留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于星点状方解石胶结与溶解的识别查明砂岩粒间孔隙类型——以雅布赖盆地新河组砂岩为例

王建国 周晓峰 唐海忠 魏军 韩小松 郭伟

王建国, 周晓峰, 唐海忠, 等, 2021. 基于星点状方解石胶结与溶解的识别查明砂岩粒间孔隙类型——以雅布赖盆地新河组砂岩为例. 地质力学学报, 27 (4): 652-661. DOI: 10.12090/j.issn.1006-6616.2021.27.04.054
引用本文: 王建国, 周晓峰, 唐海忠, 等, 2021. 基于星点状方解石胶结与溶解的识别查明砂岩粒间孔隙类型——以雅布赖盆地新河组砂岩为例. 地质力学学报, 27 (4): 652-661. DOI: 10.12090/j.issn.1006-6616.2021.27.04.054
WANG Jianguo, ZHOU Xiaofeng, TANG Haizhong, et al., 2021. Identifying intergranular pore types by distinguishing between cementation and dissolution of dotted calcite: A case study of the Xinhe Formation sandstones in the Yabrai Basin, China. Journal of Geomechanics, 27 (4): 652-661. DOI: 10.12090/j.issn.1006-6616.2021.27.04.054
Citation: WANG Jianguo, ZHOU Xiaofeng, TANG Haizhong, et al., 2021. Identifying intergranular pore types by distinguishing between cementation and dissolution of dotted calcite: A case study of the Xinhe Formation sandstones in the Yabrai Basin, China. Journal of Geomechanics, 27 (4): 652-661. DOI: 10.12090/j.issn.1006-6616.2021.27.04.054

基于星点状方解石胶结与溶解的识别查明砂岩粒间孔隙类型——以雅布赖盆地新河组砂岩为例

doi: 10.12090/j.issn.1006-6616.2021.27.04.054
基金项目: 

中国石油科技创新基金 2019D-5007-0202

详细信息
    作者简介:

    王建国(1978-), 男, 博士, 讲师, 从事油气田开发地质研究。E-mail: wjglww@cup.edu.cn

  • 中图分类号: P618.13

Identifying intergranular pore types by distinguishing between cementation and dissolution of dotted calcite: A case study of the Xinhe Formation sandstones in the Yabrai Basin, China

Funds: 

the PetroChina Innovation Foundation 2019D-5007-0202

  • 摘要: 目前含油气砂岩中粒间孔隙是原生孔隙还是次生孔隙的认识仍不一致,而对星点状方解石胶结与溶解的识别能够有效地查明粒间孔隙的类型。文章通过铸体薄片细致地观察雅布赖盆地新河组砂岩中的微观现象,以成岩环境演化和成岩序列分析为主线,重视方解石胶结物的赋存状态与物质来源和溶蚀流体来源的配置关系,精细解剖微观现象,从而弄清楚星点状方解石的成因,进而查明砂岩的粒间孔隙类型和储集空间类型。结果表明,粒间孔隙中的星点状方解石是成岩早期浸染状方解石胶结物的溶蚀残余,溶蚀流体为成岩中期的有机酸流体,溶蚀类型为一致性溶解,形成的粒间孔隙为次生孔隙。鉴于此,雅布赖盆地新河组砂岩的储集空间由次生粒间孔隙和次生粒内孔隙(长石、岩屑、方解石胶结物的溶蚀孔隙)组成。

     

  • 图  1  雅布赖盆地地理位置与构造单元划分

    Figure  1.  Sketch map showing the location and tectonic units of the Yabrai Basin

    图  2  雅布赖盆地新河组砂岩岩石学特征显微照片

    Q—石英;F—长石;Rv—火山岩屑;Rm—变质岩屑;Qo—次生石英加大;Fo—次生长石加大;Ca—方解石胶结物;P—粒间孔隙;PF—长石溶蚀孔隙;PRv—火山岩溶蚀孔隙;PCa—方解石胶结物溶蚀孔隙
    a、b—雅探6井,2651.57 m,石英、长石、火山岩屑、变质岩屑大小混杂堆积,方解石胶结物多,次生长石加大和次生石英加大少见,粒间孔隙中可见零星分布的方解石(蓝色箭头所指处),a为单偏光,b为正交偏光;c、d—雅探11井,2597.64 m,团块状方解石胶结物发育的微域碎屑颗粒间点接触或基底式接触,次生长石加大发育,粒间孔隙中可见星点状方解石(蓝色箭头所指处),c为单偏光,d为正交偏光;e—雅探6井,2651.57 m,粒间孔隙、长石溶蚀孔隙、岩屑溶蚀孔隙,粒间孔隙中常见星点状方解石(蓝色箭头所指处),单偏光;f—雅探7井,2406.62 m,方解石经混合液染色呈蓝色,方解石溶蚀孔隙发育,单偏光

