Ancient cratonic nuclei in East Antarctica: Research status, problems and prospects
-
摘要: 东南极地盾(克拉通)中的太古宙陆核主要分布在面向印度洋扇区的内皮尔山、南查尔斯王子山、赖于尔群岛和西福尔丘陵,在面向澳大利亚、非洲和太平洋扇区只零星出露。这些古陆核被早元古代—早古生代(泛非期)造山带所分割,它们具有不同的早期演化历史和后期改造过程,并且产于不同扇区的陆核与相邻冈瓦纳陆块具有密切的亲缘关系。对东南极古陆核开展系统的冰上和冰下地质调查以及岩石地球化学综合研究,查明太古宙岩石(物质)的时空分布、岩石成因、源区性质、构造属性及其变质改造历史,进而构建东南极古大陆从初始成核到最终聚陆的历史框架,这将弥补地球早期演化研究领域的南极短板,同时也必将促进地球早期演化研究领域的发展。Abstract: The Archean cratonic nuclei in the East Antarctic Shield (Craton) occur mainly in the Napier Mountains, southern Prince Charles Mountains, Rauer Group and Vestfold Hills in the Indian Ocean sector, and are sporadically exposed in the Australian, African and Pacific sectors. These ancient nuclei with diverse earlier crustal histories and later reworking processes are separated by the Paleoproterozoic-Early Paleozoic (Pan-African-aged) orogens. The nuclei in different sectors have a close affinity with the adjacent Gondwana continental blocks. Integrated bedrock and subglacial geological investigations and petrological and chemical studies will ascertain the temporal and spatial distributions, petrogenesis, source regions, tectonic affinities and multiple metamorphic records of the Archean rocks (materials) in East Antarctica.This can help to reveal the major history from nucleation to assembly of the East Antarctica continent, and thus to contribute to a better understanding of the early history of the Earth from an Antarctic perspective.
-
Key words:
- Archean cratonic nuclei /
- diversity /
- affinity /
- East Antarctcia /
- Gondwana
-
图 1 东南极与冈瓦纳相邻陆块在~500 Ma的重建简图(据Harley et al., 2013修改)
AF—奥尔巴尼-弗雷泽造山带;AM—阿蒙森省;AP—南极半岛;BH—邦杰丘陵;BK—本德尔坎德克拉通;BS—巴斯塔克拉通;CB—Coompana地块;CD—中毛德王后地;CG—刚果克拉通;CH—查塔姆隆起;CITZ—中印度构造带;CK—霍马-卡洛莫地块;CL—科茨地;CM—坎贝尔高原;CP—凯普褶皱带;CPR—Capricorn造山带;DG—登曼冰川;DM—达马拉造山带;DO—Delamerian造山带;DW—达尔瓦尔克拉通;EG—东高止带;EWM—埃尔斯沃斯-惠特莫尔地块;FM—福克兰-马尔维纳斯高原;G—格吕讷霍格纳克拉通;GM—格罗夫山;GSM—甘布尔采夫冰下山脉;GW—高勒尔克拉通;IR—伊鲁米德造山带;KH—卡拉哈里克拉通;KB—基巴尔安造山带;LB—卢里奥带;LF—卢弗里安弧;LH—吕措-霍尔姆湾;LC—拉克兰造山带;MD—马达加斯加;MR—米勒岭;MZ—莫桑比克造山带;N—内皮尔杂岩;NA—北澳大利亚克拉通;NE—新西兰造山带;NH—北安普顿杂岩;NN—纳马夸-纳塔尔造山带;NPC—北查尔斯王子山;NV—北维多利亚地地体;NZ—新西兰;PAT—巴塔哥尼亚;PB—普里兹湾;PJ—平贾拉造山带;PL—皮尔巴拉克拉通;PM—皮特曼造山带;PT—帕特森造山带;RG—赖于尔群岛;RO—罗斯造山带;RS—罗斯省;RY—雷纳杂岩;SG—南部麻粒岩地体;SI—辛格布姆克拉通;SK—沙克尔顿岭;SP—南极点;SPC—南查尔斯王子山;SR—南龙达讷山;STR—南塔斯曼隆起;T—塔斯马尼亚;TA—阿黛利地;TH—汤姆森造山带;TIB—瑟斯顿岛地块;TZ—坦桑尼亚克拉通;VH—西福尔丘陵;VSH—东方冰下高地;WD—西毛德王后地;WI—温德米尔群岛;YG—伊尔岗克拉通;ZM—赞比西造山带
Figure 1. Simplified map showing the reconstruction of Antarctica and adjacent areas of Gondwana at ~500 Ma (modified after Harley et al., 2013)
AF-Albany-Fraser Orogen; AM-Amundsen Province; AP-Antarctic Peninsula; BH-Bunger Hills; BK-Bundelkhand Craton; BS-Bastar Craton; CB-Coompana Block; CD-central Dronning Maud Land; CG-Congo Craton; CH-Chatham Rise; CITZ-central Indian Tectonic Zone; CK-Choma-Kalomo Block; CL-Coats Land; CM-Campbell Plateau; CP-Cape Fold Belt; CPR-Capricorn Orogen; DG-Denman Glacier; DM-Damara Orogen; DO-Delamerian Orogen; DW-Dharwar Craton; EG-Eastern Ghats Belt; EWM-Ellsworth-Whitmore Mountains Block; FM-Falkland-Malvinas Plateau; G-Grunehogna Craton; GM-Grove Mountains; GSM-Gamburtsev Subglacial Mountains; GW-Gawler Craton; IR-Irumide Orogen; KH-Kalahari Craton; KB-Kibaran Orogen; LB-Lurio Belt; LF-Lufilian Arc; LH-Lützow-Holm Complex; LC-Lachlan Orogen; MD-Madagascar; MR-Miller Range; MZ-Mozambique Orogen; N-Napier Complex; NA-North Australian Craton; NE-New England Orogen; NH-Northampton Complex; NN-Namaqua-Natal Orogen; NPC-northern Prince Charles Mountains; NV-northern Victoria Land terranes; NZ-New Zealand; PAT-Patagonia; PB-Prydz Bay; PJ-Pinjarra Orogen; PL-Pilbara Craton; PM-Petermann Orogen; PT-Paterson Orogen; RG-Rauer Group; RO-Ross Orogen; RS-Ross Province; RY-Rayner Complex; SG-Southern Granulite Terrane; SI-Singhbhum Craton; SK-Shackleton Range; SP-South Pole; SPC-southern Prince Charles Mountains; SR-Sør Rondane Mountains; STR-South Tasman Rise; T-Tasmania; TA-Terre Adélie; TH-Thomson Orogen; TIB-Thurston Island Block; TZ-Tanzania Craton; VH-Vestfold Hills; VSH-Vostok Subglacial Highlands; WD-western Dronning Maud Land; WI-Windmill Islands; YG-Yilgarn Craton; ZM-Zambezi Orogen
