留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

构造变形对海相页岩储层渗透率演化的影响

梁明亮 王宗秀 李春麟 李会军 张林炎 冯兴强 张凯逊

梁明亮, 王宗秀, 李春麟, 等, 2020. 构造变形对海相页岩储层渗透率演化的影响. 地质力学学报, 26 (6): 840-851. DOI: 10.12090/j.issn.1006-6616.2020.26.06.066
引用本文: 梁明亮, 王宗秀, 李春麟, 等, 2020. 构造变形对海相页岩储层渗透率演化的影响. 地质力学学报, 26 (6): 840-851. DOI: 10.12090/j.issn.1006-6616.2020.26.06.066
LIANG Mingliang, WANG Zongxiu, LI Chunlin, et al., 2020. Effect of structural deformation on permeability evolution of marine shale reservoirs. Journal of Geomechanics, 26 (6): 840-851. DOI: 10.12090/j.issn.1006-6616.2020.26.06.066
Citation: LIANG Mingliang, WANG Zongxiu, LI Chunlin, et al., 2020. Effect of structural deformation on permeability evolution of marine shale reservoirs. Journal of Geomechanics, 26 (6): 840-851. DOI: 10.12090/j.issn.1006-6616.2020.26.06.066

构造变形对海相页岩储层渗透率演化的影响

doi: 10.12090/j.issn.1006-6616.2020.26.06.066
基金项目: 

国家自然科学基金项目 41802158

中国地质调查局地质调查项目 DD20160183

中国地质调查局地质调查项目 DD20190085

国家重点研发计划 2016YFC0600202

中国地质科学院基本科研业务费项目 JYYWF20181201

详细信息
    作者简介:

    梁明亮(1985-), 男, 助理研究员, 博士, 油气地质地球化学。E-mail:liangmingl09@mails.ucas.ac.cn

    通讯作者:

    王宗秀(1959-), 男, 研究员, 博士, 构造地质学。E-mail:wangzongxiu@sohu.com

  • 中图分类号: P618.13

Effect of structural deformation on permeability evolution of marine shale reservoirs

  • 摘要: 与北美不同,中国南方海相页岩层经历了多期构造改造,页岩储层物性受构造变形作用的影响较大。为了研究构造变形对南方海相页岩储层渗透率的影响特征和机理,以雪峰山西侧地区五峰-龙马溪组页岩为研究对象,利用气体脉冲衰减法、压汞法和扫描电子显微镜等手段对不同变形页岩样品的渗透率、孔隙结构及孔隙形貌特征进行了测试分析,探讨构造变形页岩的渗透率演化特征及其对孔隙结构演化的响应机理。测试结果显示,强烈构造变形页岩的渗透性较原生页岩和弱变形页岩的渗透性显著提高,强变形页岩样品的渗透率在0.2 mD和2.69 mD之间,比未变形和弱变形页岩样品的渗透率(在1.5×10-4 mD和1.7×10-3 mD之间)高三个数量级,表明强构造变形作用对页岩渗透率具有显著促进作用;同时,不同有效压力条件下页岩渗透率的演化特征显示,强变形页岩气体渗透率的压力敏感性比原生页岩和弱变形页岩显著降低。构造变形条件下页岩孔隙结构与渗透率相关性的进一步分析认为,强变形页岩的孔隙结构变化特别是大孔和裂隙的发育,是促进其渗透率增加的主要原因。这些研究结果表明,伴随强烈的构造变形,南方海相页岩易形成大孔和微裂隙发育的孔隙结构特征,有助于强变形页岩层渗透性的显著提高。构造变形页岩渗透率的提高有利于地质条件下气体的运移,一方面,将有利于页岩气往构造高点的迁移和富集从而形成游离气型或外源型页岩气甜点;另一方面,也可能导致页岩气在盖层条件不佳和断裂发育区的散失。

     

  • 图  1  雪峰山西侧五峰-龙马溪组页岩样品采集点剖面照片及样点位置图(据Liang et al., 2017修改)

    Figure  1.  Photographs showing the profile and sampling points in the Wufeng-Longmaxi shales on the west side of the Xuefeng Mountain(modified after Liang et al., 2017)

