Identifying intergranular pore types by distinguishing between cementation and dissolution of dotted calcite: A case study of the Xinhe Formation sandstones in the Yabrai Basin, China
-
摘要: 目前含油气砂岩中粒间孔隙是原生孔隙还是次生孔隙的认识仍不一致,而对星点状方解石胶结与溶解的识别能够有效地查明粒间孔隙的类型。文章通过铸体薄片细致地观察雅布赖盆地新河组砂岩中的微观现象,以成岩环境演化和成岩序列分析为主线,重视方解石胶结物的赋存状态与物质来源和溶蚀流体来源的配置关系,精细解剖微观现象,从而弄清楚星点状方解石的成因,进而查明砂岩的粒间孔隙类型和储集空间类型。结果表明,粒间孔隙中的星点状方解石是成岩早期浸染状方解石胶结物的溶蚀残余,溶蚀流体为成岩中期的有机酸流体,溶蚀类型为一致性溶解,形成的粒间孔隙为次生孔隙。鉴于此,雅布赖盆地新河组砂岩的储集空间由次生粒间孔隙和次生粒内孔隙(长石、岩屑、方解石胶结物的溶蚀孔隙)组成。Abstract: There is still no consensus among researchers about whether intergranular pores in oil-bearing sandstone are primary pores or secondary pores. Distinguishing between cementation and dissolution of dotted calcite can effectively identify intergranular pore types. In this paper, taking the diagenetic environment evolution and diagenesis sequence as the thread, we carefully observed the casting slices from the Xinhe Formation sandstones in the Yabrai Basin and finely dissected the microphenomenon by focusing on the calcite cements in its relation between the origins of substance and dissolution fluids and the occurrence mode. The genesis of the dotted calcite was clarified thus, and then the intergranular pore types and reservoir space types in the sandstones were identified. The study results show that the dotted calcite in the intergranular pore is the dissolution residue of the disseminated calcite formed in the early diagenetic stage, and the dissolution type is the consistent dissolution. The dissolution fluid, organic acid fluid formed during the middle diagenetic stage, caused the secondary pores. Therefore, it is concluded that the reservoir space in the Xinhe Formation sandstones in the Yabrai Basin consists of the secondary intergranular pores and the secondary intragranular pores such as dissolution pores of cements of feldspar, lithoclast, lithoclast.
-
巴尔喀什成矿带地处中亚成矿域(或称为古亚洲成矿构造体系)[1]哈萨克斯坦-天山马蹄形构造带的内缘、巴尔喀什-准噶尔造山带的核心部位, 是哈萨克斯坦最主要的斑岩型铜钼和云英岩型钨钼矿集中区。中亚成矿域有多期次、多类型的火山岩、花岗岩、基性岩、超基性岩、蛇绿岩带及变质岩带; 在地质历史上经受了大陆基底形成、古亚洲洋陆缘增生和滨西太平洋大陆边缘活动及陆内断块升降等多个阶段, 造就了多种有利的成矿环境[1]。中亚成矿域因其巨量的金属和非金属矿产而闻名于世, 成矿作用极其复杂多样[2~4]。
我们科研组近年来致力于巴尔喀什成矿带的调查研究, 已取得初步成果[5~9], 本文根据辉钼矿铼-锇同位素年龄, 确定了巴尔喀什成矿带阿克沙套云英岩型钨钼矿床的成矿时代, 并与区域斑岩铜矿带成矿作用年龄进行了对比分析。
1. 矿床地质特征
阿克沙套(Akshatau或Akchatau)大型云英岩型钨钼矿床(图 1), 产在中哈萨克斯坦古生代造山带中, 距离巴尔喀什市约150 km, 地理坐标为东经74°3'22″、北纬47°58'52″, 海拔约740 m。该矿床为浸染状云英岩型矿床[10], 有用元素主要为W (黑钨矿)、Mo、Be, 资源量为:2.741 × 106吨(一级储量) 0.50% WO3, 6.55 × 107吨0.1%~0.3% WO3, 1.75 × 107吨0.04%~0.07% Mo, 1.60 × 107吨0.03%~0.07% Be[10]。该矿床为1936年发现, 1941年开始开采, 主要采用地下方式开采[10]。
