On relationship between the superimposed mineralization systems and the zoning patterns of vertical tectonic lithofacies in the Gejiu concentration area of Sn-Cu-W and three rare metals in Yunnan
-
摘要: 采用构造岩相学分带和变形筛分、宏观与微观构造岩相学研究相结合的方法,对云南个旧矿集区构造和叠加成矿系统进行研究,深入揭示了该矿集区内锡铜钨钴铯铷多金属战略矿产富集机制、叠加成矿作用与构造岩相学结构样式之间的内在关系。研究认为,该区发育前岩浆侵入期三叠纪弧后裂谷盆地、同岩浆侵入期岩浆侵入构造系统和构造样式、后岩浆侵入期岩溶构造样式,它们在不同时间域内发生了异时同位叠加成相成矿与同时异相分异作用,对个旧叠加成矿系统和锡铜钨钴铯铷多金属成矿作用具有显著不同的控制作用。锡铜钨铯铷多金属叠加成矿系统具有9个垂向构造岩相分带结构样式,从深到浅依次为:浅色花岗岩相(VTZ8)和岩浆气成热液结晶核相(VTZ9)为黑云母花岗岩(γK2a-b-c)同岩浆侵入期构造岩相带,分布在花岗岩侵入体顶部和边部; 岩浆接触交代构造岩相带矽卡岩化相-矽卡岩相带(VTZ7),是同岩浆侵入期地层-岩浆系统耦合反应的构造岩相带; 富含残余岩浆的高温气液体系发生了岩浆-气液隐爆角砾岩化,形成进入个旧组内岩浆热流柱构造和电气石热液隐爆角砾岩相带(VTZ6);同岩浆侵入期在个旧组内构造-流体耦合作用,形成了上覆断褶式碳酸盐岩层(VTZ4)和碎裂岩化大理岩化相-电气石碎裂岩化大理岩相带(VTZ5)、远端的似层状碎裂岩化相含锡白云岩(VTZ3);三叠纪弧后裂谷盆地内碱性苦橄岩-碱性火山岩相带和火山喷发机构为前岩浆侵入期构造; 云贵高原侵蚀面(VTZ1)和表生岩溶构造系统(VTZ2)为后岩浆侵入构造系统,它们叠加在同岩浆侵入构造系统(VTZ3、VTZ4、VTZ5、VTZ6、VTZ7、VTZ8、VTZ9)之中。这些新成果为该矿集区深部探测和隐伏构造岩相的预测建模提供了新的理论依据。Abstract: Based on the zoning pattern and the deformation sieving of tectonic lithofacies, as well as the macroscopic and microscopic studies of tectonic lithofacies, the superimposed mineralization systems and the Gejiu ore-concentrated area in Yunnan has been studied. The relationship among the enrichment mechanism of strategic key minerals, the superimposed mineralization, and the pattern of tectonic lithofacies has been uncovered. It was believed that the Triassic arc-back rift basin at the pre-magmatic intrusive stage, the tectonic system of magmatic intrusion at the syn-magmatic intrusive stage, and the karstic tectonic system at the post-magmatic intrusive stage, all of them are of syn-space superimposing lithofacies and mineralizations within different time domains and syn-time lithofacies differentiation. All of them had different controls on the Gejiu superimposed mineral system and Sn-Cu-W-Co-Cs-Rb mineralization. There are 9 vertical tectonic lithofacies zones (VTZs) in different patterns of VTZs around the Gejiu superimposed mineralization system. Firstly, the light-colored granite (VTZ8) and crystal-nucleus lithofacies of magmatic pneumatolytic hydrotherm (VTZ9), being the tectonic lithofacies of syn-magmatic intrusive stage for the biotite granite (γK2a-b-c), was formed at the top and on the edges of the granite intrusion. Secondly, skarn alteration lithofacies to skarn lithofacies (VTZ7) in the magma-contact metasomatic tectonic lithofacies zone is the tectonic lithofacies zone for coupling reaction by the strata and the magmatic system at the syn-magmatic intrusion.Thirdly, on the one hand, cryptoexplosive brecciation of magmatic pneumatolytic hydrotherm enriching in residual magma was forced into the Middle Triassic Gejiu Group, resulted in the magmatic hydrothermal plume and lithofacies zones of tourmaline-hydrothermal cryptoexplosive breccias (VTZ6). On the other hand, the upper part of the fault-fold-type carbonate layer (VTZ4), the marble lithofacies with cataclastic facies and the cataclastic tourmaline-marble lithofacies (VTZ5), and stratiform-like Sn-bearing dolomite with cataclastic facies (VTZ3) in the farthermost-end part, were formed by tectonic hydrothermal coupling derived in the syn-magmatic intrusive stage from the underlying magmatic hydrothermal plume. Fourthly, the alkaline picritic rocks and alkaline volcanicrocks, and their volcanic erupting structure in the Triassic arc-back rift basin were the tectonic lithofacies at the pre-magmatic intrusive stage. Fifthly, the erosion-level in the Yungui plateau (VTZ1) and the supergene karstic tectonic system (VTZ2) were formed in the post-magmatic intrusive stage; however, they (VTZ1, VTZ2) were superimposed on the tectonic system of the syn-magmatic intrusion (VTZ3, VTZ4, VTZ5, VTZ6, VTZ7, VTZ8, VTZ9). The above achievements are foundations of innovated theory for the deep-probe and the modeling prediction for the buried tectonic lithofacies in the area.
