1. Zircon (U-Th)/He data of Meso-Neoproterozoic in the Yanliao rift zone
样品号 U/×10-6 Th/×10-6 He/(nmol/g) Th/U 半径/μm 质量/μg eU/×10-6 年龄/Ma ±1σ/Ma Ft 校正年龄/Ma ±1σ/Ma LX1-1 215.141 147.737 378.94 0.710 39.8 3.08 249.9 276.46 4.49 0.721 383.44 20.16 LX1-2 64.033 63.799 160.62 1.030 37.1 2.63 79.0 367.82 6.53 0.701 524.71 27.84 LX1-3 121.428 116.531 269.33 0.992 31.9 1.64 148.8 328.55 5.53 0.657 500.08 26.38 LX1-4 98.279 90.884 308.12 0.956 37.3 2.43 119.6 462.42 8.71 0.702 658.72 35.20 LX1-5 122.785 76.599 313.18 0.645 42.2 3.37 140.8 401.21 7.09 0.737 544.38 28.87 LX1-6 93.467 83.668 284.90 0.925 32.1 1.53 113.1 452.50 8.92 0.662 683.53 36.74 LX1-7 558.091 324.982 602.87 0.602 29.6 1.37 634.5 174.73 2.96 0.637 274.30 14.48 LX1-8 255.394 177.548 429.69 0.718 33.0 1.69 297.1 263.93 4.57 0.671 393.34 20.81 LX2-1 109.620 66.037 92.85 0.622 50.9 6.41 125.1 136.88 2.27 0.779 175.71 9.26 LX2-2 187.939 93.531 124.31 0.514 39.1 2.69 209.9 109.52 2.07 0.718 152.53 8.15 LX2-3 172.895 104.976 152.60 0.627 46.6 4.96 197.6 142.43 2.34 0.759 187.65 9.88 LX2-5 174.687 100.043 111.15 0.592 41.6 2.98 198.2 103.76 1.83 0.734 141.36 7.49 LX2-6 347.411 93.139 140.20 0.277 30.1 1.31 369.3 70.49 1.23 0.646 109.12 5.78 LX2-7 171.052 99.991 104.70 0.604 48.2 5.15 194.5 99.60 1.66 0.767 129.86 6.84 LX2-8 213.721 173.049 156.02 0.837 41.4 2.96 254.4 113.33 1.89 0.731 155.03 8.17 LX3-1 220.110 98.923 124.56 0.464 40.2 2.99 243.4 94.79 1.60 0.725 130.74 6.90 LX3-2 230.152 109.995 169.00 0.494 44.2 4.05 256.0 121.97 2.23 0.748 163.06 8.68 LX3-3 735.832 442.919 466.39 0.622 33.8 1.76 839.9 102.74 1.69 0.678 151.53 7.98 LX3-4 159.371 50.203 80.15 0.486 38.0 2.40 136.0 108.99 1.89 0.712 153.08 8.10 LX3-5 99.963 30.396 86.51 0.325 38.8 2.38 171.2 93.64 1.56 0.72 130.06 6.85 LX3-6 297.526 84.226 46.24 0.314 27.2 0.99 107.1 80.08 1.71 0.613 130.64 7.10 LX3-7 165.490 37.400 177.01 0.293 37.4 2.21 317.3 103.27 1.82 0.71 145.45 7.71 LX3-8 159.371 50.203 86.37 0.234 33.7 1.80 174.3 91.85 2.34 0.681 134.88 7.57 注: Ft为α粒子射出效应的校正参数, 计算方法详见Farley et al. (1996); eU为有效铀浓度, 计算公式为eU=U+0.235×Th (Flowers et al., 2009) -
BAUGHMAN J S, FLOWERS R M, 2020. Mesoproterozoic burial of the Kaapvaal craton, southern Africa during Rodinia supercontinent assembly from (U-Th)/He thermochronology[J]. Earth and Planetary Science Letters, 531: 115930. doi: 10.1016/j.epsl.2019.115930 CHANG J, QIU N S, ZHAO X Z, et al., 2018. Mesozoic and Cenozoic tectono-thermal reconstruction of the western Bohai Bay Basin (East China) with implications for hydrocarbon generation and migration[J]. Journal of Asian Earth Sciences, 160: 380-395. doi: 10.1016/j.jseaes.2017.09.008 CHENG L Y, TANG X Y, LI Y, 2021. Research progress of factors affecting apatite fission track annealing[J]. Journal of Geomechanics, 27(1): 127-134. (in Chinese with English abstract) DIWU C R, SUN Y, LIU Y J, et al., 2011. The protolith nature of quartz sandstone from Changlongshan Formation in Liujiang area, Qinhuangdao city: Evidence of U-Pb and Hf-isotope from detrital zircons[J]. Acta Petrologica et Mineralogica, 30(1): 1-12. (in Chinese with English abstract) FARLEY K A, WOLF R A, SILVER L T, 1996. The effects of long alpha-stopping distances on (U-Th)/He ages[J]. Geochimica et Cosmochimica Acta, 60(21): 4223-4229. doi: 10.1016/S0016-7037(96)00193-7 FLOWERS R M, KETCHAM R A, SHUSTER D L, et al., 2009. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model[J]. Geochimica et Cosmochimica Acta, 73(8): 2347-2365. doi: 10.1016/j.gca.2009.01.015 GAO L Z, ZHANG C H, SHI X Y, et al., 2007. Zircon SHRIMP U-Pb dating of the tuff bed in the Xiamaling formation of the Qingbaikouan system in North China[J]. Geological Bulletin of China, 26(3): 249-255. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200703000.htm GAUCHER E A, GOVINDARAJAN S, GANESH O K, 2008. Palaeotemperature trend for Precambrian life inferred from resurrected proteins[J]. Nature, 451(7179): 704-707. doi: 10.1038/nature06510 GAUTHERON C, TASSAN-GOT L, 2010. A Monte Carlo approach to diffusion applied to noble gas/helium thermochronology[J]. Chemical Geology, 273(3-4): 212-224. doi: 10.1016/j.chemgeo.2010.02.023 GUENTHNER W R, REINERS P W, KETCHAM R A, et al., 2013. Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology[J]. American Journal of Science, 313(3): 145-198. doi: 10.2475/03.2013.01 GUENTHNER W R, REINERS P W, TIAN Y T, 2014. Interpreting date-eU correlations in zircon (U-Th)/He datasets: A case study from the Longmen Shan, China[J]. Earth and Planetary Science Letters, 403: 328-339. doi: 10.1016/j.epsl.2014.06.050 GUENTHNER W R, REINERS P W, DECELLES P G, et al., 2015. Sevier belt exhumation in central Utah constrained from complex zircon (U-Th)/He data sets: Radiation damage and He inheritance effects on partially reset detrital zircons[J]. Geological Society of America Bulletin, 127(3-4): 323-348. doi: 10.1130/B31032.1 HOU G T, WANG C C, LI J H, et al., 2006. Late Paleoproterozoic extension and a paleostress field reconstruction of the North China Craton[J]. Tectonophysics, 422(1-4): 89-98. doi: 10.1016/j.tecto.2006.05.008 HU B, ZHAI M G, PENG P, et al., 2013. Late Paleoproterozoic to Neoproterozoic Geological Events of the North China Craton: Evidences from LA-ICP-MS U-Pb Geochronology of detrital zircons from the Cambrian and Jurassic sedimentary rocks in Western Hills of Beijing[J]. Acta Petrologica Sinica, 29(7): 2508-2536. (in Chinese with English abstract) HU J M, ZHAO Y, LIU X W, et al., 2010. Early Mesozoic deformations of the eastern Yanshan thrust belt, Northern China[J]. International Journal of Earth Sciences, 99(4): 785-800. doi: 10.1007/s00531-009-0417-5 JIANG G Z, HU S B, SHI Y Z, et al., 2019. Terrestrial heat flow of continental China: Updated dataset and tectonic implications[J]. Tectonophysics, 753: 36-48. doi: 10.1016/j.tecto.2019.01.006 KETCHAM R A, 2005. Forward and inverse modeling of low-temperature thermochronometry data[J]. Reviews in Mineralogy and Geochemistry, 58(1): 275-314. doi: 10.2138/rmg.2005.58.11 LI H K, ZHANG J, TIAN H, et al., 2020. Recent advances in the study of the Meso-to Neoproterozoic chronostratigraphy of the Yanliao Aulacogen on the northern margin of the North China Craton[J]. Geological Survey and Research, 43(2): 127-136. (in Chinese with English abstract) LI H L, QIU N S, JIN Z J, et al., 2005. Geothermal history of Tarim basin[J]. Oil and Gas Geology, 26(5): 613-617. (in Chinese with English abstract) LI J F, TANG W H, LIU Z, et al., 2010. Apatite fission track analysis of Upper Jurassic Houcheng formation at Qianjiadian area, Beijing and its geological