图 1 阿克沙套钨钼矿床地质简图与剖面示意图(据Daukeev et al. 2004[2])A.地质简图; B.示意纵剖面。1.下石炭统火山岩类; 2.石炭纪次火山花岗闪长斑岩; 3.石炭纪石英二长岩和花岗闪长岩; 4-7.二叠纪阿克沙套侵入杂岩:4.第Ⅰ期粗粒似斑状花岗岩; 5.第Ⅰ期其它侵入体的细粒杂斑状花岗岩; 6.第Ⅱ期中粒花岗岩; 7.第Ⅱ期细粒淡色花岗岩; 8.阿克沙套杂岩未分类花岗岩; 9.交代成因石英岩; 10.多孔白云母石英云英岩; 11.花岗岩和石英二长岩中的石英脉云英岩岩体; 12.外接触带岩石中网状脉云英岩化作用的分带; 13.沸石化作用; 14.阿克沙套深成岩体在深度2.5~3 km处的接触带轮廓; 15.阿克沙套深成岩体在深度450 m处的接触带轮廓; 16.隐伏花岗岩岩钟在地表的投影; 17.角岩化岩石边界; 18.高温角岩与低温角岩之间的界线Figure 1. Schematic geological map of the Akshatau W-Mo deposit and schematic latitudinal section (after Daukeev et al. 2004[2])矿床位于巴尔喀什晚古生代大陆边缘复理石建造中火山-侵入岩带的后部, 是二叠纪阿克沙套成矿省的一部分, 受线性和环状断裂构造的控制, 不同方向构造带的交切部位是矿床产出的最重要部位[11]。矿床成因上与多阶段复合深成岩体中的淡色花岗岩岩浆具有密切关系。云英岩型钨钼矿床与内、外接触带内成矿侵入体的顶部密切相关, 产出在花岗岩岩钟之中或岩钟的翼部(图 1), 以及不同尺度穹窿构造的脊部, 具有高温相角岩化岩石晕圈(图 1)。花岗岩和接触带岩石中发育云英岩化作用、硅化作用和沸石化作用, 呈面状和线性分带(图 1)。单一穹窿构造的花岗岩顶部最容易发现最集中富集的矿床。侵入体的顶部形态越复杂, 越难以形成富集的矿床[2]。
阿克沙套二叠纪淡色花岗岩类具有特殊的地球化学性质, 含有高浓度的稀有金属综合异常, 在岩浆岩内部和外部具有W、Mo、Be、Bi、F、Li元素晕。由于U、Th和K的浓度异常, 伴生有正的放射性化学异常, U/Th比值非常特征[2]。最合适的矿化温度出现在垂向热梯度为大约25℃/100m下[2]。在网状脉带, 岩石的导电性和热发光性具有正晕圈, 在向与花岗岩接触带变化方向上这两个参数不断升高[2]。
矿带中云英岩岩体群具有不对称的水平和垂向分带。云英岩岩体群水平分带包括矿化根带(石英脉带)、中心(或中间)带(含矿石的云英岩带)和前锋带(图 2), 主要的矿化作用与中间带相一致; 云英岩标型矿化带具有垂向上特征矿物晶形的系统变化。垂向分带包括下矿、主矿、前矿和其它进一步细分的带(图 3)。成矿作用包括通过岩浆成因流体和渗流水而发生的成矿物质活化作用、淋滤作用、重结晶作用和再沉淀作用。侵入体上部网状脉中, 白云母-黄玉-石英云英岩化作用带先是向石英-白云母带过渡, 然后过渡为黄铁矿化带和最外边的含沸石带; 矿化作用随着矿物成分向外带变化的方向而减弱。
图 3 花岗岩中石英脉云英岩矿体垂向不对称矿石-交代分带(A)和侵入体上部网状脉分带(B)(据Daukeev et al. 2004[2])1.下石炭统火山岩类;2.上志留统砂页岩沉积;3.侵入体顶部带未分岩石;4.石炭纪次火山花岗闪长斑岩;5.石炭纪石英二长岩和花岗闪长岩;6-9.二叠纪阿克沙套侵入杂岩;6.第Ⅰ期粗粒似斑状花岗岩;7.第Ⅰ期其它侵入体的细粒杂斑状花岗岩;8.第Ⅱ期中粒花岗岩;9.第Ⅱ期细粒淡色花岗岩;10.阿克沙套杂岩未分花岗岩;11.交代成因石英岩;12-15.云英岩类;12.多孔石英云英岩;13.致密石英云英岩;14.石英黄玉云英岩;15.石英白云母云英岩;16.多孔白云母石英云英岩;17.花岗岩和石英二长岩中的石英脉云英岩岩体;18.外接触带岩石中网状脉云英岩化作用的分带;19.沸石化作用;20.阿克沙套深成岩体在深度2.5~3 km处的接触带轮廓;21.阿克沙套深成岩体在深度450 m处的接触带轮廓;22.隐伏花岗岩岩钟在地表的投影;23.角岩化岩石边界;24.云英岩化蚀变带边界;25.高温角岩与低温角岩之间的界线Figure 3. Vertical asymmetric orc-melasomalic zonings of quartz-vein greisen bodies in granitcs(A) and of supra-inlrusive stockwork (B) (after Daukecv et al.2004[2])矿床中含有30条以上的石英脉和云英岩-石英脉矿体, 厚度在15~20 m左右, 少量达到50~60 m, 矿体垂向(往下)延伸在100~500 m之间。在外接触带, 成矿带的垂向范围一般不超过100 m, 但是也有的可达800 m[2]。矿脉的形成是沿陡倾(极少情况下为缓倾)碎裂系统伸展和剪切作用的结果。
根据矿物成分、围岩蚀变、矿体形态和结构构造, 该矿床产出有伟晶岩、石英长石脉, 含有辉钼矿、石英和黄玉云英岩矿体, 有时含有电气石。主要储量产出在矿化的含稀有金属的石英-云母脉中。矿体形态有独立脉、脉群和网状脉, 石英脉含在云英岩岩体中[2]。
矿床主要矿物组合为黑钨矿、辉钼矿、石英、黄铁矿、白钨矿、自然铋、闪锌矿、黄铜矿、锡石、白云母、黄玉、萤石、电气石、黑云母、长石等。云英岩和网状脉带中含有黄玉、白云母、黄铁矿和石英。
具有经济价值的矿化作用产出在石英、石英黄玉和石英云英岩脉及平行分布的云英岩石英脉群中。石英脉的平均品位为:0.7% W、0.03% Mo、0.02% Be、0.02% Bi; 网状脉的平均品位为:0.12% W、0.01% Mo、0.01% Be、0.01% Bi。黑钨矿中含有13 g/t Ta和36 g/t Nb[2]。
2. 辉钼矿铼-锇同位素测年
2.1 样品处理与分析方法
本文用于铼-锇同位素年龄测定的辉钼矿样品采自哈萨克斯坦巴尔喀什成矿带西段的阿克沙套钨钼矿床。辉钼矿样品经分选后均达到了合适的纯度(大于98%), 粒度为200目。
辉钼矿样品的铼-锇同位素分析是国家地质实验测试中心铼-锇同位素年代学实验室完成的, 样品的铼、锇化学分离与处理流程和质谱测定技术简述如下[12~16]。
样品分解 准确称取待分析样品, 通过长细颈漏斗加入到Carius管(一种高硼厚壁大玻璃安瓿瓶)底部。缓慢加液氮到有半杯乙醇的保温杯中, 调节温度到摄氏-50~-80℃。放装好样的Carius管到该保温杯中, 通过长细颈漏斗把准确称取的185Re和190Os混合稀释剂加入到Carius管底部, 再加入2 ml的10 mol/L HCl、4 ml的16 mol/L HNO3、1ml的30% H2O2。当管底溶液冰冻后, 用丙烷氧气火焰加热封好Carius管的细颈部分, 放入不锈钢套管内。轻轻放套管入鼓风烘箱内, 待回到室温后, 逐渐升温到200℃, 保温24 h。在底部冷冻的情况下, 打开Carius管, 并用40 ml水将管中溶液转入蒸馏瓶中。
蒸馏分离锇 于105~110℃蒸馏50 min, 用10 ml水吸收蒸出的OsO4。用于ICP MS (等离子体质谱仪)测定Os同位素比值。将蒸馏残液倒入150 ml特氟纶烧杯中待分离铼。
萃取分离铼 将第一次蒸馏残液置于电热板上, 加热近干。加少量水, 加热近干。重复两次以降低酸度。加入10 ml的5 mol/L NaOH, 稍微加热, 转为碱性介质。转入50 ml聚丙烯离心管中, 离心, 取上清液转入120 ml特氟纶分液漏斗中。加入10 ml丙酮, 振荡5 min。萃取Re。静止分相, 弃去水相。加2 ml 5 mol/L NaOH溶液到分液漏斗中, 振荡2 min, 洗去丙酮相中的杂质。弃去水相, 排丙酮到150 ml已加有2 ml水的特氟纶烧杯中。在电热板上50℃加热以蒸发丙酮。加热溶液至干。加数滴浓硝酸和30%过氧化氢, 加热蒸干以除去残存的锇。用数毫升稀HNO3溶解残渣, 稀释到硝酸浓度为2%。备ICP MS测定Re同位素比值。如含铼溶液中盐量超过1 mg/ml, 需采用阳离子交换柱除去钠[15]。