    Figure  2.  Microscopy photos of petrological characteristics of Xinhe Formation sandstones, Yabrai Basin. (a, b) The Well YT6, 2651.57 m; large and small mixed accumulation of quartz, feldspar, volcanic and metamorphic debris. Calcite cements are more than feldspar overgrowths and quartz overgrowths; calcite distributes sporadically in intergranular pores(where the blue arrows point); a is taken under single polar and b is taken under crossed polar. (c, d) The well YT11, 2597.64 m; in the micro domain where the massive calcite cements are developed, the clastic particles are in point contact or basal contact; feldspars overgrow; dotted calcites are distributed in intergranular pores(where the blue arrows point); c is taken under single polar and d is taken under crossed polar. (e) The well YT6, 2651.57 m; there are intergranular pores, feldspar dissolution pores and debris dissolution pores; dotted calcites are distributed in intergranular pores(where the blue arrows point); e is taken under single polar. (f) The well YT7, 2406.62 m; calcite was dyed blue by mixed solution; the dissolution pores of calcite are well developed; f is taken under single polar

    Q-quartz; F-feldspar; Rv-volcanic debris; Rm-metamorphic debris; Qo-Quartz overgrowth; Fo-feldspar overgrowth; Ca-calcite cement; P-intergranular pore; PF-dissolution pore of feldspar; PRv-dissolution pore of volcanic rock; PCa-dissolution pore of calcite cement

    图  3  雅布赖盆地新河组砂岩方解石胶结与溶解显微照片

    Ca1—浸染状方解石胶结物,Ca2—团块状方解石胶结物,Ca3—斑块状方解石胶结物,Ca4—星点状方解石胶结物
    a、b—雅探6井,2654.75 m,浸染状方解石胶结物,形成钙质砂岩,a为单偏光,b为正交偏光;c、d—雅探1井,2914.71 m,团块状方解石胶结物,与粒间孔隙接触处方解石胶结物溶蚀成港湾状,c为单偏光,d为正交光;e—雅探6井,2653.34 m,斑块状方解石胶结物,边缘参差不齐,单偏光;f—雅探6井,2651.82 m,星点状和斑块状方解石附着在粒间孔隙壁面上,方解石表面凹凸不平,单偏光

    Figure  3.  Microscopy photos of caltite cementation and dissolution in Xinhe Formation sandstones, Yabrai Basin. (a, b) The well YT6, 2654.75 m; disseminated calcite cements form calcareous sandstones, a is taken under single polar and b is taken under crossed polar. (c, d) The well YT1, 2914.71 m; the massive calcite cements next to intergranular pores are dissolved into a harbor, c is taken under single polar and d is taken under crossed polar. (e) The well YT6, 2653.34 m; the edge of patchy calcite cements are uneven, e is taken under single polar. (f) The well YT6, 2651.82 m; the dotted and patchy calcites adhere to the walls of intergranular pores, and the surface of calcites are uneven; f is taken under single polar.

    Ca1-disseminated calcite cement; Ca2-massive calcite cement; Ca3-patchy calcite cement; Ca4-dotted calcite cement

    图  4  雅布赖盆地新河组砂岩方解石胶结与溶解成岩作用过程图解

    Figure  4.  Diagenesis process of caltite cementation and dissolution in the Xinhe Formation sandstones, Yabrai Basin

