留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东南极茹尔群岛超高温麻粒岩的研究进展

仝来喜 刘兆 王彦斌

仝来喜, 刘兆, 王彦斌, 2021. 东南极茹尔群岛超高温麻粒岩的研究进展. 地质力学学报, 27 (5): 705-718. DOI: 10.12090/j.issn.1006-6616.2021.27.05.058
引用本文: 仝来喜, 刘兆, 王彦斌, 2021. 东南极茹尔群岛超高温麻粒岩的研究进展. 地质力学学报, 27 (5): 705-718. DOI: 10.12090/j.issn.1006-6616.2021.27.05.058
TONG Laixi, LIU Zhao, WANG Yanbin, 2021. Research progress of the ultrahigh-temperature granulites in the Rauer Group, East Antarctica. Journal of Geomechanics, 27 (5): 705-718. DOI: 10.12090/j.issn.1006-6616.2021.27.05.058
Citation: TONG Laixi, LIU Zhao, WANG Yanbin, 2021. Research progress of the ultrahigh-temperature granulites in the Rauer Group, East Antarctica. Journal of Geomechanics, 27 (5): 705-718. DOI: 10.12090/j.issn.1006-6616.2021.27.05.058

东南极茹尔群岛超高温麻粒岩的研究进展

doi: 10.12090/j.issn.1006-6616.2021.27.05.058
基金项目: 

国家自然科学基金项目 41972050

国家自然科学基金项目 41530209

详细信息
    作者简介:

    仝来喜(1965-), 男, 教授, 博士生导师, 主要从事变质岩石学科研教学工作。E-mail: tonglx@nwu.edu.cn

  • 中图分类号: P588.3

Research progress of the ultrahigh-temperature granulites in the Rauer Group, East Antarctica

Funds: 

the National Natural Science Foundation of China 41972050

the National Natural Science Foundation of China 41530209

  • 摘要: 茹尔群岛(又称赖于尔群岛)位于东南极普里兹构造带的东部边缘,是一个由太古宙和中元古代岩石组成的复合高级变质地体。中元古代岩石是含有富Fe-Al的含石榴子石-矽线石的费拉副片麻岩组合,经历了格林维尔和泛非两期变质作用。太古宙正片麻岩是含有富Mg-Al的含假蓝宝石的超高温泥质麻粒岩组合(梅瑟副片麻岩组合),主要由经历超高温变质作用的含假蓝宝石的泥质麻粒岩、富Mg的石榴子石-矽线石泥质片麻岩、斜方辉石-矽线石石英岩、含石榴子石镁铁质麻粒岩和钙硅酸盐麻粒岩等组成。其中,含假蓝宝石泥质麻粒岩中石榴子石变斑晶和矽线石集合体(蓝晶石假象)周围分别发育峰期后由假蓝宝石+斜方辉石和假蓝宝石+堇青石后成合晶组成的典型减压结构。含石榴子石镁铁质麻粒岩中石榴子石变斑晶周围则发育峰期后由斜方辉石+斜长石后成合晶组成的典型白眼圈减压结构。不同研究者得出了具有不同超高温峰期条件、峰期前及峰期后演化历史、不同形式的顺时针变质P-T轨迹。对超高温变质事件发生的时间和构造背景的认识也存在较大分歧,有认为超高温变质事件发生于格林维尔期(~1000 Ma)并与碰撞造山和弧岩浆作用有关,也有研究认为发生于泛非期(~590 Ma或~530 Ma)并与普里兹造山及冈瓦纳大陆聚合有关。因此,为理清该区超高温麻粒岩的变质演化历史和构造背景,需要对其进一步进行详细深入的矿物组合-变质结构分析、P-T轨迹重建及高精度的锆石-独居石U-Pb年代学研究,并进行区域上对比。

     

  • 图  1  茹尔群岛与梅瑟半岛地质图(Tong and Wilson, 2006)

    a—茹尔群岛岩石单元分布图(显示茹尔群岛(Rauer Group, RG)、西福尔丘陵(Vestfold Hills, VH)、拉斯曼丘陵(Larsemann Hills, LH)、布拉特滨海陡崖(Brattstrand Bluffs, BB)、姊妹岛(Søstrene Island, SI)和伯林根群岛(Bolingen Islands, BI)在普里兹湾的位置,断续线指示一条主要由500 m宽的面状高应变带定义的梅瑟剪切带);b—梅瑟半岛的岩石单元和超高温麻粒岩样品位置(断续线代表识别出的厘米级至米级高级剪切带);c—主要的片麻理的投影;d—主要的矿物拉伸线理的投影

    Figure  1.  Geological maps of the Rauer Group and Mather Peninsula (Tong and Wilson, 2006)

