Assessment of seismic liquefaction hazard in Shanghai based on ground motion intensity and Standard Penetration Test
-
摘要: 上海市地处长江三角洲前缘,黄浦江和苏州河交汇区域,特殊的地理环境与沉积环境导致浅部砂层广泛发育。随着城市建设的不断推进,上海城市区域范围的砂土地震液化风险评价成为亟待研究的课题。文章基于上海市工程钻孔数据,结合地震地面运动加速度分布与标准贯入试验,建立区域性地震液化危险性评价模型,对上海市进行了地震液化危险性评价。研究认为当发生50年超越概率10%的地震条件下,上海市陆域面积的66.0%将不会产生地震砂土液化灾害,21.8%的陆域面积仅发生轻微液化,只有崇明、横沙、长兴三岛,黄浦江及苏州河两岸地震液化等级达到中等甚至严重,占全市陆域面积12.3%;50年超越概率2%的地震条件下,随着峰值地面运动加速度整体升高,全市范围内轻微—严重液化区域明显增多,可能发生地震液化的总面积达到全市陆域面积46.25%。上海市存在砂土地震液化的危险性,但是发生概率较低。研究认为,目前的抗震设计规范中上海市的设防烈度偏高,可能导致不必要的建设成本。同时研究中的不同超越概率下的地震液化危险性评价结果为上海市工程建设相关标准的合理化改进的提供了建议和参考。Abstract: Shanghai is located in the alluvial plain of the Yangtze River Delta, the merge area of the Huangpu River and Suzhou River. The unique geographical and sedimentary environment have formed the shallow sand layers in Shanghai. Due to the significant urbanization process in Shanghai, geological hazard analysis, particularly the assessment for seismic liquefaction hazard in the Shanghai urban area has become an subject to be studied urgently. In this paper, we presented a regional liquefaction hazard analysis model. Based on the borehole Standard Penetration Test (SPT) data and regional Peak Ground Acceleration (PGA) zonation of the Shanghai area, we analyzed liquefaction risks with different probability of exceedance in 50 years. As our results indicated, under the condition that earthquake with 10% probability of exceedance in 50 years happens, more than 66.0% of the land area in Shanghai will not be affected by earthquake-induced liquefaction, 21.8% will only surfer modest liquefaction, and only 12.3% has the risks of serious liquefaction. These places cover Chongming island, Hengsha island, Changxing island and the banks of the Huangpujiang River and the Suzhou River. Provided that earthquake with 2% probability of exceedance in 50 years happens, due to the overall increase of peak ground motion acceleration, not less than 46.25% of the land area may suffer from modest to serious liquefaction risks. Although the rare seismic liquefaction risks exist, the probability of that is quite low. The current high fortification intensity for Shanghai in Chinese Code for Seismic Design of Building may result in unnecessary cost of construction. Our study provides new ideas and suggestions for perfecting the Code for Seismic Design of Building for Shanghai.
-
图 2 基于原位试验的液化判别方法示意图(Whitman, 1971)
Figure 2. Diagram of the liquefaction discriminant based on in-situ test(Whitman et al., 1971)
图 6 上海及邻区1970—2017年地震记录及潜在震源区分布图
a—上海及邻区1970—2017年地震记录; b—潜在震源区分布图(据上海市地震局和同济大学, 2004修改)
Figure 6. Earthquake events during 1970~2017 and potential earthquake source zones near Shanghai
(a) Earthquake events during 1970~2017; (b) Potential earthquake source zones in Shanghai and adjacent areas (modified after Shanghai Earthquake Agency and Tongji University, 2004)
图 7 上海市50年超越概率10%、2%峰值地面运动加速度
a—50年超越概率10%峰值地面运动加速度; b—50年超越概率2%峰值地面运动加速度(据上海市地震局, 1992)
Figure 7. Peak acceleration with 10% and 2% probability of exceedance in 50 years
(a) Peak acceleration with 10% probability of exceedance in 50 years; (b) Peak acceleration with 2% probability of exceedance in 50 years
表 1 上海市工程地质第四纪地层表
Table 1. Table showing the Quaternary strata of engineering geology in Shanghai
地质时代 工程地质编号 岩性 地质时代 工程地质编号 岩性 晚全新世 Q43 ① 填土 早全新世 Q41 ⑤3 粉质黏土 Q43 ②1 黏土 Q41 ⑤4 黏土 Q43 ②2 粉质黏土 晚更新世 Q32 ⑥1 黏土 Q43 ②3 粉砂 Q32 ⑥2 粉质黏土 中全新世 Q42 ③1 淤泥质粉质黏土 Q32 ⑦1 砂质黏土 Q42 ③2 粉砂 Q32 ⑦2 粉砂、细砂 Q42 ③3 淤泥质粉质黏土 Q32 ⑧1 黏土 Q42 ④ 淤泥质黏土 Q32 ⑧2 砂质粉土粉质黏土互层 早全新世 Q41 ⑤1 黏土、粉质黏土 Q31 ⑨1 粉细砂 Q41 ⑤2 粉砂 Q31 ⑨2 粉砂、细砂及中粗砂 表 2 地面峰值加速度对应液化判别标准贯入锤击数基准值
