留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于地面运动强度及标准贯入试验的上海地区砂土地震液化评价

李雪 曾毓燕 郁飞 施刚

李雪, 曾毓燕, 郁飞, 等, 2021. 基于地面运动强度及标准贯入试验的上海地区砂土地震液化评价. 地质力学学报, 27 (6): 998-1010. DOI: 10.12090/j.issn.1006-6616.2021.27.06.081
引用本文: 李雪, 曾毓燕, 郁飞, 等, 2021. 基于地面运动强度及标准贯入试验的上海地区砂土地震液化评价. 地质力学学报, 27 (6): 998-1010. DOI: 10.12090/j.issn.1006-6616.2021.27.06.081
LI Xue, ZENG Yuyan, YU Fei, et al., 2021. Assessment of seismic liquefaction hazard in Shanghai based on ground motion intensity and Standard Penetration Test. Journal of Geomechanics, 27 (6): 998-1010. DOI: 10.12090/j.issn.1006-6616.2021.27.06.081
Citation: LI Xue, ZENG Yuyan, YU Fei, et al., 2021. Assessment of seismic liquefaction hazard in Shanghai based on ground motion intensity and Standard Penetration Test. Journal of Geomechanics, 27 (6): 998-1010. DOI: 10.12090/j.issn.1006-6616.2021.27.06.081

基于地面运动强度及标准贯入试验的上海地区砂土地震液化评价

doi: 10.12090/j.issn.1006-6616.2021.27.06.081
基金项目: 

上海市财政资金项目 002021080001

详细信息
    作者简介:

    李雪(1992-), 女, 助理工程师, 从事构造地质、城市地质灾害调查研究相关工作。E-mail: lixue@sigee.com.cn

    通讯作者:

    施刚(1964-), 男, 高级工程师, 从事城市地质调查、水文地质与工程地质学研究。E-mail: 454229705@qq.com

  • 中图分类号: TU42

Assessment of seismic liquefaction hazard in Shanghai based on ground motion intensity and Standard Penetration Test

Funds: 

the Financial Support Program of Shanghai 002021080001

  • 摘要: 上海市地处长江三角洲前缘,黄浦江和苏州河交汇区域,特殊的地理环境与沉积环境导致浅部砂层广泛发育。随着城市建设的不断推进,上海城市区域范围的砂土地震液化风险评价成为亟待研究的课题。文章基于上海市工程钻孔数据,结合地震地面运动加速度分布与标准贯入试验,建立区域性地震液化危险性评价模型,对上海市进行了地震液化危险性评价。研究认为当发生50年超越概率10%的地震条件下,上海市陆域面积的66.0%将不会产生地震砂土液化灾害,21.8%的陆域面积仅发生轻微液化,只有崇明、横沙、长兴三岛,黄浦江及苏州河两岸地震液化等级达到中等甚至严重,占全市陆域面积12.3%;50年超越概率2%的地震条件下,随着峰值地面运动加速度整体升高,全市范围内轻微—严重液化区域明显增多,可能发生地震液化的总面积达到全市陆域面积46.25%。上海市存在砂土地震液化的危险性,但是发生概率较低。研究认为,目前的抗震设计规范中上海市的设防烈度偏高,可能导致不必要的建设成本。同时研究中的不同超越概率下的地震液化危险性评价结果为上海市工程建设相关标准的合理化改进的提供了建议和参考。

     

  • 图  1  上海市第四系沉积类型

    Figure  1.  Quaternary deposition types in Shanghai

    图  2  基于原位试验的液化判别方法示意图(Whitman, 1971)

    Figure  2.  Diagram of the liquefaction discriminant based on in-situ test(Whitman et al., 1971)

    图  3  砂土地震液化评价流程图

    Figure  3.  Flow chart of liquefaction hazard assessment in Shanghai

    图  4  钻孔分布及砂层厚度分布情况

    a—此次研究涉及的钻孔分布; b—上海市砂层厚度分布情况

    Figure  4.  Geo-engineering boreholes and thickness of shallow sand layers in Shanghai

    (a) Geo-engineering boreholes for this study; (b) Thickness of shallow sand layers in Shanghai

    图  5  典型地震液化易发区浅部砂层地质剖面

    Figure  5.  Geological profile of shallow sand layer in dypical seismic liquefaction prone zones