    (a) Lithological unit map of the Rauer Group. Insert shows the locations of the Rauer Group (RG), the Vestfold Hills (VH), the Larsemann Hills (LH), the Brattstrand Bluffs (BB), Søstrene Island (SI) and the Bolingen Islands (BI), the dashed line shows the major Mather Shear Zone defined by a ~500 m wide planar high-strain zone; (b) Lithological distribution and sample locations on Mather Peninsula, the dashed lines show representative recognized cm- to m-wide high-grade shear zones; (c) Stereographic projections for the major foliation orientations; (d) Mineral elongation lineations on Mather Peninsula

    图  2  代表性超高温麻粒岩的野外照片

    a—富镁铝的超高温含假蓝宝石变泥质麻粒岩和互层的紫苏矽线石英岩(参照物铅笔长约15 cm);b—富镁的石榴矽线泥质片麻岩及其中的粗粒含石榴子石浅色体(参照物地质锤长约30 cm);c—富铁铝的石榴矽线泥质片麻岩透镜体,发育明显东南向倾的矿物拉伸线理(L6)和片麻理(S6)(参照物记号笔长约14 cm);d—含石榴子石镁铁质麻粒岩布丁(参照物地质锤长约30 cm)

    Figure  2.  Representative field photographs of the UHT granulites on Mather Peninsula

    (a) Mg-Al-rich UHT Spr-bearing metapelitic granulite and interlayered Opx-Sil-bearing quartzite, the pencil is 15 cm long as a scale; (b)Mg-rich Grt-Sil-bearing metapelitic gneiss and coarse-grained Grt-bearing leucosome, the hammer is 30 cm long as a scale; (c) Fe-Al-rich Grt-Sil-bearing metapelitic gneiss lens develop obvious SE-dipping mineral elongation lineation (L6) and foliation (S6), the marker is 14 cm long as a scale; (d) Grt-bearing mafic granulite boudin, the hammer is 30 cm long as a scale.

    图  3  超高温麻粒岩中代表性的镜下显微照片

    a—石榴子石变斑晶中的斜方辉石、矽线石、黑云母及斜长石等包裹体;b—矽线石集合体(蓝晶石假象)周围发育的峰期后假蓝宝石和堇青石后成合晶组合;c—浅色体中粗粒的假蓝宝石、斜方辉石及钾长石组合(视域宽2.0 mm);d—石榴子石变斑晶周围发育的典型的峰期后斜方辉石和假蓝宝石后成合晶组合;e—石榴子石变斑晶中的蓝晶石包裹体(视域宽1.0 mm);f—具有蓝晶石假象的矽线石变斑晶显示扭折变形特征;g—紫苏矽线石英岩中,富铝紫苏辉石变斑晶周围发育的峰期后堇青石和石英后成合晶组合;h—含石榴子石镁铁质麻粒岩中,单斜辉石周围的斜方辉石和斜长石反应边组合,石榴子石变斑晶周围的斜方辉石、斜长石及磁铁矿后成合晶组合

    Figure  3.  Representative microphotographs of the UHT granulites on Mather Peninsula

    (a) Opx-Sil-Bt-Pl inclusions in garnet porphyroblast; (b)Post-peak Spr-Crd symplectite assemblage around Sil aggregates (Ky pseudomorph); (c)Coarse-grained Spr-Opx-Ksp assemblage in leucosome (sight width 2.0 cm); (d)Typical post-peak Spr-Opx symplectite assemblage on garnet porphyroblast; (e) Ky inclusions in garnet porphyroblast (sight width 1.0 cm); (f) Sil porphyroblast with Ky pseudomorph shows features of kink deformation; (g)Post-peak Crd-Qtz symplectite assemblage on Al-rich Opx prophyroblast in Opx-Sil-bearing quartzite; (h)Opx-Pl corona assemblage on Cpx grain and Opx-Pl-Mt symplectite assemblage on Grt prophyroblast in Grt-bearing mafic granulite

    图  4  茹尔群岛超高温麻粒岩不同研究者得出的不同形式的变质P-T演化轨迹

    Figure  4.  Various metamorphic P-T paths derived by different researchers for the UHT granulites in the Rauer Group