-
AN M J, WIENS D A, ZHAO Y, et al., 2015. S-velocity model and inferred Moho topography beneath the Antarctic Plate from Rayleigh waves[J]. Journal of Geophysical Research: Solid Earth, 120(1): 359-383. doi: 10.1002/2014JB011332 BARTON J M, KLEMD R, ALLSOPP H L, et al., 1987. The geology and geochronology of the Annandagstoppane granite, Western Dronning Maud Land, Antarctica[J]. Contributions to Mineralogy and Petrology, 97(4): 488-496. doi: 10.1007/BF00375326 BELYATSKY B V, RODIONOV N V, ANTONOV A V, et al., 2011. The 3.98~3.63 Ga zircons as indicators of major processes operating in the ancient continental crust of the east Antarctic shield (Enderby Land)[J]. Doklady Earth Sciences, 438(2): 770-774. doi: 10.1134/S1028334X11060031 BLACK L P, JAMES P R, HARLEY S L, 1983a. Geochronology and geological evolution of metamorphic rocks in the Field Islands area, East Antarctica[J]. Journal of Metamorphic Geology, 1(4): 277-303. doi: 10.1111/j.1525-1314.1983.tb00276.x BLACK L P, JAMES P R, HARLEY S L, 1983b. The geochronology, structure and metamorphism of early Archaean rocks at Fyfe Hills, Enderby Land, Antarctica[J]. Precambrian Research, 21(3-4): 197-222. doi: 10.1016/0301-9268(83)90041-4 BLACK L P, WILLIAMS I S, COMPSTON W, 1986. Four zircon ages from one rock: the history of a 3930 Ma-old granulite from Mount Sones, Enderby Land, Antarctica[J]. Contributions to Mineralogy and Petrology, 94(4): 427-437. doi: 10.1007/BF00376336 BLACK L P, MCCULLOCH M T, 1987. Evidence for isotopic equilibration of Sm-Nd whole-rock systems in early Archaean crust of Enderby Land, Antarctica[J]. Earth and Planetary Science Letters, 82(1-2): 15-24. doi: 10.1016/0012-821X(87)90103-8 BLACK L P, KINNY P D, SHERATON J W, et al., 1991. Rapid production and evolution of late Archaean felsic crust in the Vestfold Block of East Antarctica[J]. Precambrian Research, 50(3-4): 283-310. doi: 10.1016/0301-9268(91)90026-7 BLACK L P, SHERATON J W, TINGEY R J, et al., 1992. New U-Pb zircon ages from the Denman Glacier area, East Antarctica, and their significance for Gondwana reconstruction[J]. Antarctic Science, 4(4): 447-460. doi: 10.1017/S095410209200066X BOGER S D, WILSON C J L, FANNING C M, 2001. Early Paleozoic tectonism within the East Antarctic craton: the final suture between east and west Gondwana?[J]. Geology, 29(5): 463-466. doi: 10.1130/0091-7613(2001)029<0463:EPTWTE>2.0.CO;2 BOGER S D, WILSON C J L, FANNING C M, 2006. An Archaean province in the southern Prince Charles Mountains, East Antarctica: U-Pb zircon evidence for c. 3170 Ma granite plutonism and c. 2780 Ma partial melting and orogenesis[J]. Precambrian Research, 145(3-4): 207-228. doi: 10.1016/j.precamres.2005.12.003 BOGER S D, MAAS R, FANNING C M, 2008. Isotopic and geochemical constraints on the age and origin of granitoids from the central Mawson Escarpment, southern Prince Charles Mountains, East Antarctica[J]. Contributions to Mineralogy and Petrology, 155(3): 379-400. doi: 10.1007/s00410-007-0249-x BOGER S D, 2011. Antarctica-before and after Gondwana[J]. Gondwana Research, 19(2): 335-371. doi: 10.1016/j.gr.2010.09.003 BYERLY G R, LOWE D R, HEUBECK C, 2019. Geologic evolution of the Barberton Greenstone Belt-a unique record of crustal development, surface processes, and early life 3.55~3.20 Ga[M]//VAN KRANENDONK M J, BENNETT V C, HOFFMANN J E. Earth's Oldest Rocks. 