    图  2  手标本尺度下页岩样品宏观特征

    a-未变形页岩U1; b-未变形页岩U2; c-未变形页岩U3; d-强变形页岩D1; e-强变形页岩D2; f-强变形页岩D3; g-弱变形页岩D4; h-弱变形页岩D5

    Figure  2.  Macro appearances of shale samples on hand specimen scale

    图  3  薄片尺度下页岩样品微观结构及裂隙发育特征

    a-未变形页岩U1; b-未变形页岩U2; c-未变形页岩U3; d-强变形页岩D1; e-强变形页岩D2; f-强变形页岩D3; g-弱变形页岩D4; h-弱变形页岩D5

    Figure  3.  Micro appearances of structure and fracture of shale samples on thin-section scale

    图  4  页岩样品在不同有效压力条件下的渗透率演化特征

    a-不同有效压力下页岩样品的渗透率演化特征;b-有效压力升高时页岩样品渗透率的降低效应

    Figure  4.  Permeability evolution of the shale samples with different structure deformations under different effective pressures

    图  5  扫描电子显微镜SEM下不同构造变形页岩典型孔隙-裂隙发育特征

    a-有机质孔;b-黄铁矿粒内孔;c、d-黏土矿物粒间孔; e、f-有机质-矿物粒间裂隙; g-裂缝型孔隙;h-溶蚀孔;i、j-剪切变形裂缝;k-裂缝型孔隙;l-裂缝及其次生矿物充填

    Figure  5.  Typical pore-crack structures of the Wufeng-Longmaxi shales under different deformation degrees on SEM images

    图  6  渗透率与页岩物质组成及孔隙结构特征的关系图

    a-渗透率与TOC含量关系;b-渗透率与石英含量关系;c-渗透率与孔隙度关系;d-渗透率与孔隙结构组成(大孔/中孔比值)关系

    Figure  6.  Relationship of permeability with shale composition and pore structure

    表  1  雪峰山西侧五峰-龙马溪组页岩样品分类与物质组成

    Table  1.   Basic geochemical characteristics and classification of the Wufeng-Longmaxi shale samples on the west side of the Xuefeng Mountain

    样品编号 TOC/% 石英/% 黏土/% 方解石/% 变形分类
    U1 3.9 41 44 - 未变形页岩
    U2 2.5 40 41 2
    U3 2.0 34 33 11
    D1 2.1 77 14 - 强变形页岩
    D2 6.6 64 26 -
    D3 2.4 43 41 -
    D4 1.8 46 41 - 弱变形页岩
    D5 3.0 71 20 -
    下载: 导出CSV

