留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胶东中生代巨量金矿堆积的深大断裂-临界水耦合成矿机制新探

胡宝群 高海东 王运 张宝林 吕古贤

胡宝群, 高海东, 王运, 等, 2021. 胶东中生代巨量金矿堆积的深大断裂-临界水耦合成矿机制新探. 地质力学学报, 27 (4): 585-595. DOI: 10.12090/j.issn.1006-6616.2021.27.04.049
引用本文: 胡宝群, 高海东, 王运, 等, 2021. 胶东中生代巨量金矿堆积的深大断裂-临界水耦合成矿机制新探. 地质力学学报, 27 (4): 585-595. DOI: 10.12090/j.issn.1006-6616.2021.27.04.049
HU Baoqun, GAO Haidong, WANG Yun, et al., 2021. A preliminary study on the Mesozoic massive gold metallogenic mechanism of the deep-large fault coupling with critical water in the Jiaodong area, China. Journal of Geomechanics, 27 (4): 585-595. DOI: 10.12090/j.issn.1006-6616.2021.27.04.049
Citation: HU Baoqun, GAO Haidong, WANG Yun, et al., 2021. A preliminary study on the Mesozoic massive gold metallogenic mechanism of the deep-large fault coupling with critical water in the Jiaodong area, China. Journal of Geomechanics, 27 (4): 585-595. DOI: 10.12090/j.issn.1006-6616.2021.27.04.049

胶东中生代巨量金矿堆积的深大断裂-临界水耦合成矿机制新探

doi: 10.12090/j.issn.1006-6616.2021.27.04.049
基金项目: 

国家自然科学基金项目 41472069

详细信息
    作者简介:

    胡宝群(1965-), 男, 教授, 博士, 博士生导师, 主要从事岩矿地球化学研究。E-mail: bqhu@ecut.edu.cn

  • 中图分类号: P613;P618

A preliminary study on the Mesozoic massive gold metallogenic mechanism of the deep-large fault coupling with critical water in the Jiaodong area, China

Funds: 

the National Natural Science Foundation of China 41472069

  • 摘要: 通过对胶东金矿地质背景和成矿特征研究的总结与分析,依据热液矿床水相变控矿理论,探索胶东地区高密度聚集巨量金矿的原因。研究发现,两期次降压驱动成矿物质运动和临界水的(温度和压力都达到水临界值时的水,下同)特殊性质是两个重要因素。在此基础上,文章提出胶东巨量金聚集成矿的深大断裂-临界成矿机制,即"一饼加一刀"的成矿机制:老变质岩提供丰富的成矿物源是基础;早期大型点状降压形成酸性侵入杂岩体和各类岩脉等,其伴生的长时间、巨量临界水促使成矿物质活化迁移;晚期大型线状断裂降压造成较短时间内成矿物质的沉淀,若断裂是张开的不连续空间则矿石以充填结构为主,若破碎带是连续空间时矿石则以蚀变交代结构为主。丰富的金源,两期次不同性质的降压,临界水的独特性质,是胶东巨量金矿聚集的主要因素。

     

  • 图  1  胶东金矿集区地质简图(据王建等,2020)

    SCF—三山岛-仓上断裂;JJF—焦家断裂;ZPF—招平断裂;QXF—栖霞断裂;TCF—桃村断裂;HQF—海阳-青岛断裂;RCF—荣成断裂
    a—大地构造位置;b—金矿床分布地质图

    Figure  1.  Geological map of the Jiaodong area showing the distribution of main gold deposits (Wang et al, 2020). (a) Geotectonic location. (b) Distribution map of main gold deposits.