    图  6  上海及邻区1970—2017年地震记录及潜在震源区分布图

    a—上海及邻区1970—2017年地震记录; b—潜在震源区分布图(据上海市地震局和同济大学, 2004修改)

    Figure  6.  Earthquake events during 1970~2017 and potential earthquake source zones near Shanghai

    (a) Earthquake events during 1970~2017; (b) Potential earthquake source zones in Shanghai and adjacent areas (modified after Shanghai Earthquake Agency and Tongji University, 2004)

    图  7  上海市50年超越概率10%、2%峰值地面运动加速度

    a—50年超越概率10%峰值地面运动加速度; b—50年超越概率2%峰值地面运动加速度(据上海市地震局, 1992)

    Figure  7.  Peak acceleration with 10% and 2% probability of exceedance in 50 years

    (a) Peak acceleration with 10% probability of exceedance in 50 years; (b) Peak acceleration with 2% probability of exceedance in 50 years

    图  8  50年超越概率10%地震液化指数分布及液化程度分级

    a—50年超越概率10%地震液化指数分布; b—50年超越概率10%液化程度分级

    Figure  8.  Assessment of liquefaction risks with 10% probability of exceedance in 50 years

    (a) Assessment of liquefaction risks; (b) Liquefaction zonation with 10% probability of exceedance in 50 years

    图  9  50年超越概率2%地震液化指数分布及液化程度分级

    a—50年超越概率2%地震液化指数分布; b—50年超越概率2%液化程度分级

    Figure  9.  Assessment of liquefaction risks with 2% probability of exceedance in 50 years

    (a) Assessment of liquefaction risks; (b) Liquefaction zonation with 2% probability of exceedance in 50 years

    表  1  上海市工程地质第四纪地层表

    Table  1.   Table showing the Quaternary strata of engineering geology in Shanghai

    地质时代 工程地质编号 岩性 地质时代 工程地质编号 岩性
    晚全新世 Q43 填土 早全新世 Q41 3 粉质黏土
    Q43 1 黏土 Q41 4 黏土
    Q43 2 粉质黏土 晚更新世 Q32 1 黏土
    Q43 3 粉砂 Q32 2 粉质黏土
    中全新世 Q42 1 淤泥质粉质黏土 Q32 1 砂质黏土
    Q42 2 粉砂 Q32 2 粉砂、细砂
    Q42 3 淤泥质粉质黏土 Q32 1 黏土
    Q42 淤泥质黏土 Q32 2 砂质粉土粉质黏土互层
    早全新世 Q41 1 黏土、粉质黏土 Q31 1 粉细砂
    Q41 2 粉砂 Q31 2 粉砂、细砂及中粗砂
    下载: 导出CSV

    表  2  地面峰值加速度对应液化判别标准贯入锤击数基准值

    Table  2.   Critical SPT blow count for varied PGA interval

    地面峰值加速度/m/s2 0.9≤a < 1.4 1.4≤a < 1.9 1.9≤a < 2.9
    液化判别标准贯入锤击数基准值 N0=7 N0=10 N0=12
    据《建筑抗震设计规范》GB 50011-2010, 《中国地震动参数区划图》GB 18306-2015修改
    下载: 导出CSV

    表  3  液化等级分级

    Table  3.   Classification of risk assessment based on liquefaction index

    液化等级 轻微 中等 严重
    地震液化指数IE 0<IE≤6 6<IE≤18 IE>18
    据《建筑抗震设计规范》(GB 50011-2010)
    下载: 导出CSV

    表  4  上海市地震液化易发区域浅部砂层工程参数

    Table  4.   Description for major liquefaction susceptible zones in Shanghai

    综合特征 苏州河、黄浦江沿岸 "冈身"沿线 崇明岛及长江沿岸 浦东临港地区
    工程地层编号 3 3 3-1 3-2 3-3 3
    地层层位 如东组 上海组 如东组、上海组 如东组
    沉积环境 三角洲河流 滨海 河口 滨海
    岩性特征 以砂质粉土为主, 黏粒含量高, 土质不均 大部分地区以砂质粉土为主, 部分地区为黏质粉土 上部为砂质粉土, 中部为黏质粉土, 下部为砂质粉土或粉砂 以砂质粉土为主, 颗粒较均匀, 具水平层理, 土质较均匀
    含水量/% 34.4 30.3 30.1 33.1 31.2 29.6
    孔隙比 0.98 0.79 0.87 1.01 0.89 0.84
    黏粒含量/% 9.4 6.1 6.5 12.1 7.3 5.3
    比贯入阻力/MPa 1.48 2.13 2.65 0.98 3.65 3.41
    平均标准贯入击数 6.2 9.9 8.3 5.6 12.5 11.6
    浅部砂层厚度/m 9~11 1~5 11~17 5~11
    下载: 导出CSV