质谱测定 采用国家地质实验测试中心的TJA X-series ICP MS测定同位素比值。对于Re:选择质量数185、187, 用190监测Os。对于Os:选择质量数为186、187、188、189、190、192, 用185监测Re。
年龄计算 普Os是根据原子量表[17]和同位素丰度表[18], 通过192Os/190Os测量比计算得出。Re、Os含量的不确定度包括样品和稀释剂的称量误差、稀释剂的标定误差、质谱测量的分馏校正误差、待分析样品同位素比值测量误差; 置信水平95%。模式年龄的不确定度还包括衰变常数的不确定度(1.02%), 置信水平95%。按照杜安道等[13]和屈文俊、杜安道[15]给出的公式计算辉钼矿的模式年龄t (Ma), 其中187 Re衰变常数采用1.666 × 10-11 yr-1[19]。
2.2 分析结果
分析结果列于表 1中。表 1还给出本次实验标准物质GBW04436 (JDC)测定结果和标准物质测定值标准值[16]。结果表明, 阿克沙套W-Mo矿床辉钼矿的铼-锇同位素模式年龄范围为291.1 ± 4.0 Ma~287.5 ± 4.4 Ma, 平均值为约289.3 Ma, 属于早二叠世。
表 1 哈萨克斯坦巴尔喀什成矿带阿克沙套W-Mo矿床辉钼矿样品和标准物质Re-Os同位素分析数据Table 1. Re-Os isotopic data for molybdenites from Akshatau W-Mo deposits in Balkhash metallogenic belt, Kazakhstan and the standard material3. 成矿时代与成矿过程
阿克沙套钨钼矿床产出在侵入于志留系砂岩中的阿克舍套多阶段复合杂岩中的二叠纪淡色花岗岩中, 前人给出的成矿时代为二叠纪。本文根据辉钼矿铼-锇同位素测年, 得到其成矿时代为约289.3 Ma (范围为291.1 ± 4.0 Ma~287.5 ± 4.4 Ma), 属于早二叠世。
阿克沙套钨钼矿床的形成具有多阶段过程, 包括通过岩浆成因流体和渗流水而发生的成矿物质活化作用、淋滤作用、重结晶作用和再沉淀作用[2]。Yefimov et at.[10]将阿克沙套钨钼矿床的成矿作用划分为2阶段4相过程:第一阶段为气化-热液阶段, 包括辉钼矿-石英相(440~340℃)和复杂稀有金属相(480~250℃); 第二阶段为真正的热液阶段, 包括方铅矿-闪锌矿-石英相(310~150℃)和方解石-萤石-石英相(180~60℃)。Daukeev et al.[2]将该矿床的形成划分为三个阶段:第Ⅰ阶段, 流体进入裂隙空洞之中。第Ⅱ阶段, 扩散性的交代作用导致了花岗岩中不含矿的石英黄玉云英岩和邻近的外接触带中石英白云母和石英黄玉脉的形成。第Ⅲ阶段, 在矿体的较上部位和侵入体上部网状脉中, 系统发生自生加热作用, 流体沸腾, 元素从顶板运移出来, 选择性地再沉淀在重结晶带(矿带)内(图 4)。
辉钼矿的形成主要发生在400℃左右, 属于较高温的成矿阶段, 与花岗岩岩体晚期云英岩化的最早期阶段比较吻合。因此, 辉钼矿铼-锇同位素测年得到的钨钼矿床成矿年龄, 可能比较接近于深成岩浆活动的年龄, 是巴尔喀什成矿带与斑岩型铜矿化有关的深成岩浆活动的后续产物。
巴尔喀什成矿带阿克沙套钨钼矿床的成矿时代(289.3 Ma), 晚于东准噶尔石英脉-云英岩型锡矿床的成矿时代(307 ± 11 Ma, 萨惹什克锡矿[20]; 296.3 ± 2.6 Ma, 贝尔库都克锡矿[21])。
4. 结论
本文通过哈萨克斯坦境内中亚成矿域巴尔喀什成矿带阿克沙套大型石英脉-云英岩型钨钼矿床地质特征和辉钼矿样品的铼-锇同位素测年分析, 得到以下结论:
1.铼-锇同位素测年分析得到阿克沙套云英岩型W-Mo矿床辉钼矿的模式年龄为291.1 ± 4.0 Ma~287.5 ± 4.4 Ma, 平均值为289.3 Ma, 说明阿克沙套W-Mo矿床的成矿时代为早二叠世, 晚于该地区斑岩型铜钼成矿作用。
2.阿克沙套云英岩型钨钼成矿作用是晚石炭世中亚成矿域大规模斑岩型铜钼成矿作用延续的结果, 属中亚造山带海西晚期构造-岩浆活动的产物。
致谢: 本研究野外地质调查与采样工作得到新疆维吾尔自治区国家305项目办公室和哈萨克斯坦萨特巴耶夫地质科学研究所的支持与帮助, 谨表衷心感谢。责任编辑: 范二平 -
图 2 雅布赖盆地新河组砂岩岩石学特征显微照片
Q—石英;F—长石;Rv—火山岩屑;Rm—变质岩屑;Qo—次生石英加大;Fo—次生长石加大;Ca—方解石胶结物;P—粒间孔隙;PF—长石溶蚀孔隙;PRv—火山岩溶蚀孔隙;PCa—方解石胶结物溶蚀孔隙
a、b—雅探6井,2651.57 m,石英、长石、火山岩屑、变质岩屑大小混杂堆积,方解石胶结物多,次生长石加大和次生石英加大少见,粒间孔隙中可见零星分布的方解石(蓝色箭头所指处),a为单偏光,b为正交偏光;c、d—雅探11井,2597.64 m,团块状方解石胶结物发育的微域碎屑颗粒间点接触或基底式接触,次生长石加大发育,粒间孔隙中可见星点状方解石(蓝色箭头所指处),c为单偏光,d为正交偏光;e—雅探6井,2651.57 m,粒间孔隙、长石溶蚀孔隙、岩屑溶蚀孔隙,粒间孔隙中常见星点状方解石(蓝色箭头所指处),单偏光;f—雅探7井,2406.62 m,方解石经混合液染色呈蓝色,方解石溶蚀孔隙发育,单偏光Figure 2. Microscopy photos of petrological characteristics of Xinhe Formation sandstones, Yabrai Basin. (a, b) The Well YT6, 2651.57 m; large and small mixed accumulation of quartz, feldspar, volcanic and metamorphic debris. Calcite cements are more than feldspar overgrowths and quartz overgrowths; calcite distributes sporadically in intergranular pores(where the blue arrows point); a is taken under single polar and b is taken under crossed polar. (c, d) The well YT11, 2597.64 m; in the micro domain where the massive calcite cements are developed, the clastic particles