    SCF-the Sanshandao-Cangshang fault; JJF-the Jiaojia fault; ZPF-the Zhaoping fault; QXF-the Qixia fault; TCF-the Taocun fault; HQF-the Haiyang-Qingdao fault; RCF-the Rongcheng fault

    图  2  玲珑金矿田主要矿体分布图(据高海东等,2020)

    a—玲珑矿田主要矿体平面分布图;b—89号勘探线剖面图

    Figure  2.  Distribution map of main ore-bodies in the Linglong Au ore-field (Gao et al., 2020). (a) Plane distribution of main ore-bodies in the Linglong Au ore-field. (b) Profile of the No.89 survey line

    图  3  玲珑矿田中典型矿体及蚀变(虚线为矿体和蚀变围岩的分界线)

    a—绢英岩化矿体;b—三条含金黄铁矿细脉

    Figure  3.  Typical ore-body and alteration in the Linglong Au ore-field (The dotted line is the boundary between the ore-body and the altered surrounding rock). (a) Sericitized ore-body. (b) Three gold-bearing pyrite veinlets.

    图  4  深大断裂-临界水耦合成矿机制模式示意图

    1—白垩系沉积岩;2—老变质岩;3—花岗质岩;4—基性脉岩;5—酸性脉岩;6—断裂;7—花岗质岩大致边界成矿过程说明:早期降压形成大型点状岩基,岩脉形成时伴随着有大量的岩浆期后热液,这些热液活化和预富集成矿物质。晚期线状断裂降压,常伴有大量的盆地来源的水,叠加改造已有的蚀变破碎带,促使成矿物质富集或沉淀。矿体多定位于岩基边界与断裂交汇部位,或多组断裂交汇部位。

    Figure  4.  Sketch diagram of the metallogenic mechanism model of the deep-large fault coupling with critical water

    1-Cretaceous sedimentary rocks; 2-old metamorphic rocks; 3-granitic rocks; 4-basic dykes; 5-acid dikes; 6-fractures; 7-approximate boundary of granitic rocks
    The ore-forming process suggests that the large-scale point-like batholith was formed in the early stage of depressurization, and a large amount of post-magmatic hydrothermal solution was accompanied by the formation of various dikes, which activates and pre-enrichs mineralization materials. In the late stage, the linear fault was depressurized, often accompanied by a large amount of water from the basin, superimposed and reformed the existing altered fracture zone, and promoted the enrichment and precipitation of ore-forming materials. The ore-bodies are mostly located at the depressurization position where the boundary of the batholith intersects with the faults, or at the depressurization position where many groups of faults intersect.