    表  2  页岩样品孔隙结构与渗透率参数

    Table  2.   Pore structure and permeability of the shale samples

    样品 孔隙结构参数 不同有效压力(PSI*)下页岩样品的渗透率参数/mD
    孔隙度/% 中孔/(μL/g) 大孔/(μL/g) 大孔与中孔的单位体积比值 700/PSI 1200/PSI 1700/PSI 2200/PSI 2700/PSI 3200/PSI
    U1 2.0 186.7 231.9 1.2 1.74×10-3 5.97×10-5 4.02×10-5 2.66×10-5 7.10×10-6 7.04×10-6
    U2 1.6 175.5 122.9 0.7 4.3×10-4 2.51×10-5 2.18×10-6 1.73×10-6 1.50×10-6 1.15×10-6
    U3 7.5 2198.4 330.0 0.2 2.9×10-4 1.22×10-5 5.16×10-6 2.78×10-6 1.03×10-6 1.71×10-6
    D1 1.3 73.9 185.7 2.5 2.55×10-1 2.04×10-1 1.78×10-1 1.57×10-1 1.38×10-1 1.21×10-1
    D2 1.6 73.8 143.3 1.9 1.99×10-1 1.26×10-1 8.63×10-2 5.95×10-2 4.41×10-2 3.56×10-2
    D3 3.8 14.2 273.2 19.2 2.69 2.20 - - - -
    D4 2.5 148.7 172.1 1.2 4.97×10-4 2.02×10-5 1.66×10-5 9.10×10-6 8.04×10-6 4.75×10-6
    D5 4.5 214.3 387.4 1.8 1.47×10-4 2.92×10-5 1.50×10-5 1.14×10-5 4.95×10-6 3.14×10-6
    *注:1 MPa ≈145 PSI
    下载: 导出CSV
  • BARENBLATT G I, ZHELTOV I P, KOCHINA I N, 1960. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[strata]Ob osnovnykh predstavleniiakh teorii fil'tratsii odnorodnykh zhidkostei v treshchinovatykh porodakh:PMM vol.24, no.5, 1960, pp. 852-864[J]. Journal of Applied Mathematics and Mechanics, 24(5):1286-1303. doi: 10.1016/0021-8928(60)90107-6
    BERNABÉ Y, MOK U, EVANS B, 2003. Permeability-porosity relationships in rocks subjected to various evolution processes[J]. Pure and Applied Geophysics, 160(5):937-960. doi: 10.1007/PL00012574
    CAI J C, LIN D L, SINGH H, et al., 2019. A simple permeability model for shale gas and key insights on relative importance of various transport mechanisms[J]. Fuel, 252:210-219. doi: 10.1016/j.fuel.2019.04.054
    CHALMERS G R, BUSTIN R M, POWER I M, 2012a. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses:examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin, 96(6):1099-1119. doi: 10.1306/10171111052
    CHALMERS G R L, ROSS D J K, BUSTIN R M, 2012b. Geological controls on matrix permeability of Devonian Gas Shales in the Horn River and Liard basins, northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 103:120-131. doi: 10.1016/j.coal.2012.05.006
    CLARKSON C R, HAGHSHENAS B, GHANIZADEH A, et al., 2016. Nanopores to megafractures:current challenges and methods for shale gas reservoir and hydraulic fracture characterization[J]. Journal of Natural Gas Science and Engineering, 31:612-657. doi: 10.1016/j.jngse.2016.01.041
    CURTIS J B, 2002. Fractured shale-gas systems[J]. AAPG Bulletin, 86(11):1921-1938. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg13/ref13&dbid=16&doi=10.1139%2Fcjes-2014-0188&key=10.1306%2F61EEDDBE-173E-11D7-8645000102C1865D
    DAVIS G H, REYNOLDS S J, KLUTH S F, 2012. Structural geology of rocks and regions[M]. 3rd ed. New York:Wiley:135-598.
    DOOLIN D M, MAULDON M, 2001. Fracture permeability normal to bedding in layered rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 38(2):199-210. doi: 10.1016/S1365-1609(00)00056-3
    GAO J, LI Z X, 2018. Water saturation-driven evolution of helium permeability in Carboniferous shale from Qaidam Basin, China:an experimental study[J]. Marine and Petroleum Geology, 96:371-390. doi: 10.1016/j.marpetgeo.2018.05.028
    GHANIZADEH A, GASPARIK M, AMANN-HILDENBRAND A, et al., 2014a. Experimental study of fluid transport processes in the matrix system of the European organic-rich shales:I. Scandinavian Alum Shale[J]. Marine and Petroleum Geology, 51:79-99. doi: 10.1016/j.marpetgeo.2013.10.013
    GHANIZADEH A, AMANN-HILDENBRAND A, GASPARIK M, et al., 2014b. Experimental study of fluid transport processes in the matrix system of the European organic-rich shales:Ⅱ. Posidonia Shale (Lower Toarcian, northern Germany)[J]. International Journal of Coal Geology, 123:20-33. doi: 10.1016/j.coal.2013.06.009
    GUO T L, ZHANG H R, 2014. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 41(1):28-36. (in Chinese with English abstract) http://www.cnki.com.cn/article/cjfdtotal-skyk201401003.htm