  • CHEN X Y, WANG J, ZHANG L P, et al., 2020. Sedimentary characteristics and genesis of carbonate cements in carboniferous Donghe sandstone member, Hanilcatam area of Tarim basin[J]. Journal of Jilin University (Earth Science Edition), 50(2): 509-517. (in Chinese with English abstract)
    DONG Y G, 2014. Hydrocarbon source rocks evaluation in Jurassic of YaBulai basin of Inner Mangolia[D]. Beijing: China University of Geosciences (Beijing): 15-20. (in Chinese with English abstract)
    DU P Y, 2016. Distribution of Jurassic effective source rocks in the Yabrai basin and its control to petroleum[D]. Beijing: China University of Petroleum (Beijing): 20-25. (in Chinese with English abstract)
    DU P Y, GAO G, WEI T, et al., 2018. Effective Source Rocks in Jurassic Xinhe Formation in Sartai Sag, Yabrai Basin[J]. Journal of Jilin University (Earth Science Edition), 48(1): 29-38. (in Chinese with English abstract)
    EMSBO P, HOFSTRA A H, 2003. Origin and significance of postore dissolution collapse breccias cemented with calcite and barite at the Meikle gold deposit, northern Carlin Trend, Nevada[J]. Economic Geology, 98(6): 1243-1252. doi: 10.2113/gsecongeo.98.6.1243
    FU S T, WANG Z L, ZHANG Y S, et al., 2015. Origin of carbonate cements in reservoir rocks and its petroleum geologic significance: Eboliang structure belt, northern margin of Qaidam Basin[J]. Acta Sedimentologica Sinica, 33(5): 991-999. (in Chinese with English abstract)
    GAO G, ZHAO L Y, MA G F, et al., 2017. Formation conditions of the Jurassic Xinhe Formation tight oil reservoirs and resource potential in the Yabrai Basin[J]. Oil & Gas Geology, 38(3): 478-488. (in Chinese with English abstract)
    HE S, YANG Z, HE Z L, et al., 2009. Mechanism of carbonate cementation and secondary dissolution porosity formation in deep-burial sandstones near the top Overpressured surface in central part of Junggar basin[J]. Earth Science-Journal of China University of Geosciences, 34(5): 759-768, 798. (in Chinese with English abstract) doi: 10.3799/dqkx.2009.084
    HUANG J P, YANG Z L, MA G F, et al., 2015. The geological characteristics and exploration potential of tight oil in small fault-subsided lake Basins, China[J]. Natural Gas Geoscience, 26(9): 1763-1772. (in Chinese with English abstract)
    LI M J, ZHENG M L, CAO C C, et al., 2004. Evolution of superposed Jurassic and Cretaceous basins in Beishan-Alxa area[J]. Oil & Gas Geology, 25(1): 54-57. (in Chinese with English abstract)
    LI Y, ZHANG W X, LI S T, et al., 2018. Characteristics of carbonate cements and their effects on properties in Chang 8 sandstone reservoir, Ordos Basin[J]. Geological Science and Technology Information, 37(4): 175-183. (in Chinese with English abstract)
    LIU H M, WANG X J, DU Z J, et al., 2020. Study on pore structure characteristics of tight sandstone in Block 4 of the central Junggar basin[J]. Journal of Geomechanics, 26(1): 96-105. (in Chinese with English abstract)
    LOUCKS R G, DUTTON S P, 2019. Insights into deep, onshore gulf of Mexico Wilcox sandstone pore networks and reservoir quality through the integration of petrographic, porosity and permeability, and mercury injection capillary pressure analyses[J]. AAPG Bulletin, 103(3): 745-765. doi: 10.1306/09181817366