are in point contact or basal contact; feldspars overgrow; dotted calcites are distributed in intergranular pores(where the blue arrows point); c is taken under single polar and d is taken under crossed polar. (e) The well YT6, 2651.57 m; there are intergranular pores, feldspar dissolution pores and debris dissolution pores; dotted calcites are distributed in intergranular pores(where the blue arrows point); e is taken under single polar. (f) The well YT7, 2406.62 m; calcite was dyed blue by mixed solution; the dissolution pores of calcite are well developed; f is taken under single polar
Q-quartz; F-feldspar; Rv-volcanic debris; Rm-metamorphic debris; Qo-Quartz overgrowth; Fo-feldspar overgrowth; Ca-calcite cement; P-intergranular pore; PF-dissolution pore of feldspar; PRv-dissolution pore of volcanic rock; PCa-dissolution pore of calcite cement
图 3 雅布赖盆地新河组砂岩方解石胶结与溶解显微照片
Ca1—浸染状方解石胶结物,Ca2—团块状方解石胶结物,Ca3—斑块状方解石胶结物,Ca4—星点状方解石胶结物
a、b—雅探6井,2654.75 m,浸染状方解石胶结物,形成钙质砂岩,a为单偏光,b为正交偏光;c、d—雅探1井,2914.71 m,团块状方解石胶结物,与粒间孔隙接触处方解石胶结物溶蚀成港湾状,c为单偏光,d为正交光;e—雅探6井,2653.34 m,斑块状方解石胶结物,边缘参差不齐,单偏光;f—雅探6井,2651.82 m,星点状和斑块状方解石附着在粒间孔隙壁面上,方解石表面凹凸不平,单偏光Figure 3. Microscopy photos of caltite cementation and dissolution in Xinhe Formation sandstones, Yabrai Basin. (a, b) The well YT6, 2654.75 m; disseminated calcite cements form calcareous sandstones, a is taken under single polar and b is taken under crossed polar. (c, d) The well YT1, 2914.71 m; the massive calcite cements next to intergranular pores are dissolved into a harbor, c is taken under single polar and d is taken under crossed polar. (e) The well YT6, 2653.34 m; the edge of patchy calcite cements are uneven, e is taken under single polar. (f) The well YT6, 2651.82 m; the dotted and patchy calcites adhere to the walls of intergranular pores, and the surface of calcites are uneven; f is taken under single polar.
Ca1-disseminated calcite cement; Ca2-massive calcite cement; Ca3-patchy calcite cement; Ca4-dotted calcite cement
-
CHEN X Y, WANG J, ZHANG L P, et al., 2020. Sedimentary characteristics and genesis of carbonate cements in carboniferous Donghe sandstone member, Hanilcatam area of Tarim basin[J]. Journal of Jilin University (Earth Science Edition), 50(2): 509-517. (in Chinese with English abstract) DONG Y G, 2014. Hydrocarbon source rocks evaluation in Jurassic of YaBulai basin of Inner Mangolia[D]. Beijing: China University of Geosciences (Beijing): 15-20. (in Chinese with English abstract) DU P Y, 2016. Distribution of Jurassic effective source rocks in the Yabrai basin and its control to petroleum[D]. Beijing: China University of Petroleum (Beijing): 20-25. (in Chinese with English abstract) DU P Y, GAO G, WEI T, et al., 2018. Effective Source Rocks in Jurassic Xinhe Formation in Sartai Sag, Yabrai Basin[J]. Journal of Jilin University (Earth Science Edition), 48(1): 29-38. (in Chinese with English abstract) EMSBO P, HOFSTRA A H, 2003. Origin and significance of postore