  • BLACK L P, HARLEY S L, SUN S S, et al., 1987. The rayner complex of east Antarctica: complex isotopic systematics within a Proterozoic mobile belt[J]. Journal of Metamorphic Geology, 5: 1-26. doi: 10.1111/j.1525-1314.1987.tb00366.x
    BOGER S D, WILSON C J L, FANNING C M, 2001. Early Paleozoic tectonism within the East Antarctic craton: the final suture between east and west Gondwana?[J]. Geology, 29(5): 463-466. doi: 10.1130/0091-7613(2001)029<0463:EPTWTE>2.0.CO;2
    BOGER S D, 2011. Antarctica-before and after Gondwana[J]. Gondwana Research, 19(2): 335-371. doi: 10.1016/j.gr.2010.09.003
    BROWN M, 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean[J]. Geology, 34(11): 961-964. doi: 10.1130/G22853A.1
    BROWN M, 2007. Metamorphic conditions in orogenic belts: a record of secular change[J]. International Geology Review, 49(3): 193-234. doi: 10.2747/0020-6814.49.3.193
    CARSON C J, DIRKS P G H M, HAND M, et al., 1995. Compressional and extensional tectonics in low-medium pressure granulites from the Larsemann Hills, east Antarctica[J]. Geological Magazine, 132(2): 151-170. doi: 10.1017/S0016756800011729
    CARSON C J, FANNING C M, WILSON C J L, 1996. Timing of the Progress Granite, Larsemann Hills: additional evidence for Early Paleozoic orogenesis within the east Antarctic shield and implications for Gondwana assembly[J]. Australian Journal of Earth Sciences, 43(5): 539-553. doi: 10.1080/08120099608728275
    CARSON C J, POWELL R, WILSON C J L, et al., 1997. Partial melting during tectonic exhumation of a granulite terrane: an example from the Larsemann Hills, east Antarctica[J]. Journal of Metamorphic Geology, 15(1): 105-126. doi: 10.1111/j.1525-1314.1997.00059.x
    CLARK C, FITZSIMONS I C W, HEALY D, et al., 2011. How does the continental crust get really hot?[J]. Elements, 7(4): 235-240. doi: 10.2113/gselements.7.4.235
    CLARK C, TAYLOR R J M, JOHNSON T E, et al., 2019. Testing the fidelity of thermometers at ultrahigh temperatures[J]. Journal of Metamorphic Geology, 37(7): 917-934. doi: 10.1111/jmg.12486
    DIRKS P H G M, CARSON C J, WILSON C J L, 1993. The deformational history of the Larsemann Hills, Prydz Bay: the importance of the Pan-African (500 Ma) in East Antarctica[J]. Antarctic Science, 5(2): 179-192. doi: 10.1017/S0954102093000240
    DIRKS P H G M, HOEK J D, WILSON C J L, et al., 1994. The Proterozoic deformation of the Vestfold Hills Block, east Antarctica: implications for the tectonic development of adjacent granulite belts[J]. Precambrian Research, 65(1-4): 277-295. doi: 10.1016/0301-9268(94)90109-0
    DIRKS P H G M, HAND M, 1995. Clarifying temperature-pressure paths via structures in granulite from the Bolingen Islands, Antarctica[J]. Australian Journal of Earth Sciences, 42(2): 157-172. doi: 10.1080/08120099508728189
    DIRKS P H G M, WILSON C J L, 1995. Crustal evolution of the East Antarctic mobile belt in Prydz Bay: continental collision at 500 Ma?[J]. Precambrian Research, 75(3-4): 189-207. doi: 10.1016/0301-9268(95)80006-4
    FITZSIMONS I C W, HARLEY S L, 1991. Geological relationships in high-grade gneiss of the Brattstrand Bluffs coastline, Prydz Bay, east Antarctica[J]. Australian Journal of Earth Sciences, 38(5): 497-519. doi: 10.1080/08120099108727987
    FITZSIMONS I C W, 1996. Metapelitic migmatites from Brattstrand Bluffs, east Antarctica-metamorphism, melting and exhumation of the mid crust[J]. Journal of Petrology, 37(2): 395-414. doi: 10.1093/petrology/37.2.395
    FITZSIMONS I C W, KINNY P D, HARLEY S L, 1997. Two stages of zircon and monazite growth in anatectic leucogneiss: SHRIMP constraints on the duration and intensity of Pan-African metamorphism in Prydz Bay, East Antarctica[J]. Terra Nova, 9(1): 47-51. doi: 10.1046/j.1365-3121.1997.d01-8.x
