留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

剪切作用对页岩有机质孔发育特征和吸附能力的影响

俞雨溪 王宗秀 冯兴强 张凯逊 张林炎

俞雨溪, 王宗秀, 冯兴强, 等, 2020. 剪切作用对页岩有机质孔发育特征和吸附能力的影响. 地质力学学报, 26 (6): 830-839. DOI: 10.12090/j.issn.1006-6616.2020.26.06.065
引用本文: 俞雨溪, 王宗秀, 冯兴强, 等, 2020. 剪切作用对页岩有机质孔发育特征和吸附能力的影响. 地质力学学报, 26 (6): 830-839. DOI: 10.12090/j.issn.1006-6616.2020.26.06.065
YU Yuxi, WANG Zongxiu, FENG Xingqiang, et al., 2020. Effect of shear on the development and adsorption capacity of organic pores in shale. Journal of Geomechanics, 26 (6): 830-839. DOI: 10.12090/j.issn.1006-6616.2020.26.06.065
Citation: YU Yuxi, WANG Zongxiu, FENG Xingqiang, et al., 2020. Effect of shear on the development and adsorption capacity of organic pores in shale. Journal of Geomechanics, 26 (6): 830-839. DOI: 10.12090/j.issn.1006-6616.2020.26.06.065

剪切作用对页岩有机质孔发育特征和吸附能力的影响

doi: 10.12090/j.issn.1006-6616.2020.26.06.065
基金项目: 

国家自然科学基金 41802178

中国地质科学院基本科研业务费项目 JYYWF20181201

中国地质调查局地质调查项目 DD20190085

详细信息
    作者简介:

    俞雨溪(1987-), 女, 博士, 从事页岩储层微观结构表征和页岩油气成藏机理研究。E-mail:yuyuxi718@126.com

    通讯作者:

    王宗秀(1959-), 男, 博士, 研究员, 从事造山带、构造变形、区域地质研究工作。E-mail:wangzongxiu@sohu.com

  • 中图分类号: P618.13

Effect of shear on the development and adsorption capacity of organic pores in shale

  • 摘要: 有机质孔是高成熟页岩储层中吸附气和游离气赋存的主要储集空间类型。中国南方海相页岩地层经历了多期构造改造,滑脱构造广泛发育。为了认识剪切作用对页岩有机质孔微观结构和吸附能力的影响,以张家界三岔地区下寒武统牛蹄塘组页岩为例,通过大量扫描电镜图像观测统计,对比分析了滑脱带页岩、邻近滑脱带页岩和远离滑脱带页岩有机质孔的发育特征,同时对这三类样品进行了甲烷等温吸附测试。研究结果表明,有机质内孔发育在有机质内部,孔径一般<20 nm;位于有机质与矿物接触边缘的复合孔孔径整体大于有机质内孔,主要发育在滑脱带页岩中包裹有矿物碎片的有机质中。受剪切作用影响,这两类有机质孔均沿一定优势方向发生形变,形态更趋于狭长且定向性增强;同时页岩甲烷吸附能力变差,从滑脱带向远离滑脱带方向这种影响逐渐减弱。剪切作用对页岩储集性能和含气性具有重要控制作用,对认识复杂构造区页岩气保存条件和富集规律具有重要意义。

     

  • 图  1  牛蹄塘组三岔剖面区域构造位置和页岩地层发育特征

    a—牛蹄塘组三岔剖面区域构造位置;b—页岩地层发育特征

    Figure  1.  Regional structural location of the Sancha shale outcrop of the Niutitang Formation (Fig. 1a) and its characteristics (Fig. 1b)

    图  2  孔径、长宽比、长轴方向参数的定义及测量方法

    Figure  2.  Definitions and measurement methods of parameters (pore size, LW ratio, major axis direction)

    图  3  页岩孔隙类型扫描电镜图像

    a—c—SC3样品;d、f—SC1样品;e—SC2样品

    Figure  3.  SEM images of pore types in shale

    图  4  有机质孔孔径和长宽比参数统计结果

    a、b—有机质内孔;c、d—有机质-矿物复合孔

    Figure  4.  Statistical results of pore size distribution (Fig. 3a and 3c) and LW ratio (Fig. 3b and 3d)

    图  5  有机质内孔和有机质-矿物复合孔孔隙长轴方向分布玫瑰花图

    a-c-有机质内孔;d-f -有机质-矿物复合孔; a、d-SC1样品;b、e-SC2样品;c、f-SC3样品;水平方向为页岩层理方向

    Figure  5.  Rose diagram showing the major axis directions of organic matter hosted pores (Fig. 4a, 4c and 4e) and organic matter-mineral related pores (Fig. 4b, 4d and 4f)

    图  6  二氧化碳吸附测试微孔范围孔径分布结果

    Figure  6.  Distribution diagram of micropore sizes based on the CO2 adsorption test

    图  7  甲烷等温吸附测试结果(30 ℃)

    Figure  7.  Methane isothermal adsorption results at 30 ℃

    图  8  页岩有机质孔微观剪切变形模式

    a-变形前;b-剪切变形后

    Figure  8.  Microscopic deformation pattern of shale organic pore under shear

    表  1  样品位置、类型及其总有机碳含量和矿物组成

    Table  1.   Positions and types of samples and their TOC wt%

    样号 样品类型 与滑脱带顶面距离/m TOC/% 石英/% 粘土矿物/% 碳酸盐矿物/% 其他矿物/%
    SC1 滑脱带 / 7.72 52 36 5 7
    SC2 邻近滑脱带 0.4 7.05 54 28 8 10
    SC3 远离滑脱带 1.5 8.29 50 30 15 5
    下载: 导出CSV