dissolution collapse breccias cemented with calcite and barite at the Meikle gold deposit, northern Carlin Trend, Nevada[J]. Economic Geology, 98(6): 1243-1252. doi: 10.2113/gsecongeo.98.6.1243 FU S T, WANG Z L, ZHANG Y S, et al., 2015. Origin of carbonate cements in reservoir rocks and its petroleum geologic significance: Eboliang structure belt, northern margin of Qaidam Basin[J]. Acta Sedimentologica Sinica, 33(5): 991-999. (in Chinese with English abstract) GAO G, ZHAO L Y, MA G F, et al., 2017. Formation conditions of the Jurassic Xinhe Formation tight oil reservoirs and resource potential in the Yabrai Basin[J]. Oil & Gas Geology, 38(3): 478-488. (in Chinese with English abstract) HE S, YANG Z, HE Z L, et al., 2009. Mechanism of carbonate cementation and secondary dissolution porosity formation in deep-burial sandstones near the top Overpressured surface in central part of Junggar basin[J]. Earth Science-Journal of China University of Geosciences, 34(5): 759-768, 798. (in Chinese with English abstract) doi: 10.3799/dqkx.2009.084 HUANG J P, YANG Z L, MA G F, et al., 2015. The geological characteristics and exploration potential of tight oil in small fault-subsided lake Basins, China[J]. Natural Gas Geoscience, 26(9): 1763-1772. (in Chinese with English abstract) LI M J, ZHENG M L, CAO C C, et al., 2004. Evolution of superposed Jurassic and Cretaceous basins in Beishan-Alxa area[J]. Oil & Gas Geology, 25(1): 54-57. (in Chinese with English abstract) LI Y, ZHANG W X, LI S T, et al., 2018. Characteristics of carbonate cements and their effects on properties in Chang 8 sandstone reservoir, Ordos Basin[J]. Geological Science and Technology Information, 37(4): 175-183. (in Chinese with English abstract) LIU H M, WANG X J, DU Z J, et al., 2020. Study on pore structure characteristics of tight sandstone in Block 4 of the central Junggar basin[J]. Journal of Geomechanics, 26(1): 96-105. (in Chinese with English abstract) LOUCKS R G, DUTTON S P, 2019. Insights into deep, onshore gulf of Mexico Wilcox sandstone pore networks and reservoir quality through the integration of petrographic, porosity and permeability, and mercury injection capillary pressure analyses[J]. AAPG Bulletin, 103(3): 745-765. doi: 10.1306/09181817366 LV C F, QIN C W, CHEN G J, et al., 2010. Diagenesis of lower cretaceous reservoir sandstones from Jiudong depression in Jiuquan basin[J]. Natural Gas Geoscience, 21(6): 939-946. (in Chinese with English abstract) PETTIJOHN F J, POTTER P E, SIEVER R, 1972. Sand and sandstone[M]. New York, Heidelberg, Berlin: Springer-Verlag: 383-437. PITTMAN E D, LARESE R E, HEALD M T, 1992. Clay coats: Occurrence and relevance to preservation of porosity in sandstones[M]//HOUSEKNECHT D W, PITTMAN E D. Origin, diagenesis, and petrophysics of clay minerals in sandstones. Tulsa: SEPM Society for Sedimentary Geology: 241-255. POMMER M, SARG J F, 2019. Biochemical and stratigraphic controls on pore-system evolution, Phosphoria