    FITZSIMONS I C W, 2000. Grenville-age basement provinces in East Antarctica: evidence for three separate collisional orogens[J]. Geology, 28(10): 879-882. doi: 10.1130/0091-7613(2000)28<879:GBPIEA>2.0.CO;2
    GREW E S, CARSON C J, CHRISTY A G, et al., 2012. New constraints from U-Pb, Lu-Hf and Sm-Nd isotopic data on the timing of sedimentation and felsic magmatism in the Larsemann Hills, Prydz Bay, east Antarctica[J]. Precambrian Research, 206-207: 87-108. doi: 10.1016/j.precamres.2012.02.016
    GUO J, PENG P, CHEN Y, et al., 2012. UHT Sapphirine granulite metamorphism at 1.93~1.92 Ga caused by gabbronorite intrusions: implications for tectonic evolution of the northern margin of the North China Craton[J]. Precambrian Research, 222-223: 124-142. doi: 10.1016/j.precamres.2011.07.020
    HARLEY S L, 1987. Precambrian geological relationships in high-grade gneisses of the Rauer Islands, East Antarctica[J]. Australian Journal of Earth Sciences, 34(3): 175-207. doi: 10.1080/08120098708729404
    HARLEY S L, 1988. Proterozoic granulites from the Rauer Group, East Antarctica. I. Decompressional pressure-temperature paths deduced from mafic and felsic gneisses[J]. Journal of Petrology, 29(5): 1059-1095. doi: 10.1093/petrology/29.5.1059
    HARLEY S L, FITZSIMONS I C W, 1991. Pressure-temperature evolution of metapelitic granulites in a polymetamorphic terrane: the Rauer Group, East Antarctica[J]. Journal of Metamorphic Geology, 9(3): 231-243. doi: 10.1111/j.1525-1314.1991.tb00519.x
    HARLEY S L, 1998a. On the occurrence and characterization of ultrahigh-temperature crustal Metamorphism[M]//TRELOAR P J, O'BRIEN P J. What Drives Metamorphism and Metamorphic Reactions? Geological Society, London, Special Publications, 138(1): 81-107.
    HARLEY S L, 1998b. Ultrahigh temperature granulite metamorphism (1050℃, 12 kbar) and decompression in garnet (Mg70)-orthopyroxene-sillimanite gneisses from the Rauer Group, east Antarctica[J]. Journal of Metamorphic Geology, 16(4): 541-562. doi: 10.1111/j.1525-1314.1998.00155.x
    HARLEY S L, SNAPE I, BLACK L P, 1998. The evolution of a layered metaigneous complex in the Rauer Group, East Antarctica: evidence for a distinct Archaean terrane[J]. Precambrian Research, 89(3-4): 175-205. doi: 10.1016/S0301-9268(98)00031-X
    HARLEY S L, MOTOYOSHI Y, 2000. Al zoning in orthopyroxene in a sapphirine quartzite: evidence for >1120℃ UHT metamorphism in the Napier complex, Antarctica, and implications for the entropy of sapphirine[J]. Contributions to Mineralogy and Petrology, 138(4): 293-307. doi: 10.1007/s004100050564
    HARLEY S L, 2003. Archaean-cambrian crustal development of East Antarctica: metamorphic characteristics and tectonic implications[M]//YOSHIDA M, WINDLEY B F, DASGUPTA S. Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, 206(1): 203-230.
    HARLEY S L, 2004. Extending our understanding of ultrahigh temperature crustal metamorphism[J]. Journal of Mineralogical and Petrological Sciences, 99(4): 140-158. doi: 10.2465/jmps.99.140
    HARLEY S L, KELLY N M, 2007. The impact of zircon-garnet REE distribution data on the interpretation of zircon U-Pb ages in complex high-grade terrains: an example from the Rauer Islands, East Antarctica[J]. Chemical Geology, 241(1-2): 62-87. doi: 10.1016/j.chemgeo.2007.02.011
    HARLEY S L, 2008. Refining the P-T records of UHT crustal metamorphism[J]. Journal of Metamorphic Geology, 26(2): 125-154. doi: 10.1111/j.1525-1314.2008.00765.x
    HARLEY S L, HOKADA T, JEAN-MARE M, et al., 2009. Sapphirine+quartz in the Rauer Islands, Antarctica: evidence for 590 Ma UHT metamorphism[C]//Abstract of Granulites and Granulites Conference: 40.
    HARLEY S L, 2014. Antarctica in Gondwana and earlier supercontinents: evidence from the Rauer Islands region, Prydz Bay[C]//2014 National Symposium on Polar Sciences of China (Abst). Qingdao: 217-218.