    GUO T L, 2016. Discovery and characteristics of the Fuling shale gas field and its enlightenment and thinking[J]. Earth Science Frontiers, 23(1):29-43. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DXQY201601005.htm
    GUO X S, HU D F, WEI X F, et al., 2016. Main controlling factors on shale fractures and their influences on production capacity in Jiaoshiba area, the Sichuan Basin[J]. Oil & Gas Geology, 37(6):799-808. (in Chinese with English abstract)
    GUO Y Y, LIANG M L, WANG Z X, et al., 2019. Organic geochemistry and mineral composition characteristics in Shales of Niutitang formation, northwestern Hunan[J]. Journal of Geomechanics, 25(3):392-399. (in Chinese with English abstract) http://www.cqvip.com/QK/98414X/20193/7002243788.html
    HE J L, WANG J, YU Q, et al., 2018. Discovery of exogenous type shale gas and its geological significance to hydrocarbon exploration[J]. Acta Petrolei Sinica, 39(1):12-22. (in Chinese with English abstract) doi: 10.1038/aps.2017.83
    HE J L, WANG J, YU Q, et al., 2018a. Pore structure of shale and its effects on gas storage and transmission capacity in well HD-1 eastern Sichuan Basin, China[J]. Fuel, 226:709-720. doi: 10.1016/j.fuel.2018.04.072
    HE W G, ZHOU J X, YUAN K, 2018b. Deformation evolution of Eastern Sichuan-Xuefeng fold-thrust belt in South China:insights from analogue modelling[J]. Journal of Structural Geology, 109:74-85. doi: 10.1016/j.jsg.2018.01.002
    HOEK E, MARTIN C D, 2014. Fracture initiation and propagation in intact rock-A review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 6(4):287-300. doi: 10.1016/j.jrmge.2014.06.001
    HU D F, ZHANG H R, NI K, 2014. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 34(6):17-23. (in Chinese with English abstract)
    HU D F, 2019. Main controlling factors on normal pressure shale gas enrichmentsin Wufeng-Longmaxi Formations in synclines, southeastern Sichuan Basin[J]. Natural Gas Geoscience, 30(5):605-615. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-TDKX201905001.htm
    JARVIE D M, HILL R J, RUBLE T E, et al., 2007. Unconventional shale-gas systems:the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 91(4):475-499. doi: 10.1306/12190606068
    JIANG Z X, SONG Y, TANG X L, et al., 2020. Controlling factors of marine shale gas differential enrichment in southern China[J]. Petroleum Exploration and Development, 47(3):1-12. (in Chinese with English abstract) http://www.researchgate.net/publication/342296679_Controlling_factors_of_marine_shale_gas_differential_enrichment_in_southern_China
    KAZEMI H, 1969. Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution[J]. Society of Petroleum Engineers Journal, 9(4):451-462. doi: 10.2118/2156-A
    LI M H, YIN G Z, XU J, et al., 2016. Permeability evolution of shale under anisotropic true triaxial stress conditions[J]. International Journal of Coal Geology, 165:142-148. doi: 10.1016/j.coal.2016.08.017
    LIANG M L, WANG Z X, GAO L, et al., 2017. Evolution of pore structure in gas shale related to structural deformation[J]. Fuel, 197:310-319. doi: 10.1016/j.fuel.2017.02.035
    LIU C, YIN G Z, LI M H, et al., 2019. Shale permeability model considering bedding effect under true triaxial stress conditions[J]. Journal of Natural Gas Science and Engineering, 68:102908. doi: 10.1016/j.jngse.2019.102908
    LIU S G, DENG B, ZHONG Y, et al., 2016. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 23(1):11-28. (in Chinese with English abstract)
    LOUCKS R G, REED R M, RUPPEL S C, et al., 2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 96(6):1071-1098. doi: 10.1306/08171111061
    LUO Q Y, ZHONG N N, DAI N, et al., 2016. Graptolite-derived organic matter in the Wufeng-Longmaxi Formations (Upper Ordovician-Lower Silurian) of southeastern Chongqing, China:Implications for gas shale evaluation[J]. International Journal of Coal Geology, 153:87-98. doi: 10.1016/j.coal.2015.11.014