  • CAO J J, HU R Z, LIANG Z R, et al., 2009. TEM observation of geogas-carried particles from the Changkeng concealed gold deposit, Guangdong Province, South China[J]. Journal of Geochemical Exploration, 101(3): 247-253. doi: 10.1016/j.gexplo.2008.09.001
    CHEN Y C, PEI R F, WANG D H, et al., 2020. Four-dimensional metallogeny in earth system and study trends of mineral deposits: a discussion on minerogenetic series (Ⅶ)[J]. Mineral Deposits, 39(5): 745-753. (in Chinese with English abstract)
    CHEN Y J, PIRAJNO F, LAI Y, et al., 2004. Metallogenic time and tectonic setting of the Jiaodong gold province, eastern China[J]. Acta Petrologica Sinica, 20(4): 907-922. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200404013.htm
    DENG J, YANG L Q, LIU W, et al., 2001. Gold origin and fluid ore-forming effect of Zhao-Ye Ore Deposits Concentrating Area in Jiaodong, Shandong, China[J]. Chinese Journal of Geology, 36(3): 257-268. (in Chinese with English abstract) http://www.researchgate.net/publication/289187173_Gold_origin_and_fluid_ore-forming_effect_of_Zhao-ye_ore_deposits_in_Jiaodong_Shandong_China
    FAN H R, HU F F, YANG J H, et al., 2005. Fluid evolution and large-scale gold metallogeny during Mesozoic tectonic transition in the eastern Shandong province[J]. Acta Petrologica Sinica, 21(5): 1317-1328. (in Chinese with English abstract)
    GAO H D, HU B Q, LÜ G X, et al., 2020. Geochemical characteristics and deep prediction of tectonic alteration rocks in No. 50 vein of the Linglong gold deposit, Shandong Province[J]. Geological Bulletin of China, 39(11): 1793-1806. (in Chinese with English abstract)
    HU B Q, WANG F Z, SUN Z X, et al., 2003. The pressure gradient in the lithosphere[J]. Earth Science Frontiers, 10(3): 129-133. (in Chinese with English abstract) http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200312001016.htm
    HU B Q, LÜ G X, WANG F Z, et al., 2008. Calculations of thermal pressure coefficients in the lithosphere[J]. Earth Science Frontiers, 15(3): 123-129. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200803010.htm
    HU B Q, LÜ G X, WANG F Z, et al., 2009. The phase transition of water: one of the important factors controlling the hydrothermal mineralization[J]. Geological Review, 55(5): 722-730. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP200905015.htm
    HU B Q, LÜ G X, SUN Z X, et al., 2011. The theory of water phase transitions controlling hydrothermal mineralization[J]. Geological Bulletin of China, 30(4): 565-572. (in Chinese with English abstract) http://d.wanfangdata.com.cn/periodical/zgqydz201104013
    HU B Q, GAO H D, SHEN Y K, et al., 2013. Gold occurrence characteristics and their genetic significance in Dakaitou district of Linglong gold ore-deposit[J]. Journal of East China Institute of Technology, 36(4): 357-363. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HDDZ201304002.htm
    HU B Q, WANG Q, LÜ G X, et al., 2017. Depressurization and related phase transition in the lithosphere[J]. Earth Science Frontiers, 24(2): 31-39. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201702008.htm
    HUA R M, MAO J W, 1999. A preliminary discussion on the Mesozoic Metallogenic explosion in East China[J]. Mineral Deposits, 18(4): 300-308. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ199904001.htm
    LI H K, YANG F J, 2006. Type Dividion of Shangdong gold mine & its main features[J]. Shanghai Geology(4): 64-67, 18. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHAD200604016.htm