-
图 1 个旧地区卡房-老厂矿田变质火山岩岩石类型和原岩恢复
a-变质火山岩的岩石化学图解;b-超基性岩类Ne-Ol图解(底图据池际尚,1988);c-火山岩类的SiO2-K2O+Na2O(底图据IUGS,1989)
(Pc-苦橄玄武岩;B-玄武岩;O1-玄武安山岩;O2-安山岩;O3-英安岩;R-流纹岩;S1-粗面玄武岩;S2-玄武质粗面安山岩;S3-粗面安山岩;T-粗面岩、粗面英安岩;F-副长石岩;U1-碱玄岩、碧玄岩;U2-响岩质碱玄岩;U3-碱玄质响岩;Ph-响岩;Ir-Irvine分界线,上方为碱性,下方为亚碱性Figure 1. Rock types and reconstructed protolith for meta-volcanic rocks in the Kafang-Laochang ore field in the Gejiu area. (a)Petrochemical diagram for metavocanites. (b)Ne-Ol diagram for ultrabasic rocks (the original diagram after Chi, 1988). (c)SiO2-K2O+Na2O diagram for volcanic rocks (the original diagram after IUGS, 1989).
Pc-Picritic basalt; B-Basalt; O1-Basaltic andesite; O2-Andesite; O3-Dacite; R-Rhyolite; S1-Trachytic basalt; S2-Basaltic-trachytic andesite; S3-Trachytic andesite; T-Trachyte, trachytic dacite; F-Feldspathoidite; U1-Tephrite, basanite; U2-Phonolitic tephrite; U3-Tephritic phonolite; Ph-Phonolite; Ir-Irvine boundary, the above is alkalinity, the below is sub-alkalinity.
图 3 卡房矿田碱性苦橄岩类特征与铜富集成矿关系
a-金云母和榍石电子背衍射图(EBSD)和Cs、Rb和Ti面扫描图;b-金云母、阳起石和磁黄铁矿共生关系(×20,单偏光);c-金云母中包裹榍石(电子背衍射图像);d-金云母中黄铜矿与磁黄铁矿呈固熔分离结构,KG-261B(×10;反光镜下);e-包裹在金云母斑晶中的连晶状磁黄铁矿和黄铜矿,KG-300-1(×10,反光镜下);f-锡石与磁黄铁矿(黑色)呈连晶镶嵌结构,KG-27B(×10,单偏光);g-中心红棕色为金红石,KG300-1 (×20,聚光镜下);h-黄铜矿与阳起石呈交织状结构,KG-300-1(×5,反光镜下);i-棕黄色为磁黄铁矿与交织状阳起石,KG-260T(×5,反光镜下)
Figure 3. Relationship between the characteristics of alkaline picritic volcanic rocks and the copper mineralization in the Kafang ore-field. (a)Electron back scattering diffraction (EBSD) for phlogopite and titanite and map of surface scanning for Cs, Rb and Ti. (b)Intergrowth relationship for phlogopite, actinolite, and pyrrhotite(×20, plane-polarized light). (c)Titanite wrapped by phlogopite and EBSD for titanite and phlogopite. (d)Solid-solution separation structure of chalcopyrite and pyrrhotite in phlogopite, KG-261B(×10;reflected light).(e)Crystal stock of pyrrhotite and chalcopyrite wrapped by phlogopite phenocryst, KG-300-1(×10, under retroreflector). (f)Crystal stock mosaic structure of cassiterite and pyrrhotite (in black), KG-27B(×10, plane-polarized light). (g)Reddish brown rutile in the centre, KG300-1 (×20, under the condenser). (h)Intertexture structure of chalcopyrite and actinolite, KG-300-1(×5, under retroreflector).(i)Claybank pyrrhotite and intertexture structure of actinolite, KG-260T(×5, under retroreflector)
图 5 个旧地区电气石细脉带型锡矿床与电气石热液隐爆角砾岩
老厂矿田大斗山矿段露天采场:a-电气石热流柱与网脉状电气石热启裂隙相;b-电气石热流柱构造内热液岩溶空穴(热液排气口);c-电气石热液角砾岩与热液岩溶面(VTZ6cb);d-电气石热液岩溶角砾岩(VTZ6cb);e-电气石热液角砾岩外侧的网脉状电气石化大理岩相(18-1号矿体);f-层间和穿层的细脉状电气石大理岩化相(18-1号矿体);g-18-1号矿体围岩中,中三叠世方解石溶孔状结晶灰岩坳头山-大斗山矿段-湾子街矿段深部2050 m中段:h-黄铁矿萤石电气石脉;j-毒砂磁黄铁矿电气石热液角砾岩(VTZ6bb);k-电气石热液隐爆角砾岩(VTZ6bb);l-大脉状赤铁矿蓝电气石脉(高氧化强酸性相);m-电气石岩浆隐爆角砾岩(VTZ6amb);n、o-坳头山花岗岩岩枝与电气石岩浆热液隐爆角砾岩(VTZ6amb);p-毒砂磁黄铁矿电气石岩浆热液角砾岩(热液角砾岩化蚀变花岗岩)
Figure 5. Tourmaline veinlet belt-type tin deposit and tourmaline-hydrothermal cryptoexplosive breccias in Gejiu
Potographs from a to g are from the open-pit in the Dadoushan mine district, and potographs from h to p are from the 2050m level at the depth of the Aotoushan, Dadoushan, and Wanzijie mine districts.