    HARLEY S L, 2016. A matter of time: the importance of the duration of UHT metamorphism[J]. Journal of Mineralogical and Petrological Sciences, 111(2): 50-72. doi: 10.2465/jmps.160128
    HENSEN B J, ZHOU B, 1995. A Pan African granulite facies metamorphic episode in Prydz Bay, Antarctica: evidence from Sm-Nd garnet dating[J]. Australian Journal of Earth Sciences, 42(3): 249-258. doi: 10.1080/08120099508728199
    HENSEN B J, ZHOU B, 1997. East Gondwana amalgamation by Pan-African collision? Evidence from Prydz Bay, east Antarctica[M]//RICCI C A. The Antarctic Region: Geological Evolution and Progress. Siena: Terra Antartica Publ: 115-119.
    HOKADA T, HARLEY S L, DUNKLEY D J, et al., 2016. Peak and post-peak development of UHT metamorphism at Mather Peninsula, Rauer Islands: zircon and monazite U-Th-Pb and REE chemistry constraints. Journal of Mineralogical and Petrological Sciences, 111(2): 89-103. doi: 10.2465/jmps.150829
    HU J M, LIU X C, ZHAO Y, et al., 2008. Advances in the study of the orogeny and structural deformation of Prydz Tectonic belt in East Antarctica[J]. Acta Geoscientica Sinica, 29(3): 343-354. (in Chinese with English abstract) http://www.oalib.com/paper/1559361
    KELSEY D E, WHITE R W, POWELL R, et al., 2003. New constraints on metamorphism in the Rauer Group, Prydz Bay, east Antarctica[J]. Journal of Metamorphic Geology, 21(8): 739-759. doi: 10.1046/j.1525-1314.2003.00476.x
    KELSEY D E, HAND M, CLARK C, et al., 2007. On the application of in situ monazite chemical geochronology to constraining P-T-t histories in high-temperature (>850℃) polymetamorphic granulites from Prydz Bay, east Antarctica[J]. Journal of the Geological Society, 164(4): 667-683.
    KEMP A I S, SHIMURA T, HAWKESWORTH C J, 2007. Linking granulites, silicic magmatism, and crustal growth in arcs: ion microprobe (zircon) U-Pb ages from the Hidaka metamorphic belt, Japan[J]. Geology, 35(9): 807-810. doi: 10.1130/G23586A.1
    KINNY P D, BLACK L P, SHERATON J W, 1993. Zircon ages and the distribution of Archaean and Proterozoic rocks in the Rauer Islands[J]. Antarctic Science, 5(2): 193-206. doi: 10.1017/S0954102093000252
    LEI H C, XU H J, 2018. A review of ultrahigh temperature metamorphism[J]. Journal of Earth Science, 29(5): 1167-1180. doi: 10.1007/s12583-018-0846-9
    LI Z L, YANG X Q, LI Y Q, et al., 2014. Late Paleozoic tectono-metamorphic evolution of the Altai segment of the Central Asian Orogenic belt: constraints from metamorphic P-T pseudosection and zircon U-Pb dating of ultra-high-temperature granulite[J]. Lithos, 204: 83-96. doi: 10.1016/j.lithos.2014.05.022
    LIU X C, JAHN B M, ZHAO Y, et al., 2006. Late Pan-African granitoids from the Grove Mountains, east Antarctica: age, origin and tectonic implications[J]. Precambrian Research, 145(1-2): 131-154. doi: 10.1016/j.precamres.2005.11.017
    LIU X C, ZHAO Y, LIU X H, et al., 2007. Late Neoproterozoic-Early Paleozoic tectonothermal events in East Antarctica: implications for amalgamation of the Gondwana supercontinent[J]. Geological Journal of China Universities, 13(3): 546-560. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200703017.htm
    LIU X C, ZHAO Y, ZHAO G C, et al., 2007. Petrology and geochronology of granulites from the McKaskle Hills, eastern Amery Ice shelf, Antarctica, and implications for the evolution of the Prydz Belt[J]. Journal of Petrology, 48(8): 1443-1470. doi: 10.1093/petrology/egm024
    LIU X C, 2009. Polymetamorphism of the Prydz belt, East Antarctica: implications for the reconstruction of the Rodinia and Gondwana supercontinents[J]. Acta Petrologica Sinica, 25(8): 1808-1818. (in Chinese with English abstract) http://www.researchgate.net/publication/286667958_Polymetamorphism_of_the_Prydz_Belt_East_Antarctica_Implications_for_the_reconstruction_of_the_Rodinia_and_Gondwana_supercontinents