    LI H K, SHI W G, LI Y F, et al., 2013. Study on gold mineralization ages in Jiaodong Area, Shandong Province[J]. Gold Science and Technology, 21(3): 1-9. (in Chinese with English abstract)
    LI H K, YU X F, ZHUO C Y, et al., 2017. Metallogenic system of Jiaodong gold deposit in Shandong province[J]. Shandong Land and Resources, 33(7): 1-6. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDDI201707001.htm
    LIANG G H, 2017. Preliminary study of the relationship between cryptoexplosion and ore-forming process from Wenchuan earthquake[J]. Acta Petrologica Sinica, 33(2): 326-338. (in Chinese with English abstract) http://www.researchgate.net/publication/319077599_Preliminary_study_of_the_relationship_between_cryptoexplosion_and_ore-forming_process_from_Wenchuan_earthquake
    LIU X P, WANG X, SONG Y X, et al., 2017. The characteristics of altered surrounding rocks in Xiling extra big gold deposit, Northwest of Jiaodong[J]. Journal of East China University of Technology, 40(3): 225-236. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDDZ201703003.htm
    LYU G X, 2019. Research on tectonic dynamo-petrogenesis and metallogenesis and tectonophysicochemistry[J]. Journal of Geomechanics, 25(5): 962-980. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905025.htm
    LÜ G X, LI H K, DING Z J, et al., 2016. Hydrothermal alteration metallogenesis in the determination zone of a ""magmatic core complex"" upheaval-detachment structure, Jiaodong[J]. Geoscience, 30(2): 247-262. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201602001.htm
    NIU S Y, CHEN C, ZHANG J Z, et al., 2019. The thermal and dynamic process of core→mantle→crust and the Metallogenesis of Guojiadian mantle branch in northwestern Jiaodong[J]. Minerals, 9(4): 249. doi: 10.3390/min9040249
    SONG M C, YI P H, CUI S X, et al., 2013. Thermal uplifting-extension ore-forming theory and its prospecting significance in Jiaodong gold deposit[J]. Shangdong Land and Resources, 29(7): 1-12. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDDI201307005.htm
    SUN W D, 2019. The Magma Engine and the driving force of plate tectonics[J]. Chinese Science Bulletin, 64(28-29): 2988-3006. (in Chinese with English abstract) doi: 10.1360/N972019-00274
    WAN T F, TEYSSIER C, ZENG H L, et al., 2001. Emplacement mechanism of Linglong granitoid complex, Shandong Peninsula, China[J]. Science in China Series D: Earth Sciences, 44(6): 535-544. doi: 10.1007/BF02876213
    WAN T F, LI S Z, YANG W R, et al., 2019. Academic controversy on the mechanism and driving forces of plate movement[J]. Earth Science Frontiers, 26(6): 309-319. (in Chinese with English abstract)
    WANG J, ZHU L X, MA S M, et al., 2020. Hydrothermal alteration associated with Mesozoic Linglong-type granite-hosting gold mineralization at the Haiyu gold deposit, Jiaodong gold province[J]. Geological Bulletin of China, 39(11): 1807-1826. (in Chinese with English abstract)
    WANG S J, WANG L M, WAN Y S, et al., 2009. Study on intrusive rocks forming period and stages division in Ludong Area[J]. Shandong Land and Resources, 25(12): 8-20, 25. (in Chinese with English abstract) http://www.researchgate.net/publication/313219170_Study_on_intrusive_rocks_forming_period_and_stages_division_in_Ludong_area