Table 2. Critical SPT blow count for varied PGA interval
地面峰值加速度/m/s2 0.9≤a < 1.4 1.4≤a < 1.9 1.9≤a < 2.9 液化判别标准贯入锤击数基准值 N0=7 N0=10 N0=12 据《建筑抗震设计规范》GB 50011-2010, 《中国地震动参数区划图》GB 18306-2015修改 表 3 液化等级分级
Table 3. Classification of risk assessment based on liquefaction index
液化等级 轻微 中等 严重 地震液化指数IE 0<IE≤6 6<IE≤18 IE>18 据《建筑抗震设计规范》(GB 50011-2010) 表 4 上海市地震液化易发区域浅部砂层工程参数
Table 4. Description for major liquefaction susceptible zones in Shanghai
综合特征 苏州河、黄浦江沿岸 "冈身"沿线 崇明岛及长江沿岸 浦东临港地区 工程地层编号 ②3 ②3 ②3-1 ②3-2 ②3-3 ②3 地层层位 如东组 上海组 如东组、上海组 如东组 沉积环境 三角洲河流 滨海 河口 滨海 岩性特征 以砂质粉土为主, 黏粒含量高, 土质不均 大部分地区以砂质粉土为主, 部分地区为黏质粉土 上部为砂质粉土, 中部为黏质粉土, 下部为砂质粉土或粉砂 以砂质粉土为主, 颗粒较均匀, 具水平层理, 土质较均匀 含水量/% 34.4 30.3 30.1 33.1 31.2 29.6 孔隙比 0.98 0.79 0.87 1.01 0.89 0.84 黏粒含量/% 9.4 6.1 6.5 12.1 7.3 5.3 比贯入阻力/MPa 1.48 2.13 2.65 0.98 3.65 3.41 平均标准贯入击数 6.2 9.9 8.3 5.6 12.5 11.6 浅部砂层厚度/m 9~11 1~5 11~17 5~11 表 5 上海市地震液化面积统计(50年超越概率10%)
Table 5. Statistics of liquefaction areas with 10% probability of exceedance in 50 years
液化等级 不液化 轻微液化 中等液化 严重液化 液化面积/km2 4524.73 1496.63 807.84 38.48 占上海市陆域面积比重/% 66.00 21.79 11.76 0.56 表 6 上海市地震液化面积统计(50年超越概率2%)
Table 6. Statistics of liquefaction areas with 2% probability of exceedance in 50 years
液化等级 不液化 轻微液化 中等液化 严重液化 液化面积/km2 3961.40 638.00 1587.29 951.00 占上海市陆域面积比重/% 53.75 9.29 23.11 13.85 -
BAKER J W, JAYARAM N, 2008. Correlation of spectral acceleration values from NGA ground motion models[J]. Earthquake Spectra, 24(1): 299-317. doi: 10.1193/1.2857544 BAO M F, SUN Y F, LIU J X, et al., 1981. Relationship between Quaternary hydrogeological engineering geological characteristics and land subsidence in Shanghai[J]. Shanghai Dizhi (1): 42-54. (in Chinese) CAI J T, 2019. Study on risk assessment and hidden danger prevention and control of ground collapse in Shanghai[J]. Shanghai Land and Resources, 40(4): 64-70. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SHAD201904012.htm CHEN G X, JIN D D, CHANG X D, et al., 2013. Review of soil liquefaction characteristics during major earthquakes in recent twenty years and liquefaction susceptibility criteria for soils[J]. Rock and Soil Mechanics (10): 2737-2755, 2795. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX201310001.htm CHEN G X, KONG M Y, LI X J, et al., 2015. Deterministic and probabilistic triggering correlations for assessment of seismic soil liquefaction at nuclear power plant[J]. Rock and Soil Mechanics, 36(1): 9-27. (in Chinese with English abstract) http://www.researchgate.net/profile/Xiaojun_Li5/publication/281765751_Deterministic_and_probabilistic_triggering_correlations_for_assessment_of_seismic_soil_liquefaction_at_nuclear_power_plant/links/56b545c408aebbde1a77c589.pdf HOLZER T L, 2008. Probabilistic liquefaction hazard mapping[C]//Geotechnical earthquake engineering and soil dynamics congress IV. Sacramento, California, United States: American Society of Civil Engineers: 1-32. HOLZER T L, NOCE T E, BENNETT M J, 2011. Liquefaction probability curves for surficial geologic deposits[J]. Environmental & Engineering Geoscience, 17(1): 1-21. http://adsabs.harvard.edu/abs/2009agufmnh43b1322h HUANG Y, YE W M, CHEN Z C, 2009. Seismic response analysis of the deep saturated soil deposits in Shanghai[J]. Environmental Geology, 56(6): 1163-1169. doi: 10.1007/s00254-008-1216-1 HUO E J, LIU C S, 2002. Historical materials of natural disasters in Shanghai: from 751 to 1949A. D[M]. Beijing: Seismological Press. (in Chinese) IDRISS I M, BOULANGER R W, 2010. SPT-based liquefaction triggering procedures[R]. Davis, California: University of California. KRAMER S L, 1996. Geotechnical earthquake engineering[M]. Upper Saddle River, NJ: Prentice-Hall. LI J, ZHAO S, 2016. Application of 3D geological modeling in the analysis of sandy soil liquefaction: A case study of Tongzhou[J]. China Mining Magazine, 25(5): 164-168, 174. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKA201605037.htm LI T, TANG X W, 2019. Experimental study on effect of coexistence of clay and silt on static and dynamic liquefaction of sand[J]. Chinese Journal of Geotechnical Engineering, 41(S2): 169-172. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YTGC2019S2044.htm LI X, 2009. Tratigraphic subdivisions and sedimentary environmental evolutions of the Late Cenozoic sequences in Shanghai region[J]. Shanghai Geology (1): 1-7. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHAD200901002.htm LIU C Z, WU L C, CAO M, 1985. The sedimentary characteristics, origin and age of ancient sand dike (Gangshen) in the south Yangtze River Delta[J]. Acta Oceanologica Sinica, 7(1): 55-66. (in Chinese) LU Z J, 1980. Determinations of hydrological conditions in Shanghai[J]. Shanghai Geology (2): 1-9. (in Chinese) QIU J B, 2006. The progress of Quaternary geologic study in Shanghai[J]. Shanghai Geology (4): 5-9. (in Chinese with English abstract) SEED H B, IDRISS I M, 1971. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundations Division, 97(9): 1249-1273. doi: 10.1061/JSFEAQ.0001662 Shanghai Bureau of Geology and mineral Resources, 1988. Regional geology of Shanghai municipality[M]. Beijing: Seismological Press. (in Chinese) Shanghai Earthquake Agency, 1992. Assessment of seismic risk and review of basic seismic intensity in Shanghai area[M]. Beijing: Seismological Press. (in Chinese) Shanghai Earthquake Agency, Tongji University, 2004. Seismic ground motion parameters zonation of Shanghai[M]. Beijing: Seismological Press. (in Chinese) SHI Y J, CHEN H S, YANG T L, et al., 2009. Determinations of engineering geological layers and analyses of engineering geological conditions in Shanghai, China[J]. Shanghai Geology (1): 28-33. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_shanghai-land-resources_thesis/0201252215907.html WANG W M, LI X F, LI Y, 2016. Measured data-based analysis of correlation between liquefactive characteristic parameters and liquefaction[J]. World Earthquake Engineering, 32(1): 8-14. (in Chinese with English abstract) http://www.researchgate.net/publication/301655903_Measured_data-based_analysis_of_correlation_between_liquefactive_characteristic_parameters_and_liquefaction WANG Y, DU J, TIAN G M, 2009. A preliminary study on gradation division of sand liquefaction by SPT method in the Panjin City precincts[J]. Jilin Geology, 28(3): 67-70. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-JLDZ200903021.htm WEI Z X, ZHAI G Y, YAN X X, et al., 2010. Atlas of Shanghai urban geology[M]. Beijing: Geology Press. (in Chinese with English abstract) WHITMAN R V, 1971. Resistance of soil to liquefaction and settlement[J]. Soils and Foundations, 11(4): 59-68. doi: 10.3208/sandf1960.11.4_59 XU G D, XU G L, LI J J, 2011. Application of SPT and N-value to geotechnical engineering in Japan[J]. Safety and Environmental Engineering, 18(4): 33-38. (in Chinese with English abstract) http://www.cqvip.com/QK/90959A/20114/38731524.html YAN X X, SHI Y J, 2006. Structure characteristic of engineering geology in Shanghai[J]. Shanghai Geology (4): 19-24. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHAD200604007.htm YANG W W, YUE Z Q, 2006. The standard penetration test and its applications in geotechnical engineering[J]. Guangdong Water Resources and Hydropower (2): 31-33, 35. (in Chinese with English abstract) YOUD T L, IDRISS I M, ANDRUS R D, et al., 2001. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 127(10): 817-833. doi: 10.1061/(ASCE)1090-0241(2001)127:10(817) ZHANG H, SHI G, WU H, et al., 2020. In-situ stress measurement in the shallow basement of the Shanghai area and its structural geological significance[J]. Journal of Geomechanics, 26(4): 583-594 (in Chinese with English abstract) ZHU G B, 2019. Mechanism, determination and hazard evaluation of seismic liquefaction[J]. Engineering and Technological Research, 4(2): 233-234. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YJCO201902114.htm ZHU S Z, CHEN Y Y, SUN Y F, et al., 1980. Quaternary strata and palaeoclimate in Shanghai region[J]. Chinese Science Bulletin (5): 220-223. (in Chinese) 包曼芳, 孙永福, 刘家贤, 等, 1981. 上海地区第四系水文地质工程地质特征与地面沉降的关系[J]. 上海国土资源 (1): 42-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD198101005.htm 蔡剑韬, 2019. 上海地区地面塌陷风险评价及其隐患防控研究[J]. 上海国土资源, 40(4): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD201904012.htm 陈国兴, 金丹丹, 常向东, 等, 2013. 最近20年地震中场地液化现象的回顾与土体液化可能性的评价准则[J]. 岩土力学 (10): 2737-2755, 2795. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201310001.htm 陈国兴, 孔梦云, 李小军, 等, 2015. 以标贯试验为依据的砂土液化确定性及概率判别法[J]. 岩土力学, 36(1): 9-27. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501002.htm 高广运, 陈青生, 何俊锋, 等, 2011. 地下水位上升对上海软土场地地震反应的影响[J]. 岩土工程学报, 33(7): 7. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201107001.htm 火恩杰, 刘昌森, 2002. 上海地区自然灾害史料汇编: 公元751~1949年[M]. 北京: 地震出版社. 李静, 赵帅, 2016. 城市三维地质建模在砂土液化分析中的应用: 以通州为例[J]. 中国矿业, 25(5): 164-168, 174. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201605037.htm 李涛, 唐小微, 2019. 黏粒和粉粒的共存对砂土静动力液化影响的试验研究[J]. 岩土工程学报, 41(S2): 169-172. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2044.htm 李晓, 2009. 上海地区晚新生代地层划分与沉积环境演化[J]. 上海地质 (1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD200901002.htm 刘苍字, 吴立成, 曹敏, 1985. 长江三角洲南部古沙堤(冈身)的沉积特征、成因及年代[J]. 海洋学报, 7(1): 55-66. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC198501006.htm 陆志坚, 1980. 上海地区水文地质条件简介[J]. 上海地质 (2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD198002000.htm 邱金波, 2006. 上海市第四纪地质研究的进展[J]. 上海地质 (4): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD200604004.htm 上海地质矿产局, 1988. 上海市区域地质志[M]. 北京: 地震出版社. 上海市地震局, 1992. 上海地区地震危险性分析与基本烈度复核[M]. 北京: 地震出版社. 上海市地震局, 同济大学, 2004. 上海市地震动参数区划[M]. 北京: 地震出版社. 史玉金, 陈洪胜, 杨天亮, 等, 2009. 上海市工程地质层层序厘定及工程地质条件分析[J]. 上海地质 (1): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD200901006.htm 王维铭, 李晓飞, 李元, 2016. 基于实测数据的场地特征参数与液化相关性分析[J]. 世界地震工程, 32(1): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201601002.htm 王岩, 杜军, 田广明, 2009. 用标贯法对盘锦城区砂土液化进行等级分区[J]. 吉林地质, 28(3): 67-70. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ200903021.htm 魏子新, 翟刚毅, 严学新, 等, 2010. 上海城市地质图集[M]. 北京: 地质出版社. 徐光大, 徐光黎, 李俊杰, 2011. 日本标准贯入试验方法及其N值在岩土工程中的应用[J]. 安全与环境工程, 18(4): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201104010.htm 严学新, 史玉金, 2006. 上海市工程地质结构特征[J]. 上海地质 (4): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD200604007.htm 杨文卫, 岳中琦, 2006. 标准贯入试验及其在岩土工程中的应用[J]. 广东水利水电 (2): 31-33, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-GDSD200602013.htm 张浩, 施刚, 巫虹, 等, 2020. 上海地区浅部地应力测量及其构造地质意义分析[J]. 地质力学学报, 26(4): 583-594. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200413&journal_id=dzlxxb 朱贵兵, 2019. 地震液化机理、判别及其危害性评价[J]. 工程技术研究, 4(2): 233-234. https://www.cnki.com.cn/Article/CJFDTOTAL-YJCO201902114.htm 竹淑贞, 陈业裕, 孙永福, 等, 1980. 上海地区第四纪地层与古气候[J]. 科学通报 (5): 220-223. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198005008.htm