    表  5  上海市地震液化面积统计(50年超越概率10%)

    Table  5.   Statistics of liquefaction areas with 10% probability of exceedance in 50 years

    液化等级 不液化 轻微液化 中等液化 严重液化
    液化面积/km2 4524.73 1496.63 807.84 38.48
    占上海市陆域面积比重/% 66.00 21.79 11.76 0.56
    下载: 导出CSV

    表  6  上海市地震液化面积统计(50年超越概率2%)

    Table  6.   Statistics of liquefaction areas with 2% probability of exceedance in 50 years

    液化等级 不液化 轻微液化 中等液化 严重液化
    液化面积/km2 3961.40 638.00 1587.29 951.00
    占上海市陆域面积比重/% 53.75 9.29 23.11 13.85
    下载: 导出CSV
  • BAKER J W, JAYARAM N, 2008. Correlation of spectral acceleration values from NGA ground motion models[J]. Earthquake Spectra, 24(1): 299-317. doi: 10.1193/1.2857544
    BAO M F, SUN Y F, LIU J X, et al., 1981. Relationship between Quaternary hydrogeological engineering geological characteristics and land subsidence in Shanghai[J]. Shanghai Dizhi (1): 42-54. (in Chinese)
    CAI J T, 2019. Study on risk assessment and hidden danger prevention and control of ground collapse in Shanghai[J]. Shanghai Land and Resources, 40(4): 64-70. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SHAD201904012.htm
    CHEN G X, JIN D D, CHANG X D, et al., 2013. Review of soil liquefaction characteristics during major earthquakes in recent twenty years and liquefaction susceptibility criteria for soils[J]. Rock and Soil Mechanics (10): 2737-2755, 2795. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX201310001.htm
    CHEN G X, KONG M Y, LI X J, et al., 2015. Deterministic and probabilistic triggering correlations for assessment of seismic soil liquefaction at nuclear power plant[J]. Rock and Soil Mechanics, 36(1): 9-27. (in Chinese with English abstract) http://www.researchgate.net/profile/Xiaojun_Li5/publication/281765751_Deterministic_and_probabilistic_triggering_correlations_for_assessment_of_seismic_soil_liquefaction_at_nuclear_power_plant/links/56b545c408aebbde1a77c589.pdf
    HOLZER T L, 2008. Probabilistic liquefaction hazard mapping[C]//Geotechnical earthquake engineering and soil dynamics congress IV. Sacramento, California, United States: American Society of Civil Engineers: 1-32.
    HOLZER T L, NOCE T E, BENNETT M J, 2011. Liquefaction probability curves for surficial geologic deposits[J]. Environmental & Engineering Geoscience, 17(1): 1-21. http://adsabs.harvard.edu/abs/2009agufmnh43b1322h
    HUANG Y, YE W M, CHEN Z C, 2009. Seismic response analysis of the deep saturated soil deposits in Shanghai[J]. Environmental Geology, 56(6): 1163-1169. doi: 10.1007/s00254-008-1216-1
    HUO E J, LIU C S, 2002. Historical materials of natural disasters in Shanghai: from 751 to 1949A. D[M]. Beijing: Seismological Press. (in Chinese)
    IDRISS I M, BOULANGER R W, 2010. SPT-based liquefaction triggering procedures[R]. Davis, California: University of California.
    KRAMER S L, 1996. Geotechnical earthquake engineering[M]. Upper Saddle River, NJ: Prentice-Hall.
    LI J, ZHAO S, 2016. Application of 3D geological modeling in the analysis of sandy soil liquefaction: A case study of Tongzhou[J]. China Mining Magazine, 25(5): 164-168, 174. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKA201605037.htm
    LI T, TANG X W, 2019. Experimental study on effect of coexistence of clay and silt on static and dynamic liquefaction of sand[J]. Chinese Journal of Geotechnical Engineering, 41(S2): 169-172. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YTGC2019S2044.htm