    WANG Y W, ZHU F S, GONG R T, 2002. Study on the metallogenic chronology of gold deposits in Jiaodong gold concentration zone[J]. Gold Geology, 8(4): 48-55. (in Chinese with English abstract) http://www.researchgate.net/publication/285480779_Study_on_the_metallogenic_chronology_of_gold_deposits_in_Jiaodong_gold_concentration_zone
    XU Q, NI W, 2007. Nanomaterials preparation in the supercritical fluid system[J]. Progress in Chemistry, 19(9): 1419-1427. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_progress-in-chemistry_thesis/0201235593260.html
    XU W G, FAN H R, YANG K F, et al., 2017. Gold Mineralizing efficiency during hydrothermal alteration of the Mesozoic Granitoids in the Northwest Jiaodong peninsula: contrasting conditions between the Guojialing and Linglong plutons[J]. Geochemistry, 77(3): 387-398. doi: 10.1016/j.chemer.2017.08.001
    YAN J, CHEN J F, XIE Z, et al., 2003. Mantle xenoliths from Late Cretaceous basalt in eastern Shandong province: new constraint on the timing of lithospheric thinning in eastern China[J]. Chinese Science Bulletin, 48(19): 2139-2144. doi: 10.1360/03wd0066
    YANG L Q, DENG J, GE L S, et al., 2006. A review of the study on the metallogenic age and genesis of Jiaodong gold deposit[J]. Progress in Natural Science, 16(7): 797-802. (in Chinese)
    YANG L Q, DENG J, WANG Z L, et al., 2014. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China[J]. Acta Petrologica Sinica, 30(9): 2447-2467. (in Chinese with English abstract) http://www.researchgate.net/publication/279667521_Mesozoic_gold_metallogenic_system_of_the_Jiaodong_gold_province_eastern_China
    YI Z B, CAO J J, JIANG T, et al., 2020. Characterization of metal-bearing particles in groundwater from the Weilasituo Zn-Cu-Ag deposit, Inner Mongolia, China: Implications for mineral exploration[J]. Ore Geology Reviews, 117: 103270. doi: 10.1016/j.oregeorev.2019.103270
    YU G P, XU T, AI Y S, et al., 2020. Significance of crustal extension and magmatism to gold deposits beneath Jiaodong Peninsula, eastern North China Craton: seismic evidence from receiver function imaging with a dense array[J]. Tectonophysics, 789: 228532. doi: 10.1016/j.tecto.2020.228532
    ZHAI Y S, LÜ G X, 2002. Transition of tectonic and dynamic regime and mineralization[J]. Acta Geoscientia Sinica, 23(2): 97-102. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200202000.htm
    ZHANG B L, LYU G X, LIANG G H, et al., 2019. Preliminary study on deep geophysical exploration model of gold ore fields in eastern Shandong, China[J]. Journal of Geomechanics, 25(S1): 150-156. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX2019S1026.htm
    陈衍景, PIRAJNO F, 赖勇, 等, 2004. 胶东矿集区大规模成矿时间和构造环境[J]. 岩石学报, 20(4): 907-922. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200404013.htm
    陈毓川, 裴荣富, 王登红, 等, 2020. 论地球系统四维成矿及矿床学研究趋向: 七论矿床的成矿系列[J]. 矿床地质, 39(5): 745-753. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202005001.htm
    邓军, 杨立强, 刘伟, 等, 2001. 胶东招掖矿集区巨量金质来源和流体成矿效应[J]. 地质科学, 36(3): 257-268. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200103000.htm
    范宏瑞, 胡芳芳, 杨进辉, 等, 2005. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿[J]. 岩石学报, 21(5): 1317-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505000.htm
    高海东, 胡宝群, 吕古贤, 等, 2020. 山东玲珑金矿50号脉三维构造蚀变岩地球化学特征及深部预测[J]. 地质通报, 39(11): 1793-1806. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202011012.htm
    胡宝群, 王方正, 孙占学, 等, 2003. 岩石圈中的地压梯度[J]. 地学前缘, 10(3): 129-133. doi: 10.3321/j.issn:1005-2321.2003.03.012