2nd ed. Amsterdam: Elsevier: 569-613. CARSON C J, AGUE J J, COATH C D, 2002a. U-Pb geochronology from Tonagh Island, East Antarctica: implications for the timing of ultra-high temperature metamorphism of the Napier Complex[J]. Precambrian Research, 116(3-4): 237-263. doi: 10.1016/S0301-9268(02)00023-2 CARSON C J, AGUE J J, GROVE M, et al., 2002b. U-Pb isotopic behaviour of zircon during upper-amphibolite facies fluid infiltration in the Napier Complex, east Antarctica[J]. Earth and Planetary Science Letters, 199(3-4): 287-310. doi: 10.1016/S0012-821X(02)00565-4 CAWOOD P A, HAWKESWORTH C J, PISAREVSKY S A, et al., 2018. Geological archive of the onset of plate tectonics[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2132): 20170405. doi: 10.1098/rsta.2017.0405 CHOI S H, MUKASA S B, ANDRONIKOV A V, et al., 2006. Lu-Hf systematics of the ultra-high temperature Napier Metamorphic Complex in Antarctica: Evidence for the early Archean differentiation of Earth's mantle[J]. Earth and Planetary Science Letters, 246(3-4): 305-316. doi: 10.1016/j.epsl.2006.04.012 CLARK C, KINNY P D, HARLEY S L, 2012. Sedimentary provenance and age of metamorphism of the Vestfold Hills, East Antarctica: evidence for a piece of Chinese Antarctica?[J]. Precambrian Research, 196-197: 23-45. doi: 10.1016/j.precamres.2011.11.001 CORVINO A F, WILSON C J L, BOGER S D, 2011. The structural and tectonic evolution of a Rodinian continental fragment in the Mawson Escarpment, Prince Charles Mountains, Antarctica[J]. Precambrian Research, 184(1-4): 70-92. doi: 10.1016/j.precamres.2010.11.001 CROWE W A, OSANAI Y, TOYOSHIMA T, et al., 2002. SHRIMP geochronology of a mylonite zone on Tonagh Island: characterisation of the last high-grade tectonothermal event in the Napier Complex, East Antarctica[J]. Polar Geoscience, 15: 17-36. http://www.researchgate.net/publication/284055038_SHRIMP_geochronology_of_a_mylonite_zone_on_Tonagh_Island_Characterisation_of_the_last_high-grade_tectonothermal_event_in_the_Napier_Complex_East_Antarctica ERNST D M, BAU M, 2021. Banded iron formation from Antarctica: The 2.5 Ga old Mt. Ruker BIF and the antiquity of lanthanide tetrad effect and super-chondritic Y/Ho ratio in seawater[J]. Gondwana Research, 91: 97-111. doi: 10.1016/j.gr.2020.11.011 FITZSIMONS I C W, 2003. Proterozoic basement provinces of southern and southwestern Australia, and their correlation with Antarctica[M]//YOSHIDA M, WINDLEY B, DASGUPTA S. Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, 206(1): 93-130. FLOWERDEW M J, TYRRELL S, BOGER S D, et al., 2013. Pb isotopic domains from the Indian Ocean sector of Antarctica: implications for past Antarctica-India connections[M]//HARLEY S L, FITZSIMONS I C W, ZHAO Y. Antarctica and Supercontinent Evolution. Geological Society, London, Special Publications, 383(1): 59-72. FREI R, POLAT A, 2007. Source heterogeneity for the major components of~3.7 Ga Banded Iron Formations (Isua Greenstone Belt, Western Greenland): Tracing the nature of interacting water masses in BIF formation[J]. Earth and Planetary Science Letters, 253(1-2): 266-281. doi: 10.1016/j.epsl.2006.10.033 GOLYNSKY A V, MASOLOV V N, VOLNUKHIN V S, et al., 2006a. Crustal provinces of the Prince Charles Mountains region and surrounding