    LV C F, QIN C W, CHEN G J, et al., 2010. Diagenesis of lower cretaceous reservoir sandstones from Jiudong depression in Jiuquan basin[J]. Natural Gas Geoscience, 21(6): 939-946. (in Chinese with English abstract)
    PETTIJOHN F J, POTTER P E, SIEVER R, 1972. Sand and sandstone[M]. New York, Heidelberg, Berlin: Springer-Verlag: 383-437.
    PITTMAN E D, LARESE R E, HEALD M T, 1992. Clay coats: Occurrence and relevance to preservation of porosity in sandstones[M]//HOUSEKNECHT D W, PITTMAN E D. Origin, diagenesis, and petrophysics of clay minerals in sandstones. Tulsa: SEPM Society for Sedimentary Geology: 241-255.
    POMMER M, SARG J F, 2019. Biochemical and stratigraphic controls on pore-system evolution, Phosphoria Rock Complex (Permian), Rocky mountain Region, USA[J]. Journal of Sedimentary Research, 18(2): 25-60.
    SHANLEY K W, CLUFF R M, 2015. The Evolution of Pore-scale fluid-saturation in Low-permeability Sandstone reservoirs[J]. AAPG Bulletin, 99(10): 1957-1990. doi: 10.1306/03041411168
    SHEN J, 2020. Carbonate cementation characteristics and genetic mechanism of tight sandstone reservoirs in Longdong area, Ordos Basin[J]. Lithologic Reservoirs, 32(2): 24-32. (in Chinese with English abstract)
    SHI Y T, LIAO Y T, TANG J R, et al., 2015. Characteristics of sequence stratigraphy and sedimentary facies in the lower Xinhe formation of Xiaohu Sub-sag, Yabulai basin[J]. Geological Science and Technology Information, 34(5): 38-45. (in Chinese with English abstract)
    SUN G Q, WANG H F, ZOU K Z, et al., 2014. Characteristics and significance of carbon and oxygen isotopic compositions of carbonate cements in Jiulongshan region, north edge of Qaidam basin[J]. Natural Gas Geoscience, 25(9): 1358-1365. (in Chinese with English abstract)
    TAN T, REN Z L, WU X Q, et al., 2015. Apatite fission track analysis of Meso-cenozoic tectonic-thermal history in Sartai depression, Yabrai Basin[J]. Journal of Central South University (Science and Technology), 46(8): 2974-2982. (in Chinese with English abstract)
    TAN X F, HUANG J H, LI J, et al., 2015. Origin of carbonate cements and the transformation of the reservoir in sandstone under the deep burial condition-A case study on Eocene Kongdian formation in Jiyang Depression, Bohai Bay Basin[J]. Geological Review, 61(5): 1107-1120. (in Chinese with English abstract)
    TANG H Z, WEI J, ZHOU Z H, et al., 2019. Characteristics of calcite cements in deep Xiagou Formation sandstones of Ying'er Depression, Jiuquan Basin[J]. Natural Gas Geoscience, 30(5): 652-661. (in Chinese with English abstract)
    WANG D R, 2000. Stable isotope geochemistry of oil and gas[M]. Beijing: Petroleum Industry Press: 123-145. (in Chinese)
    WANG J W, SONG S J, BAO Z D, et al., 2006. Analysis of the quality reservoir development controlling factors of J1s2 formation of Zhuang-1 area in Zhungeer Basin[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 21(1): 11-14. (in Chinese with English abstract)
    WANG Y B, 2014. Analysis on geochemical characteristics and potentials of Xinhe formation in Yyabrai Basin[D]. Xi'an: Xi'an Shiyou University: 16-23. (in Chinese with English abstract)
    WANG Y T, SUN G Q, YANG Y H, et al., 2020. Characteristics and significance of carbonate cement in the No. 7 area of Lenghu, Northern Margin of Qaidam Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 42(1): 45-56. (in Chinese with English abstract)