    LIU X C, HU J M, ZHAO Y, et al., 2009a. Late Neoproterozoic/Cambrian high-pressure mafic granulites from the Grove Mountains, east Antarctica: P-T-t path, collisional orogeny and implications for assembly of East Gondwana[J]. Precambrian Research, 174(1-2): 181-199. doi: 10.1016/j.precamres.2009.07.001
    LIU X C, ZHAO Y, SONG B, et al., 2009b. SHRIMP U-Pb zircon geochronology of high-grade rocks and charnockites from the eastern Amery Ice Shelf and southwestern Prydz Bay, East Antarctica: constraints on Late Mesoproterozoic to Cambrian tectonothermal events related to supercontinent assembly[J]. Gondwana Research, 16(2): 342-361. doi: 10.1016/j.gr.2009.02.003
    LIU X C, ZHAO Y, HU J M, et al., 2013. The Grove Mountains: a typical Pan-African metamorphic terrane in the Prydz belt, east Antarctica[J]. Chinese Journal of Polar Research, 25(1): 7-24. (in Chinese with English abstract) http://search.cnki.net/down/default.aspx?filename=JDYZ201301001&dbcode=CJFD&year=2013&dflag=pdfdown
    LIU X C, WANG W R Z, ZHAO Y, et al., 2014. Early Neoproterozoic granulite facies metamorphism of mafic dykes from the Vestfold Block, east Antarctica[J]. Journal of Metamorphic Geology, 32(9): 1041-1062. doi: 10.1111/jmg.12106
    LIU X C, 2018. Deciphering multiple metamorphic events in high-grade metamorphic terranes: a case from the Amery area of East Antarctica[J]. Acta Petrologica Sinica, 34(4): 925-939. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201804007.htm
    LIU X H, TONG L X, LI J L, et al., 1995. Tectonic evolution of east Antarctic shield during mesoproterozoic and early paleozoic[C]//Abstract Volume of Conference on Geology across Taiwan Straits (2). Taipei, China: China Geological Association Press, Taipei: 165-169. (in Chinese)
    LIU X H, ZHAO Y, LIU X C, et al., 2002. Geology of the Grove Mountains in East Antarctica: new evidence for the final suture of Gondwana land[J]. Science in China Series D: Earth Sciences, 46(4): 305-319.
    LIU Z, BARTOLI O, TONG L X, et al., 2020. Permian ultrahigh-temperature reworking in the southern Chinese Altai: evidence from petrology, P-T estimates, zircon and monazite U-Th-Pb geochronology[J]. Gondwana Research, 78: 20-40. doi: 10.1016/j.gr.2019.08.007
    MORAES R, BROWN M, FUCK R A, et al., 2002. Characterization and P-T evolution of melt-bearing ultrahigh-temperature granulites: an example from the Anápolis-Itauçu complex of the Brasília Fold Belt, Brazil[J]. Journal of Petrology, 43(9): 1673-1705. doi: 10.1093/petrology/43.9.1673
    PHILLIPS G, WILSON C J L, PHILLIPS D, et al., 2007. Thermochronological (40Ar/39Ar) evidence of early Palaeozoic basin inversion within the southern Prince Charles Mountains, east Antarctica: implications for East Gondwana[J]. Journal of the Geological Society, 164(4): 771-784. doi: 10.1144/0016-76492006-073
    REN L D, ZHAO Y, LIU X H, et al., 1992. Re-examination of the metamorphic evolution of the Larsemann Hills, East Antarctica[M]//YOSHIDA Y. Recent Progress in Antarctic Earth Science. Tokyo: Terra Scientific Publishing: 145-153.
    REN L D, LI C, WANG Y B, et al., 2016. On constraining the Pan-African high-grade metamorphism time of the Larsemann Hills, East Antarctica[J]. Chinese Journal of Polar Research, 28(4): 451-461. (in Chinese with English abstract) http://www.americangeosciences.org/sites/default/files/igc/1782.pdf
    SANTOSH M, TSUNOGAE T, LI J H, et al., 2007. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton: implications for Paleoproterozoic ultrahigh temperature metamorphism[J]. Gondwana Research, 11(3): 263-285. doi: 10.1016/j.gr.2006.10.009
    SANTOSH M, LIU S J, TSUNOGAE T, et al., 2012. Paleoproterozoic ultrahigh temperature granulites in the North China Craton: implications for tectonic models on extreme crustal metamorphism[J]. Precambrian Research, 222-223: 77-106. doi: 10.1016/j.precamres.2011.05.003