significance[J]. Chinese Journal of Geophysics, 53(12): 2907-2917. (in Chinese with English abstract) LIU J, ZHAO Y, LIU X M, et al., 2012. Rapid exhumation of basement rocks along the northern margin of the North China craton in the early Jurassic: Evidence from the Xiabancheng Basin, Yanshan Tectonic Belt[J]. Basin Research, 24(5): 544-558. doi: 10.1111/j.1365-2117.2011.00538.x LU S N, XINAG Z Q, LI H K, et al., 2012. Response of the North China Craton to Rodinia supercontinental events: GOSENjoininghypothesis[J]. Acta Geologica Sinica, 86(9): 1396-1406. (in Chinese with English abstract) MA Y S, CUI S Q, ZHAO Y, et al., 2002. The transformation process of mesozoic-cenozoic tectonic regime in the north of North China[J]. Journal of Geomechanics, 8(1): 15-25. (in Chinese with English abstract) ORME D A, GUENTHNER W R, LASKOWSKI A K, et al., 2016. Long-term tectonothermal history of Laramide basement from zircon-He age-eU correlations[J]. Earth and Planetary Science Letters, 453: 119-130. doi: 10.1016/j.epsl.2016.07.046 POWELL J, SCHNEIDER D, STOCKLI D, et al., 2016. Zircon (U-Th)/He thermochronology of Neoproterozoic strata from the Mackenzie Mountains, Canada: Implications for the Phanerozoic exhumation and deformation history of the northern Canadian Cordillera[J]. Tectonics, 35(3): 663-689. doi: 10.1002/2015TC003989 QIU N S, WEI G, LI C C, et al., 2009. Distribution features of current geothermal field in the Bohai Sea waters[J]. Oil and Gas Geology, 30(4): 412-419. (in Chinese with English abstract) QIU N S, WANG J Y, MEI Q H, et al., 2010. Constraints of (U-Th)/He ages on early Paleozoic tectonothermal evolution of the Tarim Basin, China[J]. Science China Earth Sciences, 53(7): 964-976. doi: 10.1007/s11430-010-4004-1 QIU N S, ZUO Y H, CHANG J, et al., 2014. Geothermal evidence of Meso-Cenozoic lithosphere thinning in the Jiyang sub-basin, Bohai Bay Basin, eastern North China Craton[J]. Gondwana Research, 26(3-4): 1079-1092. doi: 10.1016/j.gr.2013.08.011 QIU N S, HE L J, CHANG J, et al., 2020. Research progress and challenges of thermal history reconstruction in sedimentary basins[J]. Petroleum Geology and Experiment, 42(5): 790-802. (in Chinese with English abstract) QU Y Q, PAN J G, LIANG L D, et al., 2012. The attributes of the Mesoproterozoic unconformities in the Yanliao rift trough[J]. Sedimentary Geology and Tethyan Geology, 32(2): 11-22. (in Chinese with English abstract) REINERS P W, SPELL T L, NICOLESCU S, et al., 2004. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating[J]. Geochimica et Cosmochimica Acta, 68(8): 1857-1887. doi: 10.1016/j.gca.2003.10.021 ROBERT F, CHAUSSIDON M, 2006. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts[J]. Nature, 443(7114): 969-972. doi: 10.1038/nature05239 VERMEESCH P, 2018. IsoplotR: A free and open toolbox for geochronology[J]. Geoscience Frontiers, 9(5): 1479-1493. doi: 10.1016/j.gsf.2018.04.001 WAN Y S, LIU D Y, WANG W, et al., 2011. Provenance of Meso-to Neoproterozoic cover sediments at the Ming Tombs, Beijing, North China craton: An integrated study of U-Pb dating and Hf isotopic measurement of detrital zircons and whole-rock geochemistry[J]. Gondwana Research, 20(1): 219-242. doi: 10.1016/j.gr.2011.02.009 WANG H, REN S M, ZHOU Z, et al., 2019. Oil and gas exploration