areas in the light of aeromagnetic data[M]//FVTTERER D K, DAMASKE D, KLEINSCHMIDT G, et al. Antarctica: Contributions to Global Earth Sciences. Berlin, Heidelberg: Springer-Verlag: 83-94. GOLYNSKY A V, GOLYNSKY D A, MASOLOV V N, et al., 2006b. Magnetic anomalies of the Grove Mountains region and their geological significance[M]//FVTTERER D K, DAMASKE D, KLEINSCHMIDT G, et al. Antarctica: Contributions to Global Earth Sciences. Berlin, Heidelberg: Springer-Verlag: 95-105. GOLYNSKY A V, FERRACCIOLI F, HONG J K, et al., 2018. New magnetic anomaly map of the Antarctic[J]. Geophysical Research Letters, 45(13): 6437-6449. doi: 10.1029/2018GL078153 GOODGE J W, FANNING C M, 2002. Precambrian crustal history of the Nimrod Group, central Transantarctic Mountains[M]//GAMBLE J A, SKINNER D N B, HENRYS S. Antarctica at the Close of a Millennium]. Royal Society of New Zraland Bulletin, 35: 43-50. GREW E S, MANTON W I, 1979. Archean rocks in Antarctica: 2.5 billion year uranium-lead ages of pegmatites in Enderby Land[J]. Science, 206(4417): 443-445. doi: 10.1126/science.206.4417.443 HALPIN J A, GERAKITEYS C L, CLARKE G L, et al., 2005. In-situ U-Pb geochronology and Hf isotope analyses of the Rayner Complex, east Antarctica[J]. Contributions to Mineralogy and Petrology, 148(6): 689-706. doi: 10.1007/s00410-004-0627-6 HALPIN J A, WHITE R W, CLARKE G L, et al., 2007. The proterozoic P-T-t evolution of the Kemp Land coast, East Antarctica: constraints from Si-saturated and Si-undersaturated Metapelites[J]. Journal of Petrology, 48(7): 1321-1349. doi: 10.1093/petrology/egm020 HARLEY S L, FITZSIMONS I C W, 1991. Pressure-temperature evolution of metapelitic granulites in a polymetamorphic terrane: the Rauer Group, East Antarctica[J]. Journal of Metamorphic Geology, 9(3): 231-243. doi: 10.1111/j.1525-1314.1991.tb00519.x HARLEY S L, SNAPE I, FITZSIMONS I C W, 1995. Regional correlations and terrane assembly in East Prydz Bay: Evidence from the rauer group and vestfold hills[J]. Terra Antartica, 2: 49-60. http://www.researchgate.net/publication/259589938_Regional_Correlations_and_Terrane_Assembly_in_East_Prydz_Bay_Evidence_from_the_Rauer_Group_and_Vestfold_Hills HARLEY S L, BLACK L P, 1997. A revised Archaean chronology for the Napier complex, Enderby Land, from SHRIMP ion-microprobe studies[J]. Antarctic Science, 9(1): 74-91. doi: 10.1017/S0954102097000102 HARLEY S L, 1998. On the occurrence and characterization of ultrahigh-temperature crustal metamorphism[M]//TRELOAR P J, O'BRIEN P. What Drives Metamorphism and Metamorphic Reactions? Geological Society, London, Special Publications, 138(1): 81-107. HARLEY S L, SNAPE I, BLACK L P, 1998. The evolution of a layered metaigneous complex in the Rauer Group, East Antarctica: evidence for a distinct Archaean terrane[J]. Precambrian Research, 89(3-4): 175-205. doi: 10.1016/S0301-9268(98)00031-X HARLEY S L, 2003. Archaean-Cambrian crustal development of East Antarctica: metamorphic characteristics and tectonic implications[M]//YOSHIDA M, WINDLEY B, DASGUPTA S. Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Special Publications, 206(1): 203-230. HARLEY S L, KELLY N M, KUSIAK M A, 2019. Ancient Antarctica: the Archean of the East Antarctic Shield[M]//VAN KRANENDONK M J, BENNETT V C, HOFFMANN J E. Earth's Oldest Rocks(Second Edition). Elsevier (Amsterdam): 865-897. HARLEY S L, FITZSIMONS I C W, ZHAO Y, 2013. Antarctica and supercontinent evolution: historical perspectives, recent advances and unresolved issues[M]//HARLEY S L, FITZSIMONS I C W, ZHAO Y. Antarctica and Supercontinent