Rock Complex (Permian), Rocky mountain Region, USA[J]. Journal of Sedimentary Research, 18(2): 25-60. SHANLEY K W, CLUFF R M, 2015. The Evolution of Pore-scale fluid-saturation in Low-permeability Sandstone reservoirs[J]. AAPG Bulletin, 99(10): 1957-1990. doi: 10.1306/03041411168 SHEN J, 2020. Carbonate cementation characteristics and genetic mechanism of tight sandstone reservoirs in Longdong area, Ordos Basin[J]. Lithologic Reservoirs, 32(2): 24-32. (in Chinese with English abstract) SHI Y T, LIAO Y T, TANG J R, et al., 2015. Characteristics of sequence stratigraphy and sedimentary facies in the lower Xinhe formation of Xiaohu Sub-sag, Yabulai basin[J]. Geological Science and Technology Information, 34(5): 38-45. (in Chinese with English abstract) SUN G Q, WANG H F, ZOU K Z, et al., 2014. Characteristics and significance of carbon and oxygen isotopic compositions of carbonate cements in Jiulongshan region, north edge of Qaidam basin[J]. Natural Gas Geoscience, 25(9): 1358-1365. (in Chinese with English abstract) TAN T, REN Z L, WU X Q, et al., 2015. Apatite fission track analysis of Meso-cenozoic tectonic-thermal history in Sartai depression, Yabrai Basin[J]. Journal of Central South University (Science and Technology), 46(8): 2974-2982. (in Chinese with English abstract) TAN X F, HUANG J H, LI J, et al., 2015. Origin of carbonate cements and the transformation of the reservoir in sandstone under the deep burial condition-A case study on Eocene Kongdian formation in Jiyang Depression, Bohai Bay Basin[J]. Geological Review, 61(5): 1107-1120. (in Chinese with English abstract) TANG H Z, WEI J, ZHOU Z H, et al., 2019. Characteristics of calcite cements in deep Xiagou Formation sandstones of Ying'er Depression, Jiuquan Basin[J]. Natural Gas Geoscience, 30(5): 652-661. (in Chinese with English abstract) WANG D R, 2000. Stable isotope geochemistry of oil and gas[M]. Beijing: Petroleum Industry Press: 123-145. (in Chinese) WANG J W, SONG S J, BAO Z D, et al., 2006. Analysis of the quality reservoir development controlling factors of J1s2 formation of Zhuang-1 area in Zhungeer Basin[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 21(1): 11-14. (in Chinese with English abstract) WANG Y B, 2014. Analysis on geochemical characteristics and potentials of Xinhe formation in Yyabrai Basin[D]. Xi'an: Xi'an Shiyou University: 16-23. (in Chinese with English abstract) WANG Y T, SUN G Q, YANG Y H, et al., 2020. Characteristics and significance of carbonate cement in the No. 7 area of Lenghu, Northern Margin of Qaidam Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 42(1): 45-56. (in Chinese with English abstract) WU X Z, WANG G J, ZHENG M, et al., 2015. Structural evolution and hydrocarbon accumulation in Yabulai Basin[J]. Chinese Journal of Geology, 50(1): 74-87. (in Chinese with English abstract) XUE M W, ZHANG T, DING W L, et al., 2020. Fluid potential characteristics of Carboniferous and the division of hydrocarbon