    胡宝群, 吕古贤, 王方正, 等, 2008. 岩石圈中热压系数的计算[J]. 地学前缘, 15(3): 123-129. doi: 10.3321/j.issn:1005-2321.2008.03.009
    胡宝群, 吕古贤, 王方正, 等, 2009. 水的相变: 热液成矿作用的重要控制因素之一[J]. 地质论评, 55(5): 722-730. doi: 10.3321/j.issn:0371-5736.2009.05.014
    胡宝群, 吕古贤, 孙占学, 等, 2011. 热液矿床水相变控矿理论初探[J]. 地质通报, 30(4): 565-572. doi: 10.3969/j.issn.1671-2552.2011.04.013
    胡宝群, 高海东, 申玉科, 等, 2013. 玲珑金矿大开头矿区金的赋存特征及其成因意义[J]. 东华理工大学学报(自然科学版), 36(4): 357-363. doi: 10.3969/j.issn.1674-3504.2013.04.002
    胡宝群, 王倩, 吕古贤, 等, 2017. 岩石圈中的降压作用及其相变过程[J]. 地学前缘, 24(2): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201702008.htm
    华仁民, 毛景文, 1999. 试论中国东部中生代成矿大爆发[J]. 矿床地质, 18(4): 300-308. doi: 10.3969/j.issn.0258-7106.1999.04.002
    李洪奎, 杨锋杰, 2006. 山东金矿类型划分及其主要特征[J]. 上海地质(4): 64-67, 18. doi: 10.3969/j.issn.2095-1329.2006.04.014
    李洪奎, 时文革, 李逸凡, 等, 2013. 山东胶东地区金成矿时代研究[J]. 黄金科学技术, 21(3): 1-9. doi: 10.3969/j.issn.1005-2518.2013.03.001
    李洪奎, 于学峰, 禚传源, 等, 2017. 山东胶东金矿成矿理论体系[J]. 山东国土资源, 33(7): 1-6. doi: 10.3969/j.issn.1672-6979.2017.07.001
    梁光河, 2017. 从汶川地震探讨隐爆与成矿过程[J]. 岩石学报, 33(2): 326-338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201702002.htm
    刘祥朋, 王玺, 宋英昕, 等, 2017. 胶西北西岭特大型金矿床蚀变围岩特征研究[J]. 东华理工大学学报(自然科学版), 40(3): 225-236. doi: 10.3969/j.issn.1674-3504.2017.03.003
    吕古贤, 李洪奎, 丁正江, 等, 2016. 胶东地区""岩浆核杂岩""隆起-拆离带岩浆期后热液蚀变成矿[J]. 现代地质, 30(2): 247-262. doi: 10.3969/j.issn.1000-8527.2016.02.001
    吕古贤, 2019. 构造动力成岩成矿和构造物理化学研究[J]. 地质力学学报, 25(5): 962-980. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190523&journal_id=dzlxxb
    宋明春, 伊丕厚, 崔书学, 等, 2013. 胶东金矿""热隆-伸展""成矿理论及其找矿意义[J]. 山东国土资源, 29(7): 1-12. doi: 10.3969/j.issn.1672-6979.2013.07.001
    孙卫东, 2019. ""岩浆引擎""与板块运动驱动力[J]. 科学通报, 64(28-29): 2988-3006. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2019Z2005.htm
    万天丰, 李三忠, 杨巍然, 等, 2019. 板块运动的机制与动力来源学术争鸣[J]. 地学前缘, 26(6): 309-319. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906036.htm
    万天丰, TEYSSIER C, 曾华霖, 等, 2000. 山东玲珑花岗质岩体侵位机制[J]. 中国科学(D辑), 30(4): 337-344. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200004000.htm
    王建, 朱立新, 马生明, 等, 2020. 胶东三山岛北海域金矿床热液蚀变作用研究[J]. 地质通报, 39(11): 1807-1826. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202011013.htm
    王世进, 王来明, 万渝生, 等, 2009. 鲁东地区侵入岩形成时代和期次划分: 锆石SHRIMP U-Pb年龄的证据[J]. 山东国土资源, 25(12): 8-20, 25. doi: 10.3969/j.issn.1672-6979.2009.12.004
    王义文, 朱奉三, 宫润潭, 2002. 胶东金矿集中区金矿成矿年代学研究[J]. 黄金地质, 8(4): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HJDZ200204008.htm
    许群, 倪伟, 2007. 超临界流体技术制备纳米材料的研究与展望[J]. 化学进展, 19(9): 1419-1427. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ200709021.htm
    闫峻, 陈江峰, 谢智, 等, 2003. 鲁东晚白垩世玄武岩中的幔源捕虏体: 对中国东部岩石圈减薄时间制约的新证据[J]. 科学通报, 48(14): 1570-1574. doi: 10.3321/j.issn:0023-074X.2003.14.018
    杨立强, 邓军, 葛良胜, 等, 2006. 胶东金矿成矿时代和矿床成因研究述评[J]. 自然科学进展, 16(7): 797-802. doi: 10.3321/j.issn:1002-008X.2006.07.003
    杨立强, 邓军, 王中亮, 等, 2014. 胶东中生代金成矿系统[J]. 岩石学报, 30(9): 2447-2467. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409001.htm
    翟裕生, 吕古贤, 2002. 构造动力体制转换与成矿作用[J]. 地球学报, 23(2): 97-102. doi: 10.3321/j.issn:1006-3021.2002.02.001
    张宝林, 吕古贤, 梁光河, 等, 2019. 胶东金矿田的深部地球物理勘查模式初步研究[J]. 地质力学学报, 25(S1): 150-156. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=2019S126&journal_id=dzlxxb
  • 加载中
图(4)
计量
  • 文章访问数:  609
  • HTML全文浏览量:  282
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 修回日期:  2021-07-07
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回