Evolution. Geological Society, London, Special Publications, 283(1): 1-34. HARLEY S L, 2016. A matter of time: the importance of the duration of UHT metamorphism[J]. Journal of Mineralogical and Petrological Sciences, 111(2): 50-72. doi: 10.2465/jmps.160128 HIESS J, BENNETT V C, 2016. Chondritic Lu/Hf in the early crust-mantle system as recorded by zircon populations from the oldest Eoarchean rocks of Yilgarn Craton, West Australia and Enderby Land, Antarctica[J]. Chemical Geology, 427: 125-143. doi: 10.1016/j.chemgeo.2016.02.011 HOFFMANN J E, KRÖNER A, 2019. Early Archean crustal evolution in southern Africa-An updated record of the ancient gneiss complex of Swaziland[M]//VAN KRANENDONK M J, BENNETT V C, HOFFMANN J E. Earth's Oldest Rocks. 2nd ed. Amsterdam: Elsevier: 553-567. HOKADA T, MISAWA K, SHIRAISHI K, et al., 2003. Mid to late Archaean (3.3~2.5 Ga) tonalitic crustal formation and high-grade metamorphism at Mt. Riiser-Larsen, Napier Complex, East Antarctica[J]. Precambrian Research, 127(1-3): 215-228. doi: 10.1016/S0301-9268(03)00188-8 HOKADA T, HARLEY S L, DUNKLEY D J, et al., 2016. Peak and post-peak development of UHT metamorphism at Mather Peninsula, Rauer Islands: zircon and monazite U-Th-Pb and REE chemistry constraints[J]. Journal of Mineralogical and Petrological Sciences, 111(2): 89-103. doi: 10.2465/jmps.150829 HORIE K, HOKADA T, HIROI Y, et al., 2012. Contrasting Archaean crustal records in western part of the Napier Complex, East Antarctica: new constraints from SHRIMP geochronology[J]. Gondwana Research, 21(4): 829-837. doi: 10.1016/j.gr.2011.08.013 JAMES P R, BLACK L P, 1981. A review of the structural evolution and geochronology of the Archaean Napier complex of Enderby land, Australian Antarctic Territory[M]//GLOVER J E, GROVES D I. Archaean Geology. Geological Society of Australia, Special Publications, 7: 71-83. KELLY N M, CLARKE G L, FANNING C M, 2002. A two-stage evolution of the Neoproterozoic Rayner Structural Episode: new U-Pb sensitive high resolution ion microprobe constraints from the Oygarden Group, Kemp Land, East Antarctica[J]. Precambrian Research, 116(3-4): 307-330. doi: 10.1016/S0301-9268(02)00028-1 KELLY N M, CLARKE G L, FANNING C M, 2004. Archaean crust in the Rayner Complex of East Antarctica: Oygarden Group of islands, Kemp Land[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(3-4): 491-510. doi: 10.1017/S0263593300001176 KELLY N M, HARLEY S L, 2005. An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica[J]. Contributions to Mineralogy and Petrology, 149(1): 57-84. doi: 10.1007/s00410-004-0635-6 KELSEY D E, WHITE R W, POWELL R, et al., 2003. New constraints on metamorphism in the Rauer Group, Prydz Bay, east Antarctica[J]. Journal of Metamorphic Geology, 21(8): 739-759. doi: 10.1046/j.1525-1314.2003.00476.x KELSEY D E, HAND M, CLARK C, et al., 2007. On the application of in situ monazite chemical geochronology to constraining P-T-t histories in high-temperature (>850℃) polymetamorphic granulites from Prydz Bay, East Antarctica[J]. Journal of the Geological Society, 164(3): 667-683. doi: 10.1144/0016-76492006-013 KINNY P D, BLACK L P, SHERATON J W, 1993. Zircon ages and the distribution of Archaean and Proterozoic rocks in the Rauer Islands[J]. Antarctic Science, 5(2): 193-206. doi: 10.1017/S0954102093000252 KUSIAK M A, WHITEHOUSE M J, WILDE S A, et al., 2013a. Mobilization of radiogenic Pb in zircon revealed by ion imaging: implications for early Earth geochronology[J]. Geology, 41(3): 291-294. doi: 10.1130/G33920.1 KUSIAK M A, WHITEHOUSE M J, WILDE S A, et al., 