    SHERATON J W, BLACK L P, MCCULLOCH M T, 1984. Regional geochemical and isotopic characteristics of high-grade metamorphics of the Prydz Bay area: the extent of Proterozoic reworking of Qrchaean continental crust in East Antarctica[J]. Precambrian Research, 26(2): 169-198. doi: 10.1016/0301-9268(84)90043-3
    SIMS J P, DIRKS P H G M, CARSON C J, et al., 1994. The structural evolution of the Rauer Group, East Antarctica: mafic dykes as passive markers in a composite Proterozoic terrain[J]. Antarctic Science, 6(3): 379-394. doi: 10.1017/S0954102094000581
    SIMS J P, WILSON C J L, 1997. Strain localisation and texture development in a granulite-facies shear zone-the Rauer Group, East Antarctica[M]//RICCI C A. The Antarctic Region: Geological Evolution and Processes. Siena: Terra Antartica Publ: 131-138.
    THOST D E, HENSEN B J, MOTOYOSHI Y, 1991. Two-stage decompression in garnet-bearing mafic granulites from Sostrene Island, Prydz Bay, East Antarctica[J]. Journal of Metamorphic Geology, 9(3): 245-256. doi: 10.1111/j.1525-1314.1991.tb00520.x
    TINGEY R J, 1991. The regional geology of Archaean and Proterozoic rocks in Antarctica[M]//TINGEY R J. Oxford: The Geology of Antarctica. Oxford University Press: 1-73.
    TONG L X, LIU X H, ZHANG L S, et al., 1997. Characteristics of the early remnant mineral associations in granulite-facies rocks from the Larsemann Hills, East Antarctica and their metamorphic conditions[J]. Acta Petrologica Sinica, 13(2): 127-138. (in Chinese with English abstract) http://www.polar.gov.cn/archive/download/?id=1246
    TONG L X, LIU X, ZHANGL, et al., 1998. The 40Ar-39Ar ages of hornblendes in Grt-PL-bearing amphibolite from the Larsemann Hills, East Antarctica and their geological implications[J]. Chinese Journal of Polar Research, 10(3): 161-171. (in Chinese with English abstract) http://qikan.cqvip.com/Qikan/Article/Detail?id=4000971879
    TONG L X, WILSON C J L, LIU X, 2002. A high-grade event of~1100 Ma preserved within the~Ma mobile belt of the Larsemann Hills, east Antarctica: further evidence from 40Ar-39Ar dating[J]. Terra Antartica, 9: 73-86. http://www.researchgate.net/publication/267811544_A_high-grade_event_of_1100_Ma_preserved_within_the_500_Ma_mobile_belt_of_the_Larsemann_Hills_East_Antarctica_Further_evidence_from_40Ar-39_Ar_dating
    TONG L X, WILSON C J L, 2006. Tectonothermal evolution of the ultrahigh temperature metapelites in the Rauer Group, east Antarctica[J]. Precambrian Research, 149(1-2): 1-20. doi: 10.1016/j.precamres.2006.04.004
    TONG L X, LIU X H, WANG Y B, et al., 2012. Metamorphism evolution of pelitic granulites from the Larsemann Hills, East Antarctica[J]. Acta Geologica Sinica, 86(8): 1273-1290. (in Chinese with English abstract) http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201208011&dbcode=CJFD&year=2012&dflag=pdfdown
    TONG L X, LIU X H, WANG Y B, et al., 2014. Metamorphic P-T paths of metapelitic granulites from the Larsemann Hills, East Antarctica[J]. Lithos, 192-195: 102-115. doi: 10.1016/j.lithos.2014.01.013
    TONG L X, JAHN B M, LIU X H, et al., 2017. Ultramafic to mafic granulites from the Larsemann Hills, East Antarctica: geochemistry and tectonic implications[J]. Journal of Asian Earth Sciences, 145: 679-690. doi: 10.1016/j.jseaes.2017.06.012
    TONG L X, LIU Z, LI Z X, et al., 2019. Poly-phase metamorphism of garnet-bearing mafic granulite from the Larsemann Hills, East Antarctica: P-T path, U-Pb ages and tectonic implications[J]. Precambrian Research, 326: 385-398. doi: 10.1016/j.precamres.2017.12.045
    WANG Y B, TONG L X, LIU D Y, 2007. Zircon U-Pb ages from an ultra-high temperature metapelite, Rauer Group, east Antarctica: implications for overprints by Grenvillian and Pan-African events[R]. Reston: U.S. Geological Survey, doi: 10.3133/of2007-1047.srp023.