migration and accumulation units in the eastern depression of the Bayanhaote Basin[J]. Journal of Geomechanics, 26(1): 65-73. (in Chinese with English abstract) YANG B, HOU J, CHEN H Q, et al., 2018. Characteristics of the Yabulai Mesozoic Basin and its exploration strategy[J]. Oil Geophysical Prospecting, 53(S2): 314-320. (in Chinese with English abstract) YUAN G H, CAO Y C, JIA Z Z, et al., 2015. Research progress on anomalously high porosity zones in deeply buried clastic reservoirs in petroliferous basin[J]. Natural Gas Geoscience, 26(1): 28-42. (in Chinese with English abstract) ZHAI M G, 2019. Tectonic evolution of the North China Craton[J]. Journal of Geomechanics, 25 (5): 722-745. (in Chinese with English abstract) ZHANG J H, XIANG P, 2019. Genetic mechanisms of low-permeability reservoir of Sangonghe Formation in Block 1 of central Junggar Basin[J]. Journal of Xi'an Shiyou University (Natural Science), 34(1): 43-49. (in Chinese with English abstract) ZHANG S M, CAO Y C, ZHU R K, et al., 2016. The lithofacies and depositional environment of fine-grained sedimentary rocks of Xiaohu Subsag in Yabulai basin[J]. Natural Gas Geoscience, 27(2): 309-319. (in Chinese with English abstract) ZHONG J Y, HE M, ZHOU T, et al., 2011. Origin analysis of carbonate cements in Chang 8 reservoir in southeastern margin of Ordos Basin[J]. Lithologic Reservoirs, 23(4): 65-69. (in Chinese with English abstract) ZHONG W, LIN C M, WU C, et al., 2013. The Mesozoic tectonic in the Yabrai Basin[J]. Acta Geologica Sichuan, 33(1): 7-11. (in Chinese with English abstract) ZHOU X F, LI J, ZHANG J X, et al., 2018. Revisiting the compaction time of Chang 8 sandstones in Southwestern Ordos Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 40(3): 1-10. (in Chinese with English abstract) 陈秀艳, 王剑, 张立平, 等, 2020. 塔里木盆地哈拉哈塘地区石炭系东河砂岩段碳酸盐胶结物沉积特征及其成因[J]. 吉林大学学报(地球科学版), 50(2): 509-517. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202002016.htm 董义国, 2014. 内蒙古雅布赖盆地侏罗系烃源岩评价[D]. 北京: 中国地质大学(北京): 15-20. 都鹏燕, 2016. 雅布赖盆地侏罗系有效烃源岩分布及其对油气的控制作用[D]. 北京: 中国石油大学(北京): 20-25. 都鹏燕, 高岗, 魏涛, 等, 2018. 雅布赖盆地萨尔台凹陷侏罗系新河组有效烃源岩研究[J]. 吉林大学学报(地球科学版), 48(1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201801003.htm 付锁堂, 王震亮, 张永庶, 等, 2015. 柴北缘西段鄂博梁构造带储层碳酸盐胶结物成因及其油气地质意义: 来自碳、氧同位素的约束[J]. 沉积学报, 33(5): 991-999. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201505015.htm 高岗, 赵乐义, 马国福, 等, 2017. 雅布赖盆地侏罗系新河组致密油形成条件与有利区资源潜力[J]. 石油与天然气地质, 38(3): 478-488. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201703007.htm 何生, 杨智, 何治亮, 等, 2009. 准噶尔盆地腹部超压顶面附近深层砂岩碳酸盐胶结作用和次生溶蚀孔隙形成机理[J]. 地球科学-中国地质大学学报, 34(5): 759-768, 798. doi: 10.3321/j.issn:1000-2383.2009.05.006 黄军平, 杨占龙, 马国福, 等, 2015. 中国小型断陷湖盆致密油地质特征及勘探潜力分析[J]. 天然气地球科学, 26(9): 1763-1772. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509019.htm 李明杰, 郑孟林, 曹春潮, 等, 2004. 北山-阿拉善地区侏罗-白垩纪盆地的叠合演化[J]. 石油与天然气地质, 25(1): 54-57. doi: 10.3321/j.issn:0253-9985.2004.01.010 李阳, 张文选, 李树同, 等, 2018. 鄂尔多斯盆地长8砂岩储层碳酸盐胶结物特征及其对物性的影响[J]. 