2013b. Changes in zircon chemistry during Archean UHT metamorphism in the Napier Complex, Antarctica[J]. American Journal of Science, 313(9): 933-967. doi: 10.2475/09.2013.05 LANYON R, BLACK L P, SEITZ HM, 1993. U-Pb zircon dating of mafic dykes and its application to the Proterozoic geological history of the Vestfold Hills, East Antarctica[J]. Contributions to Mineralogy and Petrology, 115(2): 184-203. doi: 10.1007/BF00321219 LIU J, ZHAO Y, LIU X C, et al., 2011. LA-ICP-MS U-Pb ages and its significance of detritalzircon come from gravel of sedimentary rock in moraine nearby Vestfold Hills, East Antarctica[J]. Acta Geologica Sinica, 85(10): 1585-1612. (in Chinese with English abstract) http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201110006&dbcode=CJFD&year=2011&dflag=pdfdown LIU X C, ZHAO Y, HU J M, 2013. The c. 1000~900 Ma and c. 550~500 Ma tectonothermal events in the Prince Charles Mountains-Prydz Bay region, East Antarctica, and their relations to supercontinent evolution[M]//HARLEY S L, FITZSIMONS I C W, ZHAO Y. Antarctica and Supercontinent Evolution. Geological Society, London, Special Publications, 283(1): 95-112. LIU X C, WANG W, ZHAO Y, et al., 2014. Early Neoproterozoic granulite facies metamorphism of mafic dykes from the Vestfold Block, east Antarctica[J]. Journal of Metamorphic Geology, 32(9): 1041-1062. doi: 10.1111/jmg.12106 LIU X C, CHEN L Y, WANG W, et al., 2021. Deciphering early Neoproterozoic and Cambrian high-grade metamorphic events in the Archean/Mesoproterozoic Rauer Group, East Antarctica[J]. Precambrian Research, in revision365: 106392. MARSCHALL H R, HAWKESWORTH C J, STOREY C D, et al., 2010. The Annandagstoppane granite, East Antarctica: evidence for Archaean intracrustal recycling in the Kaapvaal-Grunehogna Craton from zircon O and Hf isotopes[J]. Journal of Petrology, 51(11): 2277-2301. doi: 10.1093/petrology/egq057 MCCULLOCH M T, BLACK L P, 1984. Sm-Nd isotopic systematics of Enderby Land granulites and evidence for the redistribution of Sm and Nd during metamorphism[J]. Earth and Planetary Science Letters, 71(1): 46-58. doi: 10.1016/0012-821X(84)90051-7 MÉNOT RP, PÊCHER A, ROLLAND Y, et al., 2005. Structural setting of the Neoarchean terrains in the Commonwealth Bay area (143~145°E), Terre Adélie craton, East Antarctica[J]. Gondwana Research, 8: 1-9. doi: 10.1016/S1342-937X(05)70258-6 MIKHALSKY E V, SHERATON J W, LAIBA A A, et al., 2001. Geology of the Prince Charles Mountains, Antarctica[M]. Australian Geological Survey Organisation, Canberra, Geoscience Australia Bulletin 247. MIKHALSKY E V, BELIATSKY B V, SHERATON J W, et al., 2006a. Two distinct Precambrian terranes in the southern Prince Charles mountains, east Antarctica: SHRIMP dating and geochemical constraints[J]. Gondwana Research, 9(3): 291-309. doi: 10.1016/j.gr.2005.10.002 MIKHALSKY E V, LAIBA A A, BELIATSKY B V, 2006b. Tectonic subdivision of the Prince Charles Mountains: a review of geologic and isotopic data[M]//FUTTERER D K, DAMASKE D, KLEINSCHMIDT G, et al. Antarctica: Contributions to Global Earth Sciences. Berlin, Heidelberg: Springer: 69-81. MIKHALSKY E V, HENJES-KUNST F, BELYATSKY B V, et al., 2010. New Sm-Nd, Rb-Sr, U-Pb and Hf isotope systematics for the southern Prince Charles Mountains (East Antarctica) and its tectonic implications[J]. Precambrian Research, 182(1-2): 101-123. doi: 10.1016/j.precamres.2010.07.004 MITCHELL R J, HARLEY S L, 2017. Zr-in-rutile resetting in aluminosilicate bearing ultra-high temperature granulites: Refining the record of cooling and hydration in the Napier