    MA Y, ARDAKANI O H, ZHONG N N, et al., 2020. Possible pore structure deformation effects on the shale gas enrichment:an example from the lower Cambrian shales of the Eastern Upper Yangtze Platform, South China[J]. International Journal of Coal Geology, 217:103349. doi: 10.1016/j.coal.2019.103349
    MARTIN C D, CHANDLER N A, 1994. The progressive fracture of Lac du Bonnet granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(6):643-659. http://www.sciencedirect.com/science/article/pii/0148906294900051
    QIU Z, ZOU C N, WANG H Y, et al., 2020. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi formations shale gas in South China[J]. Natural Gas Geoscience, 31(2):163-175. (in Chinese with English abstract)
    SHU Y, LU Y C, BAO H Y, et al., 2018. Three typical types of shale gas preservation in the Fuling Shale Gas Field, Sichuan Basin[J]. Natural Gas Industry, 38(3):31-40. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_natural-gas-industry_thesis/0201218475394.html
    SING K S W, EVERETT D H, HAUL R A W, et al., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure & Applied Chemistry, 57(4):603-619. doi: 10.1351/pac198557040603
    SLATT R M, O'BRIEN N R, 2011. Pore types in the Barnett and Woodford gas Shales:contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 95(12):2017-2030. doi: 10.1306/03301110145
    SUN J, LUO B, 2016. Structural deformation and its influences on gas storage in Fuling shale gas play, the Sichuan Basin[J]. Oil & Gas Geology, 37(6):809-818. (in Chinese with English abstract) http://d.wanfangdata.com.cn/periodical/syytrqdz201606002
    TANG C A, THAM L G, LEE P K K, et al., 2002. Coupled analysis of Flow, Stress and Damage (FSD) in rock failure[J]. International Journal of Rock Mechanics and Mining Sciences, 39(4):477-489. doi: 10.1016/S1365-1609(02)00023-0
    THOMMES M, KANEKO K, NEIMARK A V, et al., 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure & Applied Chemistry, 87(9-10):1051-1069.
    WANG G C, 2020. Deformation of organic matter and its effect on pores in mud rocks[J]. AAPG Bulletin, 104(1):21-36. http://www.researchgate.net/publication/338394921_deformation_of_organic_matter_and_its_effect_on_pores_in_mud_rocks
    WANG S F, DONG D Z, WANG Y M, et al., 2015. A comparative study of the geological feature of marine shale gas between China and the United States[J]. Natural Gas Geoscience, 26(9):1666-1678. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201509008.htm
    WANG Y M, HUANG J L, WANG S F, et al., 2016. Dissection of two calibrated areas of the Silurian Longmaxi Formation, Changning and Jiaoshiba, Sichuan Basin[J]. Natural Gas Geoscience, 27(3):423-432. (in Chinese with English abstract) http://www.cqvip.com/QK/97226X/201603/668695574.html
    WANG Z X, ZHANG J, GUAN H M, et al., 2012. A discussion on the structural deformation and oil/gas traps on the western side of the Xuefeng Mountain[J]. Geological Bulletin of China, 31(11):1812-1825. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201211007.htm
    WANG Z X, LI C L, LI H J, et al., 2019. Tectonic architecture and evolution of the Eastern Sichuan-Wulingshan area, South China[J]. Journal of Geomechanics, 25(5):827-839. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905013.htm
    WU Y S, LI J F, DING D, et al., 2014. A generalized framework model for the simulation of gas production in unconventional gas reservoirs[J]. SPE Journal, 19(5):845-857. doi: 10.2118/163609-PA
    ZHAI G Y, WANG Y F, ZHOU Z, et al., 2018a. Exploration and research progress of shale gas in China[J]. China Geology, 1(2):257-272. doi: 10.31035/cg2018024
    ZHAI G Y, WANG Y F, ZHOU Z, et al., 2018b. "Source-Diagenesis-Accumulation" enrichment and accumulation regularity of marine shale gas in southern China[J]. China Geology, 1(3):319-330. doi: 10.31035/cg2018059
    ZHANG J C, JIN Z J, YUAN M S, 2004. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 24(7):15-18. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200407004.htm