status analysis of the Meso-Neoproterozoic strata in Yanshan area, North China[J]. Geological Bulletin of China, 38(2-3): 404-413. (in Chinese with English abstract) WANG T G, ZHONG N N, WANG C J, et al., 2016. Source beds and oil entrapment-alteration histories of fossil-oil-reservoirs in the Xiamaling Formation basal sandstone, Jibei depression[J]. Petroleum Science Bulletin, 1(1): 24-37. (in Chinese with English abstract) WANG W, LIU S W, SANTOSH M, et al., 2015. Late Paleoproterozoic geodynamics of the North China Craton: Geochemical and zircon U-Pb-Hf records from a volcanic suite in the Yanliao rift[J]. Gondwana Research, 27(1): 300-325. doi: 10.1016/j.gr.2013.10.004 WANG W F, LU S K, SUN Y P, 1997. Tectonic evolution of the sedimentary basins in western Liaoning province and their genesis type[J]. Journal of Geomechanics, 3(3): 81-89. (in Chinese with English abstract) WOLF R A, FARLEY K A, SILVER L T, 1996. Helium diffusion and low-temperature thermochronometry of apatite[J]. Geochimica et Cosmochimica Acta, 60(21): 4231-4240. doi: 10.1016/S0016-7037(96)00192-5 WU L, MONIÉ P, WANG F, et al., 2018. Multi-phase cooling of Early Cretaceous granites on the Jiaodong Peninsula, East China: Evidence from 40Ar/39Ar and (U-Th)/He thermochronology[J]. Journal of Asian Earth Sciences, 160: 334-347. doi: 10.1016/j.jseaes.2017.11.014 WU Z H, CUI S Q, WU G G, et al., 2000. Thermochronological analysis on the uplift process of the Yanshan Mountains[J]. Geological Review, 46(1): 49-57. (in Chinese with English abstract) YANG M L, CHEN X H, 2005. (U-Th)/He dating technique and thermochronology and their applications in geology[J]. Journal of Geomechanics, 11(2): 164-171. (in Chinese with English abstract) ZHAI M G, 2019. Tectonic evolution of the North China Craton[J]. Journal of Geomechanics, 25(5): 722-745. (in Chinese with English abstract) ZHAI P J, ZHANG F, ZHAO Y L, 2003. Thermal history of the Fangshan granodiorite intrusion, Beijing: Evidence from fission tracks of apatites and sphenes[J]. Geochimica, 32(2): 188-192. (in Chinese with English abstract) ZHANG Q, 2011. Guess on the Silurian-Devonian North China highland: Evidence from the information of Gansu[J]. Gansu Geology, 20(2): 1-10. (in Chinese with English abstract) ZHANG S H, ZHAO Y, YE H, et al., 2014a. Origin and evolution of the Bainaimiao arc belt: Implications for crustal growth in the southern central Asian orogenic belt[J]. GSA Bulletin, 126(9-10): 1275-1300. doi: 10.1130/B31042.1 ZHANG S H, ZHAO Y, DAVIS G A, et al., 2014b. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization[J]. Earth-Science Reviews, 131: 49-87. doi: 10.1016/j.earscirev.2013.12.004 ZHANG Y P, SU Y Z, LI J C, 2010. Regional tectonics significance of the Late Silurian Xibiehe Formation in central Inner Mongolia, China[J]. Geological Bulletin of China, 29(11): 1599-1605. (in Chinese with English abstract) ZHAO Y, ZHANG S H, XU G, et al., 2004. The Jurassic major tectonic events of the Yanshanian intraplate deformation belt[J]. Geological Bulletin of China, 23(9-10): 854-863. (in Chinese with English abstract) ZHENG J P, 2020. Internal and external factors in continental lithosphere mantle replacement in eastern china[J]. Journal of Geomechanics, 26(5): 742-758. (in Chinese with English abstract) ZHONG N N, LU S F, HUANG Z L, et al., 2004. TOC evolution and its controlling factors during the hydrocarbon generation process[J]. Science in China Series D: Earth Sciences, 34(S1): 120-126. (in Chinese) 程璐瑶, 唐晓音, 李毅, 2021. 