Complex, Antarctica[J]. Lithos, 272-273: 128-146. doi: 10.1016/j.lithos.2016.11.027 OLIVER R L, JAMES P R, COLLERSON K D, et al., 1982. Precambrian geologic relationships in the Vestfold Hills, Antarctica[M]//CRADDOCK C. Antarctic Geoscience. Madison: University of Wisconsin Press: 435-444. PEACOCK J R, SELWAY K, 2016. Magnetotelluric investigation of the vestfold hills and rauer group, east antarctica[J]. Journal of Geophysical Research: Solid Earth, 121(4): 2258-2273. doi: 10.1002/2015JB012677 PEUCAT J J, MÉNOT R P, MONNIER O, et al., 1999. The Terre Adélie basement in the East-Antarctica Shield: geological and isotopic evidence for a major 1.7 Ga thermal event; comparison with the Gawler Craton in South Australia[J]. Precambrian Research, 94(3-4): 205-224. doi: 10.1016/S0301-9268(98)00119-3 PHILIPPOT P, MULLER E, ROLLION-BARD C, 2019. Origin of paleoarchean sulfate deposits[M]//VAN KRANENDONK M J, BENNETT V C, HOFFMANN J E. Earth's Oldest Rocks. 2nd ed. Amsterdam: Elsevier: 211-235. PHILLIPS G, WILSON C J L, CAMPBELL I H, et al., 2006. U-Th-Pb detrital zircon geochronology from the southern Prince Charles mountains, east Antarctic-defining the Archaean to Neoproterozoic Ruker province[J]. Precambrian Research, 148(3-4): 292-306. doi: 10.1016/j.precamres.2006.05.001 PHILLIPS G, WILSON C J L, PHILLIPS D, et al., 2007a. Thermochronological (40Ar/39Ar) evidence of Early Palaeozoic basin inversion within the southern Prince Charles Mountains, East Antarctica: implications for East Gondwana[J]. Journal of the Geological Society, 164(4): 771-784. doi: 10.1144/0016-76492006-073 PHILLIPS G, WHITE R W, WILSON C J L, 2007b. On the roles of deformation and fluid during rejuvenation of a polymetamorphic terrane: inferences on the geodynamic evolution of the Ruker Province, East Antarctica[J]. Journal of Metamorphic Geology, 25(8): 855-871. doi: 10.1111/j.1525-1314.2007.00732.x RAVICH M G, FEDOROV L V, TARUTIN O A, 1982. Precambrian iron deposits of the Prince Charles Mountains[M]//CRADDOCK C. Antarctic Geoscience. Madison: University of Wisconsin Press: 853-858. SANDIFORD M, 1985. The origin of retrograde shear zones in the Napier Complex: Implications for the tectonic evolution of Enderby Land, Antarctica[J]. Journal of Structural Geology, 7(3-4): 477-488. doi: 10.1016/0191-8141(85)90050-1 SCHEINERT M, FERRACCIOLI F, SCHWABE J, et al., 2016. New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica[J]. Geophysical Research Letters, 43(2): 600-610. doi: 10.1002/2015GL067439 SEITZ H M, 1994. Estimation of emplacement pressure for 2350 Ma high-Mg tholeiite dykes, Vestfold Hills, Antarctica[J]. European Journal of Mineralogy, 6(2): 195-208. doi: 10.1127/ejm/6/2/0195 SHEN Q H, GENG Y S, SONG H X, 2016. Progress and problems in the Hadean research of the Globe[J]. Acta Geologica Sinica, 90(9): 2083-2099. (in Chinese with English abstract) http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201609004&dbcode=CJFD&year=2016&dflag=pdfdown SHERATON J W, BLACK L P, MCCULLOCH M T, 1984. Regional geochemical and isotopic characteristics of high-grade metamorphics of the Prydz Bay area: the extent of Proterozoic reworking of Qrchaean continental crust in East Antarctica[J]. Precambrian Research, 26(2): 169-198. doi: 10.1016/0301-9268(84)90043-3 SHERATON J W, BLACK L P, TINDLE A G, 1992. Petrogenesis of plutonic rocks in a Proterozoic granulite-facies terrane-the Bunger Hills, East Antarctica[J]. Chemical Geology, 97(3-4): 163-198. doi: 10.1016/0009-2541(92)90075-G SNAPE I, BLACK L P, HARLEY S L, 1997. Refinement of the timing of