    ZHANG X M, SHI W Z, XU Q H, et al., 2015. Reservoir characteristics and controlling factors of shale gas in Jiaoshiba area, Sichuan Basin[J]. Acta Petrolei Sinica, 36(8):926-939, 953. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-SYXB201508004.htm
    ZHENG Y J, LIAO Y H, WANG Y P, et al., 2018. Organic geochemical characteristics, mineralogy, petrophysical properties, and shale gas prospects of the Wufeng-Longmaxi Shales in Sanquan Town of the Nanchuan District, Chongqing[J]. AAPG Bulletin, 102(11):2239-2265. doi: 10.1306/04241817065
    ZHU H J, JU Y W, QI Y, et al., 2018. Impact of tectonism on pore type and pore structure evolution in organic-rich shale:Implications for gas storage and migration pathways in naturally deformed rocks[J]. Fuel, 228:272-289. doi: 10.1016/j.fuel.2018.04.137
    ZHU H J, JU Y W, HUANG C, et al., 2019. Petrophysical properties of the major marine shales in the Upper Yangtze Block, south China:a function of structural deformation[J]. Marine and Petroleum Geology, 110:768-786. doi: 10.1016/j.marpetgeo.2019.08.003
    ZHU H J, JU Y W, HUANG C, et al., 2020. Microcosmic gas adsorption mechanism on clay-organic nanocomposites in a marine shale[J]. Energy, 197:117256. doi: 10.1016/j.energy.2020.117256
    ZOU C N, ZHU R K, CHEN Z Q, et al., 2019. Organic-matter-rich shales of China[J]. Earth-Science Reviews, 189:51-78. doi: 10.1016/j.earscirev.2018.12.002
    郭彤楼, 张汉荣, 2014.四川盆地焦石坝页岩气田形成与富集高产模式[J].石油勘探与开发, 41(1):28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm
    郭彤楼, 2016.涪陵页岩气田发现的启示与思考[J].地学前缘, 23(1):29-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601005.htm
    郭旭升, 胡东风, 魏祥峰, 等, 2016.四川盆地焦石坝地区页岩裂缝发育主控因素及对产能的影响[J].石油与天然气地质, 37(6):799-808. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201606002.htm
    郭永岩, 梁明亮, 王宗秀, 等, 2019.湘西北地区下寒武统牛蹄塘组页岩有机地球化学与矿物组成特征[J].地质力学学报, 25(3):392-399. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201903006.htm
    何江林, 王剑, 余谦, 等, 2018.外源补给型页岩气的发现及油气地质意义[J].石油学报, 39(1):12-22. doi: 10.3969/j.issn.1671-4067.2018.01.004
    胡东风, 张汉荣, 倪楷, 等, 2014.四川盆地东南缘海相页岩气保存条件及其主控因素[J].天然气工业, 34(6):17-23. doi: 10.3787/j.issn.1000-0976.2014.06.003
    胡东风, 2019.四川盆地东南缘向斜构造五峰组-龙马溪组常压页岩气富集主控因素[J].天然气地球科学, 30(5):605-615. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201905001.htm
    姜振学, 宋岩, 唐相路, 等, 2020.中国南方海相页岩气差异富集的控制因素[J].石油勘探与开发, 47(3):1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003020.htm
    刘树根, 邓宾, 钟勇, 等, 2016.四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用[J].地学前缘, 23(1):11-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601004.htm
    邱振, 邹才能, 王红岩, 等, 2020.中国南方五峰组-龙马溪组页岩气差异富集特征与控制因素[J].天然气地球科学, 31(2):163-175. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202002002.htm
    舒逸, 陆永潮, 包汉勇, 等, 2018.四川盆地涪陵页岩气田3种典型页岩气保存类型[J].天然气工业, 38(3):31-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201803005.htm
    孙健, 罗兵, 2016.四川盆地涪陵页岩气田构造变形特征及对含气性的影响[J].石油与天然气地质, 37(6):809-818. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201606004.htm
    王淑芳, 董大忠, 王玉满, 等, 2015.中美海相页岩气地质特征对比研究[J].天然气地球科学, 26(9):1666-1678. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509008.htm
    王玉满, 黄金亮, 王淑芳, 等, 2016.四川盆地长宁、焦石坝志留系龙马溪组页岩气刻度区精细解剖[J].天然气地球科学, 27(3):423-432. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603006.htm
    王宗秀, 张进, 关会梅, 等, 2012.雪峰山西侧地区构造形变与油气圈闭[J].地质通报, 31(11):1812-1825. doi: 10.3969/j.issn.1671-2552.2012.11.006
    王宗秀, 李春麟, 李会军, 等, 2019.川东-武陵地区构造格局及其演化[J].地质力学学报, 25(5):827-839. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190512&journal_id=dzlxxb
    张金川, 金之钧, 袁明生, 2004.页岩气成藏机理和分布[J].天然气工业, 24(7):15-18. doi: 10.3321/j.issn:1000-0976.2004.07.005
    张晓明, 石万忠, 徐清海, 等, 2015.四川盆地焦石坝地区页岩气储层特征及控制因素[J].石油学报, 36(8):926-939, 953. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201508004.htm
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  47
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-15
  • 修回日期:  2020-05-27
  • 刊出日期:  2020-12-28

目录

    /

    返回文章
    返回