    WU X Z, WANG G J, ZHENG M, et al., 2015. Structural evolution and hydrocarbon accumulation in Yabulai Basin[J]. Chinese Journal of Geology, 50(1): 74-87. (in Chinese with English abstract)
    XUE M W, ZHANG T, DING W L, et al., 2020. Fluid potential characteristics of Carboniferous and the division of hydrocarbon migration and accumulation units in the eastern depression of the Bayanhaote Basin[J]. Journal of Geomechanics, 26(1): 65-73. (in Chinese with English abstract)
    YANG B, HOU J, CHEN H Q, et al., 2018. Characteristics of the Yabulai Mesozoic Basin and its exploration strategy[J]. Oil Geophysical Prospecting, 53(S2): 314-320. (in Chinese with English abstract)
    YUAN G H, CAO Y C, JIA Z Z, et al., 2015. Research progress on anomalously high porosity zones in deeply buried clastic reservoirs in petroliferous basin[J]. Natural Gas Geoscience, 26(1): 28-42. (in Chinese with English abstract)
    ZHAI M G, 2019. Tectonic evolution of the North China Craton[J]. Journal of Geomechanics, 25 (5): 722-745. (in Chinese with English abstract)
    ZHANG J H, XIANG P, 2019. Genetic mechanisms of low-permeability reservoir of Sangonghe Formation in Block 1 of central Junggar Basin[J]. Journal of Xi'an Shiyou University (Natural Science), 34(1): 43-49. (in Chinese with English abstract)
    ZHANG S M, CAO Y C, ZHU R K, et al., 2016. The lithofacies and depositional environment of fine-grained sedimentary rocks of Xiaohu Subsag in Yabulai basin[J]. Natural Gas Geoscience, 27(2): 309-319. (in Chinese with English abstract)
    ZHONG J Y, HE M, ZHOU T, et al., 2011. Origin analysis of carbonate cements in Chang 8 reservoir in southeastern margin of Ordos Basin[J]. Lithologic Reservoirs, 23(4): 65-69. (in Chinese with English abstract)
    ZHONG W, LIN C M, WU C, et al., 2013. The Mesozoic tectonic in the Yabrai Basin[J]. Acta Geologica Sichuan, 33(1): 7-11. (in Chinese with English abstract)
    ZHOU X F, LI J, ZHANG J X, et al., 2018. Revisiting the compaction time of Chang 8 sandstones in Southwestern Ordos Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 40(3): 1-10. (in Chinese with English abstract)
    陈秀艳, 王剑, 张立平, 等, 2020. 塔里木盆地哈拉哈塘地区石炭系东河砂岩段碳酸盐胶结物沉积特征及其成因[J]. 吉林大学学报(地球科学版), 50(2): 509-517. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202002016.htm
    董义国, 2014. 内蒙古雅布赖盆地侏罗系烃源岩评价[D]. 北京: 中国地质大学(北京): 15-20.
    都鹏燕, 2016. 雅布赖盆地侏罗系有效烃源岩分布及其对油气的控制作用[D]. 北京: 中国石油大学(北京): 20-25.
    都鹏燕, 高岗, 魏涛, 等, 2018. 雅布赖盆地萨尔台凹陷侏罗系新河组有效烃源岩研究[J]. 吉林大学学报(地球科学版), 48(1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201801003.htm
    付锁堂, 王震亮, 张永庶, 等, 2015. 柴北缘西段鄂博梁构造带储层碳酸盐胶结物成因及其油气地质意义: 来自碳、氧同位素的约束[J]. 沉积学报, 33(5): 991-999. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201505015.htm
    高岗, 赵乐义, 马国福, 等, 2017. 雅布赖盆地侏罗系新河组致密油形成条件与有利区资源潜力[J]. 石油与天然气地质, 38(3): 478-488. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201703007.htm
    何生, 杨智, 何治亮, 等, 2009. 准噶尔盆地腹部超压顶面附近深层砂岩碳酸盐胶结作用和次生溶蚀孔隙形成机理[J]. 地球科学-中国地质大学学报, 34(5): 759-768, 798. doi: 10.3321/j.issn:1000-2383.2009.05.006
    黄军平, 杨占龙, 马国福, 等, 2015. 中国小型断陷湖盆致密油地质特征及勘探潜力分析[J]. 天然气地球科学, 26(9): 1763-1772. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509019.htm
    李明杰, 郑孟林, 曹春潮, 等, 2004. 北山-阿拉善地区侏罗-白垩纪盆地的叠合演化[J]. 石油与天然气地质, 25(1): 54-57. doi: 10.3321/j.issn:0253-9985.2004.01.010