magmatism, high-grade metamorphism and deformation in the Vestfold Hills, East Antarctica, from new SHRIMP U-Pb zircon geochronology[M]//RICCI C A. The Antarctic Region: Geological Evolution and Processes. Siena: Terra Antarctica Publications: 139-148. TINGEY R J, 1982. The geologic evolution of the Prince Charles mountains-an Antarctic Archean cratonic block[M]//CRADDOCK C. Antarctic Geoscience. Madison: University of Wisconsin Press: 455-464. TINGEY R J, 1990. Banded iron formations in east Antarctica[M]//SPLETTSTOESSER J F. Mineral Resources Potential of Antarctica. Washington, DC: American Geophysical Union: 125-131. TINGEY R J, 1991. The regional geology of Archaean and Proterozoic rocks in Antarctica[M]//TINGEY R J. The Geology of Antarctica. Oxford: Clarendon Press: 1-78. TONG L X, WILSON C J L, 2006. Tectonothermal evolution of the ultrahigh temperature metapelites in the Rauer Group, east Antarctica[J]. Precambrian Research, 149(1-2): 1-20. doi: 10.1016/j.precamres.2006.04.004 TUCKER N M, PAYNE J L, CLARK C, et al., 2017. Proterozoic reworking of Archean (Yilgarn) basement in the Bunger Hills, East Antarctica[J]. Precambrian Research, 298: 16-38. doi: 10.1016/j.precamres.2017.05.013 WANG Y B, TONG L X, LIU D Y, 2007. Zircon U-Pb ages from an ultra-high temperature metapelite, Rauer Group, east Antarctica: implications for overprints by Grenvillian and Pan-African events[C]//10th International Symposium on Antarctic Earth Sciences. U.S. Geological Survey and the National Academies. WILL T M, ZEH A, GERDES A, et al., 2009. Palaeoproterozoic to Palaeozoic magmatic and metamorphic events in the Shackleton Range, East Antarctica: constraints from zircon and monazite dating, and implications for the amalgamation of Gondwana[J]. Precambrian Research, 172(1-2): 25-45. doi: 10.1016/j.precamres.2009.03.008 ZHAI M G, 2012. Evolution of the North China Craton and early plate tectonics[J]. Acta Geologica Sinica, 86(9): 1335-1349. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201209004&dbcode=CJFD&year=2012&dflag=pdfdown ZHANG L C, ZHAI M G, WAN Y S, et al., 2012. Study of the Precambrian BIF-iron deposits in the North China Craton: Progresses and questions. Acta Petrologica Sinica, 28(11): 3431-3445. (in Chinese with English abstract) http://www.cnki.com.cn/article/cjfdtotal-ysxb201211002.htm ZHAO Y, ZHANG S H, LIU X C, et al., 2007. Sub-glacial geology of Antarctica: a preliminary investigation and results in the Grove Mountains and the Vestfold Hills, East Antarctica and its tectonic implication[C]//10th International Symposium on Antarctic Sciences. U.S. Geological Survey and the National Academies. ZHAO Y, LIU X C, WANG W, et al., 2019. The early history and tectonic framework of East Antarctica, knowledge from the subglacial geology: a review[C]//13th International Symposium on Antarctic Earth Science, Incheon. ZULBATI F, HARLEY S L, 2007. Late Archaean granulite facies metamorphism in the Vestfold Hills, East Antarctica[J]. Lithos, 93(1-2): 39-67. doi: 10.1016/j.lithos.2006.04.004 刘健, 赵越, 刘晓春, 等, 2011. 来自东南极西福尔丘陵附近冰碛物中沉积岩砾石的碎屑锆石LA-ICP-MS U-Pb年龄及其意义[J]. 地质学报, 85(10): 1585-1612. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201110006.htm 沈其韩, 耿元生, 宋会侠, 2016. 全球冥古宙的研究进展和存在问题[J]. 地质学报, 90(9): 2083-2099. doi: 10.3969/j.issn.0001-5717.2016.09.001 翟明国, 2012. 华北克拉通的形成以及早期板块构造[J]. 地质学报, 86(9): 1335-1349. doi: 10.3969/j.issn.0001-5717.2012.09.002 张连昌, 翟明国, 万渝生, 等, 2012. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题[J]. 岩石学报, 28(11): 3431-3445. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211002.htm