    LI X, 2009. Tratigraphic subdivisions and sedimentary environmental evolutions of the Late Cenozoic sequences in Shanghai region[J]. Shanghai Geology (1): 1-7. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHAD200901002.htm
    LIU C Z, WU L C, CAO M, 1985. The sedimentary characteristics, origin and age of ancient sand dike (Gangshen) in the south Yangtze River Delta[J]. Acta Oceanologica Sinica, 7(1): 55-66. (in Chinese)
    LU Z J, 1980. Determinations of hydrological conditions in Shanghai[J]. Shanghai Geology (2): 1-9. (in Chinese)
    QIU J B, 2006. The progress of Quaternary geologic study in Shanghai[J]. Shanghai Geology (4): 5-9. (in Chinese with English abstract)
    SEED H B, IDRISS I M, 1971. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundations Division, 97(9): 1249-1273. doi: 10.1061/JSFEAQ.0001662
    Shanghai Bureau of Geology and mineral Resources, 1988. Regional geology of Shanghai municipality[M]. Beijing: Seismological Press. (in Chinese)
    Shanghai Earthquake Agency, 1992. Assessment of seismic risk and review of basic seismic intensity in Shanghai area[M]. Beijing: Seismological Press. (in Chinese)
    Shanghai Earthquake Agency, Tongji University, 2004. Seismic ground motion parameters zonation of Shanghai[M]. Beijing: Seismological Press. (in Chinese)
    SHI Y J, CHEN H S, YANG T L, et al., 2009. Determinations of engineering geological layers and analyses of engineering geological conditions in Shanghai, China[J]. Shanghai Geology (1): 28-33. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_shanghai-land-resources_thesis/0201252215907.html
    WANG W M, LI X F, LI Y, 2016. Measured data-based analysis of correlation between liquefactive characteristic parameters and liquefaction[J]. World Earthquake Engineering, 32(1): 8-14. (in Chinese with English abstract) http://www.researchgate.net/publication/301655903_Measured_data-based_analysis_of_correlation_between_liquefactive_characteristic_parameters_and_liquefaction
    WANG Y, DU J, TIAN G M, 2009. A preliminary study on gradation division of sand liquefaction by SPT method in the Panjin City precincts[J]. Jilin Geology, 28(3): 67-70. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-JLDZ200903021.htm
    WEI Z X, ZHAI G Y, YAN X X, et al., 2010. Atlas of Shanghai urban geology[M]. Beijing: Geology Press. (in Chinese with English abstract)
    WHITMAN R V, 1971. Resistance of soil to liquefaction and settlement[J]. Soils and Foundations, 11(4): 59-68. doi: 10.3208/sandf1960.11.4_59
    XU G D, XU G L, LI J J, 2011. Application of SPT and N-value to geotechnical engineering in Japan[J]. Safety and Environmental Engineering, 18(4): 33-38. (in Chinese with English abstract) http://www.cqvip.com/QK/90959A/20114/38731524.html
    YAN X X, SHI Y J, 2006. Structure characteristic of engineering geology in Shanghai[J]. Shanghai Geology (4): 19-24. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHAD200604007.htm
    YANG W W, YUE Z Q, 2006. The standard penetration test and its applications in geotechnical engineering[J]. Guangdong Water Resources and Hydropower (2): 31-33, 35. (in Chinese with English abstract)
    YOUD T L, IDRISS I M, ANDRUS R D, et al., 2001. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 127(10): 817-833. doi: 10.1061/(ASCE)1090-0241(2001)127:10(817)
    ZHANG H, SHI G, WU H, et al., 2020. In-situ stress measurement in the shallow basement of the Shanghai area and its structural geological significance[J]. Journal of Geomechanics, 26(4): 583-594 (in Chinese with English abstract)