图 6 个旧地区岩溶构造地貌与砖红壤岩溶风化壳
湾子街、黄茅山和老厂东地表岩溶地貌特征:a-湾子街砂锡矿采掘后的岩溶丛峰和洼地、含砂锡矿的砖红壤型岩溶风化壳剖面,镜向75°;b-含砂锡矿的砖红壤型岩溶风化壳剖面,镜向82°;c-湾子街砂锡矿下伏岩溶丛峰和岩溶沟槽,镜向340°;d-断控型岩溶漏斗和砂锡矿采区,镜向210°;e-黄茅山砂锡矿采区岩溶石牙和小丛峰,镜向245°;f-黄茅山岩溶洼地内褐锰土质砖红壤风化壳剖面(含砂锡矿),镜向80°;g-黄茅山含砂锡矿褐锰土质砖红壤风化壳剖面中的褐锰土残块和锰结核,镜向80°;h-黄茅山砂锡矿地表铁锰结核,镜向垂直于地面;i-老厂东镇源矿业区内的大岩溶漏斗+落水洞,镜向350°;j-老厂东镇源矿业区内的大岩溶漏斗内,受断裂交汇部位控制的断控型岩溶落水洞,镜向180°;k-老厂东镇源矿业区内的大岩溶漏斗底部渗水坑,镜向330°;l-老厂东镇源矿业区内大岩溶漏斗底部发育的条带状大理岩化碎裂岩化相结晶灰岩(电气石热流柱构造顶部末端相),镜向垂直于地面
老厂砖红壤风化壳剖面结构: m-老厂东堆积型砖红壤风化壳剖面,垂高4 m,镜向45°;n-砖红壤岩溶风化壳剖面顶部,含铁锰结核砖红壤层,镜向350°;o-含铁锰结核的褐红壤层,镜向350°;p-豆状铁锰结核,镜向350°;q-含铁锰结核的黄红壤层,镜向350°;r-褐锰质土-黑褐色铁锰质土层,镜向330°;s-含铁锰结核的黄红壤层,镜向320°;t-古近系浅红黄色层纹条带状钙屑泥质粉砂岩,镜向70°Figure 6. Karstic tectonic geomorphology and laterite karst weathering crust in Gejiu
Pictures of karstic tectonic geomorphology from a to k are the units of the surface karstic landscapes in the Wanzijie, Huangmaoshan, and Laochangdong areas. Pictures from m to t are the section sequence of the laterite karst weathering crust in the Laochangdong area
-
CHANG X Y, ZHU B Q, ZOU R, et al., 1998. Geochemical studies on sodium enriched volcanic rocks in the area of Longbohe copper deposit, Yunnan province, SW China: Ⅱ. Chronology and characteristics of Nd-Sr-Pb isotope[J]. Geochiminca, 27(4): 361-366. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX199804006.htm CHI J C. 1988. The Cenozoic basalt and the upper mantle in eastern China[M]. Wuhan: China University of Geosciences Press (Wuhan). CHENG Y B, MAO J W, XIE G Q, et al., 2008. Petrogenesis of the Laochang-Kafang granite in the Gejiu Area, Yunnan province: constraints from geochemistry and Zircon U-Pb dating[J]. Acta Geologica Sinica, 81(11): 1478-1493. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geologica-sinica_thesis/0201252708900.html CHENG Y B, MAO J W, 2010. Age and geochemistry of granites in Gejiu area, Yunnan province, SW China: constraints on their petrogenesis and tectonic setting[J]. Lithos, 120(3-4): 258-276. doi: 10.1016/j.lithos.2010.08.013 DENG G A, 1998. The geological and geochemical features of granite rupture zone type tin deposit in Laochang, Gejiu: A new type of tin deposit[J]. Mineral Resources and Geology, 12(4): 230-236. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCYD804.002.htm FANG W X, HU R Z, XIE G Q, et al., 2002. Tectonolithostratigraphic units of the Ailaoshan area in Yunnan, China and their implications of tectonic evolution[J]. Geotectonica et Metallogenia, 26(1): 28-36. (in Chinese with English abstract) http://www.researchgate.net/publication/281509019_Tectonolithostratigraphic_units_of_the_Ailaoshan_area_in_Yunnan_China_and_their_implications_of_tectonic_evolution FANG W X, JIA R X, 2011. Characteristics of the alkaline picritic volcanic rocks in the Gejiu superlarge tin-copper deposit and their continental dynamic implications[J]. Geotectonica et Metallogenia, 35(1): 137-148. (in Chinese with English abstract) http://www.researchgate.net/publication/284926336_Characteristics_of_the_alkaline_picritic_volcanic_rocks_in_the_Gejiu_supergiant_tin-Cu_deposit_and_their_continental_dynamic_implications FANG W X, ZHANG H, JIA R X, 2011. Dynamics of triassic back-arc rift basin and its metallogenic sequence in Gejiu of Yunnan province to napo of Guangxi Zhuang autonomous region, China[J]. Geotectonica et Metallogenia, 35(4): 552-566. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201104011.htm FANG W X, YANG X Y, GUO M H, et al., 2013. Relationships between alkaline Ti-Fe-rich gabbros and iron-oxide copper-gold deposits in the Baixila ore district, Yunnan[J]. Geotectonica et Metallogenia, 37(2): 242-261. (in Chinese with English abstract) http://www.researchgate.net/publication/286296793_Relationships_between_alkaline_Ti-Fe-rich_gabbros_and_iron-oxide_copper-gold_deposits_in_the_Baixila_ore_district_Yunnan FANG W X, DU Y L, LI J X, et al., 2018. Techonolgy of tectonic lithofacies mapping at large-scale and ore predication[M]. Beijing: Geology Press: 1-377. (in Chinese) FENG J R, MAO J W, PEI R F, et al., 2010. SHRIMP zircon U-Pb dating and geochemical characteristics of Laojunshan granite intrusion from the Wazha tungsten deposit, Yunnan Province and their implications for petrogenesis[J]. Acta Petrologica Sinica, 26(3): 845-857. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201003017.htm FENG J R, MAO J W, PEI R F, 2013. Ages and geochemistry of Laojunshan granites in southeastern Yunnan, China: Implications for W-Sn polymetallic ore deposits[J]. Mineralogy and Petrology, 107(4): 573-589. doi: 10.1007/s00710-012-0253-3 FRANKLIN J M, GIBSON H L, JONASSON I R, et al., 2005. Volcanogenic massive sulfide deposits[M]//HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al., One hundredth anniversary volume. Littelton, Colorado, USA: Society of Economic Geologists: 523-560. GALLY A G, HANNINGTON M D, JONASSON I R, 2007. Volcanogenic massive sulphide deposits[M]//GOODFELLOW W D. Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication: 141-161. GAO J, CUI Y L, 2004. Ore-forming condition, ore prospecting indicator research at copper mine of east belt Longbohe copper mine in Yunnan[J]. Geology and Prospecting, 40(5): 33-38. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200405007.htm GROVES D I, BIERLEIN F P, 2007. Geodynamic settings of mineral deposit systems[J]. Journal of the Geological Society, 164(1): 19-30. doi: 10.1144/0016-76492006-065 GUO J, ZHANG R Q, LI C Y, et al., 2018. Genesis of the Gaosong Sn-Cu deposit, Gejiu district, SW China: constraints from in situ LA-ICP-MS cassiterite U-Pb dating and trace element fingerprinting[J]. Ore Geology Reviews, 92: 627-642. doi: 10.1016/j.oregeorev.2017.11.033 GUO J, 2020. Study to determine objective geological body and its ore-prospecting practice[R]. Institute of Mineral Resources Research, China Metallurgical Geology Bureau. (in Chinese) HEI H X, LUO Z H, VIKENTYEV I V, et al., 2015. Transmagmatic fluid theory and orefield structure[J]. Journal of Geomechanics, 21(1): 1-12. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201501001.htm HOU Z Q, YANG Z M, 2009. Porphyry deposits in continental settings of China: Geological characteristics, magmatic-hydrothermal system, and metallogenic model[J]. Acta Geologica Sinica, 83(12): 1779-1817. (in Chinese with English abstract) http://www.cqvip.com/QK/71135X/201107/33015600.html HU R Z, MAO J W, FAN W M, et al., 2010. Some scientific questions on the intra-continental metallogeny in the South China continent[J]. Earth Science Frontiers, 17(2): 13-26. (in Chinese with English abstract) http://www.researchgate.net/publication/285312468_Some_scientific_questions_on_the_intra-continental_metallogeny_in_the_South_China_continent HUDGINS T R, MUKASA S B, SIMON A C, et al., 2015. Melt inclusion evidence for CO2-rich melts beneath the western branch of the East African Rift: Implications for long-term storage of volatiles in the deep lithospheric mantle[J]. Contributions to Mineralogy and Petrology, 169(5): 46. doi: 10.1007/s00410-015-1140-9 JIANG Z W, OLIVER N H S, BARR T D, et al., 1997. Numerical modeling of fault-controlled fluid flow in the genesis of tin deposits of the Malage ore field, Gejiu mining district, China[J]. Economic Geology, 92(2): 228-247. doi: 10.2113/gsecongeo.92.2.228 LARGE R R, 1992. Australian volcanic-hosted massive sulfide deposits: Features, styles, and genetic models[J]. Economic Geology, 87(3): 471-510. doi: 10.2113/gsecongeo.87.3.471 LEPVRIER C, MALUSKI H, VAN TICH V, et al., 2004. The early Triassic Indosinian orogeny in Vietnam (Truong Son belt and Kontum massif); Implications for the geodynamic evolution of Indochina[J]. Tectonophysics, 393(1-4): 87-118. doi: 10.1016/j.tecto.2004.07.030 LA MAITRE R W, BATEMAN P, DUDEK A, et al., 1989. A classification of Igneous Rocks and Glossary of Terms, Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks[M]. Oxford: Blackwell Scientific. LI Y S, QIN D X, DANG Y T, et al., 2006. Mineralizations in basalts of the Gejiu tin deposit in Yunnan Province[J]. Journal of Jilin University (Earth Science Edition), 36(3): 326-335. (in Chinese with English abstract) http://www.researchgate.net/publication/284930827_Mineralizations_in_basalts_of_the_Gejiu_tin_deposit_in_Yunnan LI Z L, LIU X J, XIAO W J, et al., 2019. Geochronology, geochemistry and Hf isotopes of volcanic rocks in Pingxiang area, southwest Guangxi: Implications for the latest stage of Paleo-Tethyan Ocean northward subduction[J]. Journal of Geomechanics, 25(5): 932-946. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905021.htm LIU D M, GUO H J, ZHANG G Y, et al., 2019. Petrogenesis and tectonic setting of high-Mg volcanic rock xenoliths in Jianshui area, southeast Yunnan, China[J]. Earth Science, 44(5): 1749-1760. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905025.htm LIU H C, LIU X P, ZHANG Y W, et al., 2020. Beginning of the Indosinian orogeny: Insights from late Permian gabbro and diorite in the Diancangshan area of the Yunnan province[J]. Geotectonica et Metallogenia, 44(3): 527-542. (in Chinese with English abstract) LIU J, ZHOU Y, GUO H J, et al., 2016. Geological characteristics and the tectonic significance of ultrabasic rock of Nali river in Jianshui, Yunnan Province[J]. Guizhou Geology, 33(3): 178-186. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDZ201603004.htm LUO Z H, LU X X, LIU C, et al., 2011. On failing of the magmatic hydrothermal metallogenic theory: the causes and the new departure[J]. Journal of Jilin University (Earth Science Edition), 41(1): 1-11. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201101002.htm LUO Z H, SU S G, LIU C, 2014. Scale effects of the magma-related metallogenic systems[J]. Journal of Earth Sciences and Environment, 36(1): 1-9. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX201401002.htm MÜLLER D, GROVES D I, 2019. Potassic igneous rocks and associated gold-copper mineralization[M]. 5th ed. Berlin: Springer: 1-125. MAO J W, CHENG Y B, GUO C L, et al., 2008. Gejiu tin polymetallic ore-field: deposit model and discussion for several points concerned[J]. Acta Geologica Sinica, 82(11): 1455-1467. (in Chinese with English abstract) http://www.researchgate.net/publication/285875153_Gejiu_tin_polymetallic_Ore-Field_Deposit_model_and_discussion_for_several_points_concerned?ev=auth_pub MAO J W, ZHOU Z H, FENG C Y, et al., 2012. A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting[J]. Geology in China, 39(6): 1437-1471. (in Chinese with English abstract) http://www.researchgate.net/publication/280690446_A_preliminary_study_of_the_Triassic_large-scale_mineralization_in_China_and_its_geodynamic_setting PI Q H, HU R Z, PENG K Q, et al., 2016. Geochronology of the Zhesang gold deposit and mafic rock in Funing County of Yunnan province, with special reference to the dynamic background of Carlin-type gold deposits in the Dian-Qian-Gui region[J]. Acta Petrologica Sinica, 32(11): 3331-3342. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201611008.htm QIAN Z K, LUO T Y, HUANG Z L, et al., 2011. Geology, geochemistry and genesis of Xinshan stratiform diopside rocks in Gejiu, Yunnan[J]. Acta Mineralogica Sinica, 31(3): 338-352. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201103006.htm QIN D X, LI Y S, TAN S C, et al., 2006. Metallogenic ages of Gejiu tin ore deposit in Yunnan province[J]. Chinese Journal of Geology, 41(1): 122-132. (in Chinese with English abstract) http://www.researchgate.net/publication/285864964_Metallogenic_ages_of_Gejiu_tin_ore_deposit_in_Yunnan_province SHANG Z, CHEN Y Q, TONG X, et al., 2021. Geochronology, geochemistry and lithosphere extension of Kafang diabase in Gejiu area, Yunnan province[J/OL]. Geology in China, (2020-12-09). https://kns.cnki.net/kcms/detail/11.1167.P.20201207.1620.004.html. SHEN S L, LI J P, YANG B F, 2016. Geological and geochemical features and its exploration of altered granite type Sn-Cu polymetallic deposits in eastern part of Gejiu, Yunnan, China[J]. Acta Mineralogica Sinica, 36(4): 471-478. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201604004.htm TAN H Q, LIU Y P, 2017. Genesis of amphibolite in Mengdong Group-Complex in southeastern Yunnan and its tectonic significance[J]. Journal of Jilin University (Earth Science Edition), 47(6): 1763-1783. (in Chinese with English abstract) http://www.cqvip.com/QK/70021X/201804/7001693441.html WANG C Y, ZHOU M F, QI L, 2007. Permian flood basalts and mafic intrusions in the Jinping (SW China)-Song Da (northern Vietnam) district: Mantle sources, crustal contamination and sulfide segregation[J]. Chemical Geology, 243(3-4): 317-343. doi: 10.1016/j.chemgeo.2007.05.017 WANG Y L, LI L, 1999. A study on the inclusion geochemistry of Laochang fine vein Sn deposit in Gejiu[J]. Yunnan Geology, 18(1): 37-47. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YNZD901.002.htm WEI C W, PI Q H, HU R Z, et al., 2018. Geochemical characteristics of two stages of basic dykes and gold mineralization at Funing, Yunnan Province, China[J]. Acta Mineralogica Sinica, 38(5): 499-513. http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB201805005.htm XIAO L, XU Y G, MEI H J, et al., 2004. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: Implications for plum-lithosphere interaction[J]. Earth and Planetary Science Letters, 228(3-4): 525-546. doi: 10.1016/j.epsl.2004.10.002 XU J, XIA X P, LAI C K, et al., 2019. First identification of late Permian Nb-enriched basalts in Ailaoshan region (SW Yunnan, China): Contribution from Emeishan plume to subduction of eastern paleotethys[J]. Geophysical Research Letters, 46(5): 2511-2523. doi: 10.1029/2018GL081687 XU W T, LIU F L, JI L, et al., 2020. Geochemistry, geochronology and geological implication of amphibolites in Ailao Shan-Day Nui Con Voi metamorphic complex belt, southeastern Tibetan Plateau[J]. Acta Petrologica Sinica, 36(12): 3607-3630. doi: 10.18654/1000-0569/2020.12.04 XU Y G, CHUNG S L, JAHN B M, et al., 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in Southwestern China[J]. Lithos, 58(3-4): 145-168. doi: 10.1016/S0024-4937(01)00055-X XU Y R, LI Y X, 1997. A tin shoot-granitic type tin orebody discovered in the Gejiu mining area[J]. Mineral Resources and Geology, 11(2): 99-102. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCYD702.004.htm XU Z Q, WANG Q, LI Z H, 2016. Indo-Asian collision: tectonic transition from compression to strike slip[J]. Acta Geologica Sinica, 90(1): 1-23. (in Chinese with English abstract) doi: 10.1111/1755-6724.12639 YANG Z X, MAO J W, CHEN M H, et al., 2009. 40Ar-39Ar dating of muscovite from Laochang veinlet-like Sn deposit in Gejiu tin polymetallic ore district and its geological significance[J]. Mineral Deposits, 28(3): 336-344. (in Chinese with English abstract) ZHAI Y S, 2007. Earth system, metallogenic system to exploration system[J]. Earth Science Frontiers, 14(1): 172-181. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200701017.htm ZHAI Y S, WANG J P, PENG R M, et al., 2009. Research on superimposed metallogenic systems and polygenetic mineral deposits[J]. Earth Science Frontiers, 16(6): 282-290. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/dxqy200906030 ZHANG B L, LV G X, SU J, et al., 2015. A study of the tectono-lithofacies mineralization regularities of the Gejiu tin-polymetallic orefield, Yunnan, and prospecting in its western part[J]. Earth Science Frontiers, 22(4): 78-87. (in Chinese with English abstract) http://www.researchgate.net/publication/283125280_A_study_of_the_tectono-lithofacies_mineralization_regularities_of_the_Gejiu_tin-polymetallic_orefield_Yunnan_and_prospecting_in_its_western_part ZHANG G S, FANG W X, PENG R, et al., 2019. Zircon U-Pb chronology, origin and tectonic significance of the Triassic high potassic volcanic rock from Gejiu, Yunnan, Southwestern China[J]. Geotectonica et Metallogenia, 43(6): 1219-1235. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DGYK201906012.htm ZHANG G W, GUO A L, WANG Y J, et al., 2013. Tectonics of South China continent and its implications[J]. Science China Earth Sciences, 56(11): 1804-1828. doi: 10.1007/s11430-013-4679-1 ZHANG H, TONG X, WU J D, et al., 2007. Gejiu tin-polymetallic ore deposit: an example of landing of Red Sea-type submarine hydrothermal deposition[J]. Acta Mineralogica Sinica, 27(3-4): 335-341. (in Chinese with English abstract) http://www.researchgate.net/publication/285096208_Gejiu_tin-polymetallic_ore_deposit_An_example_of_landing_of_Red_Sea-type_submarine_hydrothermal_deposition ZHANG J, MAO J W, CHENG YB, et al., 2012. 40Ar-39Ar phlogopite dating of stratified ore body and muscovite dating of greisens from Xinshan granite intrusion of Kafang tin-copper deposit in Gejiu area, Yunnan province[J]. Mineral Deposits, 31(6): 1149-1162. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201206003.htm ZHANG J W, DAI C G, HUANG Z L, et al., 2015. Age and petrogenesis of Anisian magnesian alkali basalts and their genetic association with the Kafang stratiform Cu deposit in the Gejiu supergiant tin-polymetallic district, SW China[J]. Ore Geology Reviews, 69: 403-416. doi: 10.1016/j.oregeorev.2015.03.011 ZHANG L C, DONG Z G, CHEN B, et al., 2021. Ore-forming system and regularity of important metallogenetic belts in east Tianshan, China[J]. Journal of Earth Sciences and Environment, 43(1): 12-35. (in Chinese with English abstract) ZHANG Q, 2012. Comment on the popular magmatic hydrothermal mineralization theory[J]. Gansu Geology, 21(4): 1-14. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-GSDZ201204002.htm ZHANG Q, JIN W J, Li C D et al., 2014. Magma-thermal field: Its basic characteristics, and differences with geothermal field[J]. Acta Petrologica Sinica, 30(2): 341-349. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201402003.htm ZHANG Y H, ZHOU J X, TAN S C, et al., 2020. Genesis of the oxidized Sn ores in the Gejiu district, Yunnan province, SW China[J]. Ore Geology Reviews, 121: 103474, doi: 10.1016/j.oregeorev.2020.103474. ZHOU M F, MALPAS J, SONG X Y, et al., 2002. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction[J]. Earth and Planetary Science Letters, 196(3-4): 113-122. doi: 10.1016/S0012-821X(01)00608-2 ZHUANG Y Q, WANG R Z, YANG S P, et al., 1996. Geology of the Gejiu tin-copper polymetallic deposit[M]. Beijing: Seismological Press. (in Chinese with English abstract) 常向阳, 朱炳泉, 邹日, 等, 1998. 金平龙脖河铜矿区变钠质火山岩系地球化学研究: Ⅱ. Nd、Sr、Pb同位素特征与年代学[J]. 地球化学, 27(4): 361-366. doi: 10.3321/j.issn:0379-1726.1998.04.010 池际尚. 1988. 中国东部新生代玄武岩及上地幔研究[M]. 武汉: 中国地质大学出版社. 程彦博, 毛景文, 谢桂青, 等, 2008. 云南个旧老厂-卡房花岗岩体成因初探: 锆石U-Pb年代学和岩石地球化学约束[J]. 地质学报, 81(11): 1478-1493. doi: 10.3321/j.issn:0001-5717.2008.11.003 邓贵安, 1998. 老厂花岗岩破碎带型锡矿床地质地球化学特征[J]. 矿产与地质, 12(4): 230-236. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD804.002.htm 方维萱, 胡瑞忠, 谢桂青, 等, 2002. 云南哀牢山地区构造岩石地层单元及其构造演化[J]. 大地构造与成矿学, 26(1): 28-36. doi: 10.3969/j.issn.1001-1552.2002.01.006 方维萱, 贾润幸, 2011. 云南个旧超大型锡铜矿区变碱性苦橄岩类特征与大陆动力学[J]. 大地构造与成矿学, 35(1): 137-148. doi: 10.3969/j.issn.1001-1552.2011.01.014 方维萱, 张海, 贾润幸, 2011. 滇桂个旧-那坡三叠纪弧后裂谷盆地动力学与成矿序列[J]. 大地构造与成矿学, 35(4): 552-566. doi: 10.3969/j.issn.1001-1552.2011.04.009 方维萱, 杨新雨, 郭茂华, 等, 2013. 云南白锡腊碱性钛铁质辉长岩类与铁氧化物铜金型矿床关系研究[J]. 大地构造与成矿学, 37(2): 242-261. doi: 10.3969/j.issn.1001-1552.2013.02.008 方维萱, 杜玉龙, 李建旭, 等, 2018. 大比例尺构造岩相学填图技术与找矿预测[M]. 北京: 地质出版社: 1-377. 冯佳睿, 毛景文, 裴荣富, 等, 2010. 云南瓦渣钨矿区老君山花岗岩体的SHRIMP锆石U-Pb定年、地球化学特征及成因探讨[J]. 岩石学报, 26(3): 845-857. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003017.htm 高俊, 崔银亮, 2004. 云南龙脖河铜矿区东矿带成矿条件、控矿规律研究[J]. 地质与勘探, 40(5): 33-38. doi: 10.3969/j.issn.0495-5331.2004.05.007 郭健, 2020. 目标地质体的研究确定与找矿实践[R]. 中国冶金地质总局矿产地质研究院. 黑慧欣, 罗照华, VIKENTYEV I V, 等, 2015. 透岩浆流体作用与矿田构造[J]. 地质力学学报, 21(1): 1-12. doi: 10.3969/j.issn.1006-6616.2015.01.001 侯增谦, 杨志明, 2009. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概念模型[J]. 地质学报, 83(12): 1779-1817. doi: 10.3321/j.issn:0001-5717.2009.12.002 胡瑞忠, 毛景文, 范蔚茗, 等, 2010. 华南陆块陆内成矿作用的一些科学问题[J]. 地学前缘, 17(2): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002006.htm 黎应书, 秦德先, 党玉涛, 等, 2006. 