磷灰石裂变径迹退火影响因素研究进展[J]. 地质力学学报, 27(1): 127-134. doi: 10.12090/j.issn.1006-6616.2021.27.01.013 第五春荣, 孙勇, 刘养杰, 等, 2011. 秦皇岛柳江地区长龙山组石英砂岩物质源区组成: 来自碎屑锆石U-Pb-Hf同位素的证据[J]. 岩石矿物学杂志, 30(1): 1-12. doi: 10.3969/j.issn.1000-6524.2011.01.001 高林志, 张传恒, 史晓颖, 等, 2007. 华北青白口系下马岭组凝灰岩锆石SHRIMP U-Pb定年[J]. 地质通报, 26(3): 249-255. doi: 10.3969/j.issn.1671-2552.2007.03.001 胡波, 翟明国, 彭澎, 等, 2013. 华北克拉通古元古代末-新元古代地质事件: 来自北京西山地区寒武系和侏罗系碎屑锆石LA-ICP-MS U-Pb年代学的证据[J]. 岩石学报, 29(7): 2508-2536. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201307019.htm 李怀坤, 张健, 田辉, 等, 2020. 华北克拉通北缘燕辽裂陷槽中-新元古代地层年代学研究进展[J]. 地质调查与研究, 43(2): 127-136. doi: 10.3969/j.issn.1672-4135.2020.02.007 李慧莉, 邱楠生, 金之钧, 等, 2005. 塔里木盆地的热史[J]. 石油与天然气地质, 26(5): 613-617. doi: 10.3321/j.issn:0253-9985.2005.05.009 李建锋, 汤文豪, 刘钊, 等, 2010. 北京千家店地区侏罗系后城组磷灰石裂变径迹分析及其地质意义[J]. 地球物理学报, 53(12): 2907-2917. doi: 10.3969/j.issn.0001-5733.2010.12.014 陆松年, 相振群, 李怀坤, 等, 2012. 华北克拉通对罗迪尼亚超大陆事件的响应: GOSEN连接假设[J]. 地质学报, 86(9): 1396-1406. doi: 10.3969/j.issn.0001-5717.2012.09.006 马寅生, 崔盛芹, 赵越, 等, 2002. 华北北部中新生代构造体制的转换过程[J]. 地质力学学报, 8(1): 15-25. doi: 10.3969/j.issn.1006-6616.2002.01.002 邱楠生, 魏刚, 李翠翠, 等, 2009. 渤海海域现今地温场分布特征[J]. 石油与天然气地质, 30(4): 412-419. doi: 10.3321/j.issn:0253-9985.2009.04.004 邱楠生, 汪集暘, 梅庆华, 等, 2010. (U-Th)/He年龄约束下的塔里木盆地早古生代构造-热演化[J]. 中国科学: 地球科学, 40(12): 1669-1683. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012005.htm 邱楠生, 何丽娟, 常健, 等, 2020. 沉积盆地热历史重建研究进展与挑战[J]. 石油实验地质, 42(5): 790-802. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202005017.htm 曲永强, 潘建国, 梁利东, 等, 2012. 燕辽裂陷槽中元古界不整合面的性质[J]. 沉积与特提斯地质, 32(2): 11-22. doi: 10.3969/j.issn.1009-3850.2012.02.002 王浩, 任收麦, 周志, 等, 2019. 华北燕山地区中-新元古界油气勘查形势[J]. 地质通报, 38(2-3): 404-413. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2019Z1021.htm 王铁冠, 钟宁宁, 王春江, 等, 2016. 冀北坳陷下马岭组底砂岩古油藏成藏演变历史与烃源剖析[J]. 石油科学通报, 1(1): 24-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201601003.htm 王伟锋, 陆诗阔, 孙月平, 1997. 辽西地区构造演化与盆地成因类型研究[J]. 地质力学学报, 3(3): 81-89. https://journal.geomech.ac.cn/article/id/d6216cca-d63d-4094-b561-f7f3d9d68f11 吴珍汉, 崔盛芹, 吴淦国, 等, 2000. 燕山山脉隆升过程的热年代学分析[J]. 地质论评, 46(1): 49-57. doi: 10.3321/j.issn:0371-5736.2000.01.007 杨美伶, 陈宣华, 2005. 氦素定年技术、氦热年代学及其在地质中的应用[J]. 地质力学学报, 11(2): 164-171. doi: 10.3969/j.issn.1006-6616.2005.02.009 翟明国, 2019. 华北克拉通构造演化[J]. 地质力学学报, 25(5): 722-745. doi: 10.12090/j.issn.1006-6616.2019.25.05.063 翟鹏济, 张峰, 赵云龙, 2003. 从裂变径迹分析探讨房山岩体地质热历史[J]. 地球化学, 32(2): 188-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200302012.htm 张旗, 2011. 志留-泥盆纪华北高地的猜想: 从甘肃的研究说起[J]. 甘肃地质, 20(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201102003.htm 张允平, 苏养正, 李景春, 2010. 内蒙古中部地区晚志留世西别河组的区域构造学意义[J]. 地质通报, 29(11): 1599-1605. doi: 10.3969/j.issn.1671-2552.2010.11.001 赵越, 张拴宏, 徐刚, 等, 2004. 燕山板内变形带侏罗纪主要构造事件[J]. 地质通报, 23(9-10): 854-863. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z2005.htm 郑建平, 2020. 中国东部大陆岩石圈地幔置换作用的内外原因[J]. 地质力学学报, 26(5): 742-758. doi: 10.12090/j.issn.1006-6616.2020.26.05.061 钟宁宁, 卢双舫, 黄志龙, 等, 2004. 烃源岩生烃演化过程TOC值的演变及其控制因素[J]. 中国科学D辑: 地球科学, 34(S1): 120-126. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2004S1013.htm