    ZHU G B, 2019. Mechanism, determination and hazard evaluation of seismic liquefaction[J]. Engineering and Technological Research, 4(2): 233-234. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YJCO201902114.htm
    ZHU S Z, CHEN Y Y, SUN Y F, et al., 1980. Quaternary strata and palaeoclimate in Shanghai region[J]. Chinese Science Bulletin (5): 220-223. (in Chinese)
    包曼芳, 孙永福, 刘家贤, 等, 1981. 上海地区第四系水文地质工程地质特征与地面沉降的关系[J]. 上海国土资源 (1): 42-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD198101005.htm
    蔡剑韬, 2019. 上海地区地面塌陷风险评价及其隐患防控研究[J]. 上海国土资源, 40(4): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD201904012.htm
    陈国兴, 金丹丹, 常向东, 等, 2013. 最近20年地震中场地液化现象的回顾与土体液化可能性的评价准则[J]. 岩土力学 (10): 2737-2755, 2795. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201310001.htm
    陈国兴, 孔梦云, 李小军, 等, 2015. 以标贯试验为依据的砂土液化确定性及概率判别法[J]. 岩土力学, 36(1): 9-27. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501002.htm
    高广运, 陈青生, 何俊锋, 等, 2011. 地下水位上升对上海软土场地地震反应的影响[J]. 岩土工程学报, 33(7): 7. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201107001.htm
    火恩杰, 刘昌森, 2002. 上海地区自然灾害史料汇编: 公元751~1949年[M]. 北京: 地震出版社.
    李静, 赵帅, 2016. 城市三维地质建模在砂土液化分析中的应用: 以通州为例[J]. 中国矿业, 25(5): 164-168, 174. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201605037.htm
    李涛, 唐小微, 2019. 黏粒和粉粒的共存对砂土静动力液化影响的试验研究[J]. 岩土工程学报, 41(S2): 169-172. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2044.htm
    李晓, 2009. 上海地区晚新生代地层划分与沉积环境演化[J]. 上海地质 (1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD200901002.htm
    刘苍字, 吴立成, 曹敏, 1985. 长江三角洲南部古沙堤(冈身)的沉积特征、成因及年代[J]. 海洋学报, 7(1): 55-66. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC198501006.htm
    陆志坚, 1980. 上海地区水文地质条件简介[J]. 上海地质 (2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD198002000.htm
    邱金波, 2006. 上海市第四纪地质研究的进展[J]. 上海地质 (4): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD200604004.htm
    上海地质矿产局, 1988. 上海市区域地质志[M]. 北京: 地震出版社.
    上海市地震局, 1992. 上海地区地震危险性分析与基本烈度复核[M]. 北京: 地震出版社.
    上海市地震局, 同济大学, 2004. 上海市地震动参数区划[M]. 北京: 地震出版社.
    史玉金, 陈洪胜, 杨天亮, 等, 2009. 上海市工程地质层层序厘定及工程地质条件分析[J]. 上海地质 (1): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD200901006.htm
    王维铭, 李晓飞, 李元, 2016. 基于实测数据的场地特征参数与液化相关性分析[J]. 世界地震工程, 32(1): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201601002.htm
    王岩, 杜军, 田广明, 2009. 用标贯法对盘锦城区砂土液化进行等级分区[J]. 吉林地质, 28(3): 67-70. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ200903021.htm
    魏子新, 翟刚毅, 严学新, 等, 2010. 上海城市地质图集[M]. 北京: 地质出版社.
    徐光大, 徐光黎, 李俊杰, 2011. 日本标准贯入试验方法及其N值在岩土工程中的应用[J]. 安全与环境工程, 18(4): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201104010.htm
    严学新, 史玉金, 2006. 上海市工程地质结构特征[J]. 上海地质 (4): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD200604007.htm
    杨文卫, 岳中琦, 2006. 标准贯入试验及其在岩土工程中的应用[J]. 广东水利水电 (2): 31-33, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-GDSD200602013.htm
    张浩, 施刚, 巫虹, 等, 2020. 上海地区浅部地应力测量及其构造地质意义分析[J]. 地质力学学报, 26(4): 583-594. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200413&journal_id=dzlxxb
    朱贵兵, 2019. 地震液化机理、判别及其危害性评价[J]. 工程技术研究, 4(2): 233-234. https://www.cnki.com.cn/Article/CJFDTOTAL-YJCO201902114.htm
    竹淑贞, 陈业裕, 孙永福, 等, 1980. 上海地区第四纪地层与古气候[J]. 科学通报 (5): 220-223. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198005008.htm
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  471
  • HTML全文浏览量:  205
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-21
  • 修回日期:  2021-06-02
  • 刊出日期:  2021-12-28

目录

    /

    返回文章
    返回