云南个旧锡矿的玄武岩成矿[J]. 吉林大学学报(地球科学版), 36(3): 326-335. 李政林, 刘希军, 肖文交, 等, 2019. 桂西南凭祥火山岩年代学、地球化学及Hf同位素研究: 对古特提斯洋最晚北向俯冲事件的启示[J]. 地质力学学报, 25(5): 932-946. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190520&journal_id=dzlxxb 刘德民, 郭宏杰, 张根袁, 等, 2019. 滇东南建水地区高镁火山岩包体的成因和构造背景[J]. 地球科学, 44(5): 1749-1760. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201905025.htm 刘汇川, 刘小平, 张永旺, 等, 2020. 印支运动启动的时间: 来自云南点苍山晚二叠世辉长岩和闪长岩的证据[J]. 大地构造与成矿学, 44(3): 527-542. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202003016.htm 刘娇, 周洋, 郭宏杰, 等, 2016. 云南建水腊里河超基性岩地质特征及其构造意义[J]. 贵州地质, 33(3): 178-186. doi: 10.3969/j.issn.1000-5943.2016.03.004 罗照华, 卢欣祥, 刘翠, 等, 2011. 岩浆热液成矿理论的失败: 原因和出路[J]. 吉林大学学报(地球科学版), 41(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201101002.htm 罗照华, 苏尚国, 刘翠, 2014. 岩浆成矿系统的尺度效应[J]. 地球科学与环境学报, 36(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201401002.htm 毛景文, 程彦博, 郭春丽, 等, 2008. 云南个旧锡矿田: 矿床模型及若干问题讨论[J]. 地质学报, 82(11): 1455-1467. doi: 10.3321/j.issn:0001-5717.2008.11.001 毛景文, 周振华, 丰成友, 等, 2012. 初论中国三叠纪大规模成矿作用及其动力学背景[J]. 中国地质, 39(6): 1437-1471. doi: 10.3969/j.issn.1000-3657.2012.06.001 皮桥辉, 胡瑞忠, 彭科强, 等, 2016. 云南富宁者桑金矿床与基性岩年代测定: 兼论滇黔桂地区卡林型金矿成矿构造背景[J]. 岩石学报, 32(11): 3331-3342. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201611008.htm 钱志宽, 罗泰义, 黄智龙, 等, 2011. 云南个旧新山层状透辉石岩地质地球化学特征与成因探讨[J]. 矿物学报, 31(3): 338-352. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201103006.htm 秦德先, 黎应书, 谈树成, 等, 2006. 云南个旧锡矿的成矿时代[J]. 地质科学, 41(1): 122-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200601010.htm 尚志, 陈永清, 童祥, 等, 2021. 云南个旧卡房辉绿岩墙锆石U-Pb年龄、地球化学特征及其岩石圈伸展作用[J/OL]. 中国地质, (2020-12-09). https://kns.cnki.net/kcms/detail/11.1167.P.20201207.1620.004.html. 沈思联, 李建平, 杨宝富, 2016. 个旧东区蚀变花岗岩型锡-铜多金属矿床地质地球化学特征与勘探[J]. 矿物学报, 36(4): 471-478. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201604004.htm 谭洪旗, 刘玉平, 2017. 滇东南猛洞岩群斜长角闪岩成因及其构造意义[J]. 吉林大学学报(地球科学版), 47(6): 1763-1783. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201706014.htm 王雅丽, 李磊, 1999. 个旧老厂细脉型锡矿床包裹体地球化学特征研究[J]. 云南地质, 18(1): 37-47. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD901.002.htm 韦朝文, 皮桥辉, 胡瑞忠, 等, 2018. 云南富宁两期基性岩地球化学性质与金矿成矿[J]. 矿物学报, 38(5): 499-513. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201805005.htm 徐文涛, 刘福来, 冀磊, 等, 2020. 哀牢山-大象山变质杂岩带中斜长角闪岩的地球化学、同位素年代学及其地质意义[J]. 岩石学报, 36(12): 3607-3630. doi: 10.18654/1000-0569/2020.12.04 徐云端, 李玉新, 1997. 个旧地区发现一种富锡矿类型: 花岗岩锡矿体[J]. 矿产与地质, 11(2): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD702.004.htm 许志琴, 王勤, 李忠海, 等, 2016. 印度-亚洲碰撞: 从挤压到走滑的构造转换[J]. 地质学报, 90(1): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201601001.htm 杨宗喜, 毛景文, 陈懋弘, 等, 2009. 云南个旧老厂细脉带型锡矿白云母40Ar-39Ar年龄及其地质意义[J]. 矿床地质, 28(3): 336-344. doi: 10.3969/j.issn.0258-7106.2009.03.009 翟裕生, 2007. 地球系统、成矿系统到勘查系统[J]. 地学前缘, 14(1): 172-181. doi: 10.3321/j.issn:1005-2321.2007.01.017 翟裕生, 王建平, 彭润民, 等, 2009. 叠加成矿系统与多成因矿床研究[J]. 地学前缘, 16(6): 282-290. doi: 10.3321/j.issn:1005-2321.2009.06.030 张宝林, 吕古贤, 苏捷, 等, 2015. 云南个旧锡多金属矿田构造岩相成矿规律与西区找矿研究[J]. 地学前缘, 22(4): 78-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201504010.htm 张贵山, 方维萱, 彭仁, 等, 2019. 云南个旧三叠纪高钾质火山岩锆石U-Pb年代学、岩石成因及构造意义[J]. 大地构造与成矿学, 43(6): 1219-1235. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201906012.htm 张国伟, 郭安林, 王岳军, 等, 2013. 中国华南大陆构造与问题[J]. 中国科学: 地球科学, 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm 张欢, 童祥, 武俊德, 等, 2007. 个旧锡矿: 红海型热水沉积登陆的实例[J]. 矿物学报, 27(3-4): 335-341. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2007Z1014.htm 张娟, 毛景文, 程彦博, 等, 2012. 个旧卡房层状铜矿床金云母和云英岩化白云母40Ar-39Ar同位素年龄及意义[J]. 矿床地质, 31(6): 1149-1162. doi: 10.3969/j.issn.0258-7106.2012.06.002 张连昌, 董志国, 陈博, 等, 2021. 东天山重要成矿区带、成矿系统与成矿规律[J]. 地球科学与环境学报, 43(1): 12-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101005.htm 张旗, 2012. 评流行的岩浆热液成矿理论[J]. 甘肃地质, 21(4): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201204002.htm 张旗, 金惟俊, 李承东, 等, 2014. 岩浆热场: 它的基本特征及其与地热场的区别[J]. 岩石学报, 30(2): 341-349. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201402003.htm 庄永秋, 王任重, 杨树培, 等, 1996. 云南个旧锡铜多金属矿床[M]. 北京: 地震出版社.