    WANG Y B, LIU D, CHUNG S L, et al., 2008. SHRIMP zircon age constraints from the Larsemann Hills region, Prydz Bay, for a late Mesoproterozoic to early Neoproterozoic tectono-thermal event in east Antarctica[J]. American Journal of Science, 308(4): 573-617. doi: 10.2475/04.2008.07
    WEI C J, 2012. Advance of metamorphic petrology during the first decade of the 21st century[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 31(5): 415-427. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201205001.htm
    WILSON C J L, QUINN C, TONG L X, et al., 2007. Early Palaeozoic intracratonic shears and post-tectonic cooling in the Rauer Group, Prydz Bay, East Antarctica constrained by 40Ar/39Ar thermo-chronology[J]. Antarctic Science, 19(3): 339-353. doi: 10.1017/S0954102007000478
    ZHAO Y, SONG B, WANG Y, et al., 1992. Geochronology of the late granite in the Larsemann Hills, East Antarctica[M]//YOSHIDA Y, KANINUMA K, SHIRAISHI K. Recent Progress in Antarctic Earth Science. Tokyo: Terra Scientific Publishing Company: 153-169.
    ZHAO Y, SONG B, ZHANG Z Q, et al., 1995. Early Paleozoic (Pan African) thermal event of the Larsemann Hills and its neighbours, Prydz Bay, East Antarctica[J]. Science in China (Series B), 38(1): 74-84. http://www.cnki.com.cn/Article/CJFDTotal-JBXG199501008.htm
    ZHAO Y, LIU X H, SONG B, et al., 1995. Constraints on the stratigraphic age of metasedimentary rocks from the Larsemann Hills, East Antarctica: possible implications for Neoproterozoic tectonics[J]. Precambrian Research, 75(3-4): 175-188. doi: 10.1016/0301-9268(95)00038-0
    ZHAO Y, LIU X H, LIU X C, et al., 2003. Pan-African events in Prydz Bay, East Antarctica, and their implications for East Gondwana tectonics[M]//YOSHIDA M, WINDLEY B E, DASGUPTA S. Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, 206(1): 231-245.
    ZHENG Y F, CHEN R X, 2017. Regional metamorphism at extreme conditions: implications for orogeny at convergent plate margins[J]. Journal of Asian Earth Sciences, 145: 46-73. doi: 10.1016/j.jseaes.2017.03.009
    胡健民, 刘晓春, 赵越, 等, 2008. 南极普里兹造山带性质及构造变形过程[J]. 地球学报, 29(3): 343-354. doi: 10.3321/j.issn:1006-3021.2008.03.008
    刘晓春, 赵越, 刘小汉, 等, 2007. 东南极晚新元古-早古生代构造热事件及其在冈瓦纳超大陆重建中的意义[J]. 高校地质学报, 13(3): 546-560. doi: 10.3969/j.issn.1006-7493.2007.03.022
    刘晓春, 2009. 东南极普里兹带多期变质作用及其对罗迪尼亚和冈瓦纳超大陆重建的启示[J]. 岩石学报, 25(8): 1808-1818. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908008.htm
    刘晓春, 赵越, 胡健民, 等, 2013. 东南极格罗夫山: 普里兹造山带中一个典型的泛非期变质地体[J]. 极地研究, 25(1): 7-24. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ201301001.htm
    刘晓春, 2018. 高级变质地体中多期变质事件的甄别: 以东南极埃默里地区为例[J]. 岩石学报, 34(4): 925-939. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201804007.htm
    刘小汉, 仝来喜, 李继亮, 等, 1995. 东南极地盾中元古-早古生代构造演化[C]//. 海峡两岸地球科学研讨会论文集(详细摘要)(2). 台北: 台北中国地质协会出版社: 165-169.
    刘小汉, 赵越, 刘晓春, 等, 2002. 东南极格罗夫山地质特征: 冈瓦纳最终缝合带的新证据[J]. 中国科学(D辑), 32(6): 457-468. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200206002.htm
    任留东, 李崇, 王彦斌, 等, 2016. 关于拉斯曼丘陵泛非期高级变质作用时代间的限定[J]. 极地研究, 28(4): 451-461. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ201604003.htm
    仝来喜, 刘小汉, 张连生, 等, 1997. 东南极拉斯曼丘陵麻粒岩相岩石中早期残留矿物组合的特征及其变质作用条件[J]. 岩石学报, 13(2): 127-138. doi: 10.3321/j.issn:1000-0569.1997.02.001
    仝来喜, 刘小汉, 张连生, 等, 1998. 东南极拉斯曼丘陵石榴斜长角闪岩中角闪石的40Ar-39Ar年龄及其地质意义[J]. 极地研究, 10(3): 161-171. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ803.000.htm
    仝来喜, 刘小汉, 王彦斌, 等, 2012. 东南极拉斯曼丘陵泥质麻粒岩的变质作用演化[J]. 地质学报, 86(8): 1273-1290. doi: 10.3969/j.issn.0001-5717.2012.08.010
    魏春景, 2012. 21世纪最初十年变质岩石学研究进展[J]. 矿物岩石地球化学通报, 31(5): 415-427. doi: 10.3969/j.issn.1007-2802.2012.05.001
    赵越, 宋彪, 张宗清, 等, 1993. 东南极拉斯曼丘陵及其邻区的泛非热事件[J]. 中国科学(B辑), 23(9): 1001-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199309016.htm
  • 加载中
图(4)
计量
  • 文章访问数:  227
  • HTML全文浏览量:  109
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-30
  • 修回日期:  2021-08-25
  • 预出版日期:  2021-12-31
  • 刊出日期:  2021-10-28

目录

    /

    返回文章
    返回