    李阳, 张文选, 李树同, 等, 2018. 鄂尔多斯盆地长8砂岩储层碳酸盐胶结物特征及其对物性的影响[J]. 地质科技情报, 37(4): 175-183. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804024.htm
    刘惠民, 王学军, 杜振京, 等, 2020. 准中4区块致密砂岩孔隙结构特征研究[J]. 地质力学学报, 26(1): 96-105. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200110&journal_id=dzlxxb
    吕成福, 秦长文, 陈国俊, 等, 2010. 酒泉盆地酒东坳陷下白垩统低孔渗储层成岩作用研究[J]. 天然气地球科学, 21(6): 939-946. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201006010.htm
    孙国强, 王海峰, 邹开真, 等, 2014. 柴北缘九龙山地区侏罗系砂岩中碳酸盐胶结物特征及意义[J]. 天然气地球科学, 25(9): 1358-1365. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201409008.htm
    沈健, 2020. 鄂尔多斯盆地陇东地区致密砂岩储层碳酸盐胶结物特征及成因机理[J]. 岩性油气藏, 32(2): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202002003.htm
    石英涛, 廖远涛, 汤建荣, 等, 2015. 雅布赖盆地小湖次凹新河组下段层序及沉积相特征[J]. 地质科技情报, 34(5): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201505007.htm
    谭先锋, 黄建红, 李洁, 等, 2015. 深部埋藏条件下砂岩中碳酸盐胶结物的成因及储层改造: 以济阳坳陷始新统孔店组为例[J]. 地质论评, 61(5): 1107-1120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201505014.htm
    唐海忠, 魏军, 周在华, 等, 2019. 酒泉盆地营尔凹陷深层下沟组砂岩方解石胶结物特征[J]. 天然气地球科学, 30(5): 652-661. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201905005.htm
    田涛, 2015. 雅布赖盆地萨尔台凹陷热演化史与油气成藏期次研究[D]. 西安: 西北大学: 13-18.
    田涛, 任战利, 吴晓青, 等, 2015. 雅布赖盆地萨尔台凹陷中-新生代构造热事件的磷灰石裂变径迹分析[J]. 中南大学学报(自然科学版), 46(8): 2974-2982. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201508030.htm
    王大锐, 2000. 油气稳定同位素地球化学[M]. 北京: 石油工业出版社: 123-145.
    王建伟, 宋书君, 鲍志东, 等, 2006. 准噶尔盆地庄1井区J1s2段优质储层发育控制因素[J]. 西安石油大学学报(自然科学版), 21(1): 11-14. doi: 10.3969/j.issn.1673-064X.2006.01.003
    王彦博, 2014. 雅布赖盆地新河组烃源岩地化特征及资源潜力分析[D]. 西安: 西安石油大学: 16-23.
    王晔桐, 孙国强, 杨永恒, 等, 2020. 柴北缘冷湖七号地区碳酸盐胶结物特征及其意义[J]. 西南石油大学学报(自然科学版), 42(1): 45-56. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202001005.htm
    吴晓智, 王桂君, 郑民, 等, 2015. 雅布赖盆地构造演化与油气聚集[J]. 地质科学, 50(1): 74-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201501005.htm
    薛明旺, 张坦, 丁文龙, 等, 2020. 巴彦浩特盆地东部坳陷石炭系流体势特征及油气运聚单元划分[J]. 地质力学学报, 26(1): 65-73. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200107&journal_id=dzlxxb
    杨波, 侯军, 陈海清, 等, 2018. 雅布赖中生代叠合盆地特征及勘探方向[J]. 石油地球物理勘探, 53(S2): 314-320. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2018S2049.htm
    远光辉, 操应长, 贾珍臻, 等, 2015. 含油气盆地中深层碎屑岩储层异常高孔带研究进展[J]. 天然气地球科学, 26(1): 28-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201501005.htm
    翟明国, 2019. 华北克拉通构造演化[J]. 地质力学学报, 25(5): 722-745. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190507&journal_id=dzlxxb
    张江华, 相鹏, 2019. 准噶尔盆地中部1区三工河组低渗透储层成因机制[J]. 西安石油大学学报(自然科学版), 34(1): 43-49. doi: 10.3969/j.issn.1673-064X.2019.01.006
    张少敏, 操应长, 朱如凯, 等, 2016. 雅布赖盆地小湖次凹细粒沉积岩岩相特征与沉积环境探讨[J]. 天然气地球科学, 27(2): 309-319. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201602014.htm
    钟金银, 何苗, 周韬, 等, 2011. 鄂尔多斯盆地东南缘长8油层组碳酸盐胶结物成因分析[J]. 岩性油气藏, 23(4): 65-69. doi: 10.3969/j.issn.1673-8926.2011.04.012
    钟玮, 林常梅, 吴超, 等, 2013. 雅布赖盆地中生代构造特征[J]. 四川地质学报, 33(1): 7-11. doi: 10.3969/j.issn.1006-0995.2013.01.003
    周晓峰, 李景, 张建欣, 等, 2018. 鄂尔多斯盆地西南部长8砂岩致密时间再认识[J]. 西南石油大学学报(自然科学版), 40(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201803001.htm
  • 加载中
图(4)
计量
  • 文章访问数:  492
  • HTML全文浏览量:  72
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-08
  • 修回日期:  2021-01-31
  • 刊出日期:  2021-08-28

目录

    /

    返回文章
    返回