地质科技情报, 37(4): 175-183. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201804024.htm 刘惠民, 王学军, 杜振京, 等, 2020. 准中4区块致密砂岩孔隙结构特征研究[J]. 地质力学学报, 26(1): 96-105. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200110&journal_id=dzlxxb 吕成福, 秦长文, 陈国俊, 等, 2010. 酒泉盆地酒东坳陷下白垩统低孔渗储层成岩作用研究[J]. 天然气地球科学, 21(6): 939-946. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201006010.htm 孙国强, 王海峰, 邹开真, 等, 2014. 柴北缘九龙山地区侏罗系砂岩中碳酸盐胶结物特征及意义[J]. 天然气地球科学, 25(9): 1358-1365. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201409008.htm 沈健, 2020. 鄂尔多斯盆地陇东地区致密砂岩储层碳酸盐胶结物特征及成因机理[J]. 岩性油气藏, 32(2): 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202002003.htm 石英涛, 廖远涛, 汤建荣, 等, 2015. 雅布赖盆地小湖次凹新河组下段层序及沉积相特征[J]. 地质科技情报, 34(5): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201505007.htm 谭先锋, 黄建红, 李洁, 等, 2015. 深部埋藏条件下砂岩中碳酸盐胶结物的成因及储层改造: 以济阳坳陷始新统孔店组为例[J]. 地质论评, 61(5): 1107-1120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201505014.htm 唐海忠, 魏军, 周在华, 等, 2019. 酒泉盆地营尔凹陷深层下沟组砂岩方解石胶结物特征[J]. 天然气地球科学, 30(5): 652-661. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201905005.htm 田涛, 2015. 雅布赖盆地萨尔台凹陷热演化史与油气成藏期次研究[D]. 西安: 西北大学: 13-18. 田涛, 任战利, 吴晓青, 等, 2015. 雅布赖盆地萨尔台凹陷中-新生代构造热事件的磷灰石裂变径迹分析[J]. 中南大学学报(自然科学版), 46(8): 2974-2982. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201508030.htm 王大锐, 2000. 油气稳定同位素地球化学[M]. 北京: 石油工业出版社: 123-145. 王建伟, 宋书君, 鲍志东, 等, 2006. 准噶尔盆地庄1井区J1s2段优质储层发育控制因素[J]. 西安石油大学学报(自然科学版), 21(1): 11-14. doi: 10.3969/j.issn.1673-064X.2006.01.003 王彦博, 2014. 雅布赖盆地新河组烃源岩地化特征及资源潜力分析[D]. 西安: 西安石油大学: 16-23. 王晔桐, 孙国强, 杨永恒, 等, 2020. 柴北缘冷湖七号地区碳酸盐胶结物特征及其意义[J]. 西南石油大学学报(自然科学版), 42(1): 45-56. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202001005.htm 吴晓智, 王桂君, 郑民, 等, 2015. 雅布赖盆地构造演化与油气聚集[J]. 地质科学, 50(1): 74-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201501005.htm 薛明旺, 张坦, 丁文龙, 等, 2020. 巴彦浩特盆地东部坳陷石炭系流体势特征及油气运聚单元划分[J]. 地质力学学报, 26(1): 65-73. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200107&journal_id=dzlxxb 杨波, 侯军, 陈海清, 等, 2018. 雅布赖中生代叠合盆地特征及勘探方向[J]. 石油地球物理勘探, 53(S2): 314-320. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2018S2049.htm 远光辉, 操应长, 贾珍臻, 等, 2015. 含油气盆地中深层碎屑岩储层异常高孔带研究进展[J]. 天然气地球科学, 26(1): 28-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201501005.htm 翟明国, 2019. 华北克拉通构造演化[J]. 地质力学学报, 25(5): 722-745. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190507&journal_id=dzlxxb 张江华, 相鹏, 2019. 准噶尔盆地中部1区三工河组低渗透储层成因机制[J]. 西安石油大学学报(自然科学版), 34(1): 43-49. doi: 10.3969/j.issn.1673-064X.2019.01.006 张少敏, 操应长, 朱如凯, 等, 2016. 雅布赖盆地小湖次凹细粒沉积岩岩相特征与沉积环境探讨[J]. 天然气地球科学, 27(2): 309-319. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201602014.htm 钟金银, 何苗, 周韬, 等, 2011. 鄂尔多斯盆地东南缘长8油层组碳酸盐胶结物成因分析[J]. 岩性油气藏, 23(4): 65-69. doi: 10.3969/j.issn.1673-8926.2011.04.012 钟玮, 林常梅, 吴超, 等, 2013. 雅布赖盆地中生代构造特征[J]. 四川地质学报, 33(1): 7-11. doi: 10.3969/j.issn.1006-0995.2013.01.003 周晓峰, 李景, 张建欣, 等, 2018. 鄂尔多斯盆地西南部长8砂岩致密时间再认识[J]. 西南石油大学学报(自然科学版), 40(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201803001.htm -