    表  2  页岩有机质孔形态学参数统计结果

    Table  2.   Statistical results of morphological parameters of organic pores in shale

    样号 样品类型 有机质内孔 有机质-矿物复合孔
    中值孔径/nm 中值长宽比 中值孔径/nm 中值长宽比
    SC1 滑脱带 14.2 1.92 23.0 2.38
    SC2 邻近滑脱带 16.5 1.79 20.1 2.11
    SC3 远离滑脱带 18.3 1.63 18.6 2.01
    下载: 导出CSV
  • BAI D Y, NI Y J, LI S W, et al., 2009. A geometrical and kinematic analysis of the Early-Mesozoic Yueyang-Chibi fold-thrust belt in southern Jiangnan orogen[J]. Geology in China, 36(5):996-1009. (in Chinese with English abstract)
    CARDOTT B J, LANDIS C R, CURTIS M E, 2015. Post-oil solid bitumen network in the Woodford Shale, USA-A potential primary migration pathway[J]. International Journal of Coal Geology, 139:106-113. doi: 10.1016/j.coal.2014.08.012
    CHEN Z Y, SONG Y, JIANG Z X, et al., 2019. Identification of organic matter components and organic pore characteristics of marine shale:A case study of Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Marine and Petroleum Geology, 109:56-69. doi: 10.1016/j.marpetgeo.2019.06.002
    CURTIS J B, 2002. Fractured shale-gas systems[J]. AAPG Bulletin, 86(11):1921-1938. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg13/ref13&dbid=16&doi=10.1139%2Fcjes-2014-0188&key=10.1306%2F61EEDDBE-173E-11D7-8645000102C1865D
    CURTIS M E, CARDOTT B J, SONDERGELD C H, et al., 2012. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 103:26-31. doi: 10.1016/j.coal.2012.08.004
    DESBOIS G, HÖHNE N, URAI J L, et al., 2017. Deformation in cemented mudrock (Callovo-Oxfordian Clay) by microcracking, granular flow and phyllosilicate plasticity:Insights from triaxial deformation, broad ion beam polishing and scanning electron microscopy[J]. Solid Earth, 8(2):291-305. doi: 10.5194/se-8-291-2017
    GUO Y Y, LIANG M L, WANG Z X, et al., 2019. Organic geochemistry and mineral composition characteristics in shales of Niutitang Formation, Northwestern Hunan[J]. Journal of Geomechanics, 25(3):392-399. (in Chinese with English abstract) http://www.cqvip.com/QK/98414X/20193/7002243788.html
    HU G, PANG Q, JIAO K, et al., 2020. Development of organic pores in the Longmaxi Formation overmature shales:Combined effects of thermal maturity and organic matter composition[J]. Marine and Petroleum Geology, 116:104314. doi: 10.1016/j.marpetgeo.2020.104314
    HUANG Y R, XIAO Z H, JIAO P, et al., 2018. Comparison of factors for shale gas accumulation in Niutitang formation wells in northwestern Hunan and its implications[J]. Journal of Central South University (Science and Technology), 49(9):2240-2248. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZNGD201809017.htm
    JU Y W, SUN Y, TAN J Q, et al., 2018. The composition, pore structure characterization and deformation mechanism of coal-bearing shales from tectonically altered coalfields in eastern China[J]. Fuel, 234:626-642. doi: 10.1016/j.fuel.2018.06.116
    LI J Q, GAO Y Q, HUA C X, et al., 2014. Marine shale gas evaluation system of regional selection in South China:enlightenment from North American exploration experience[J]. Petroleum Geology and Recovery Efficiency, 21(4):23-27, 32. (in Chinese) http://www.cqvip.com/QK/90849A/201404/661932733.html
    LI M C, DING H, JIAO K, et al., 2012. Organic petrology of Niutitang Formation in Sancha, western Hunan province, China[J]. Natural Gas Geoscience, 23(6):1077-1089. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201206015.htm
    LIANG M L, WANG Z X, GAO L, et al., 2017. Evolution of pore structure in gas shale related to structural deformation[J]. Fuel, 197:310-319. doi: 10.1016/j.fuel.2017.02.035
    LIU B, SCHIEBER J, MASTALERZ M, 2017. Combined SEM and reflected light petrography of organic matter in the New Albany shale (Devonian-Mississippian) in the Illinois Basin:a perspective on organic pore development with thermal maturation[J]. International Journal of Coal Geology, 184:57-72. doi: 10.1016/j.coal.2017.11.002
    LOUCKS R G, REED R M, RUPPEL S C, et al., 2009. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal Sediment Research, 79(12):848-861. doi: 10.2110/jsr.2009.092
    LOUCKS R G, REED R M, RUPPEL S C, et al., 2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 96(6):1071-1098. doi: 10.1306/08171111061
    LUO P, ZHONG N N, 2020. The role of residual bitumen on the pore structure of organic-rich shales from low to over mature:Insight from shale and coal samples after the hydrous pyrolysis[J]. International Journal of Coal Geology, 226:103515. doi: 10.1016/j.coal.2020.103515
    MA Y, ARDAKANI O H, ZHONG N N, et al., 2020. Possible pore structure deformation effects on the shale gas enrichment:An example from the Lower Cambrian shales of the Eastern Upper Yangtze Platform, South China[J]. International Journal of Coal Geology, 217:103349. doi: 10.1016/j.coal.2019.103349
    MEI L F, LIU Z Q, TANG J G, et al., 2010. Mesozoic intra-continental progressive deformation in Western Hunan-Hubei-Eastern Sichuan Provinces of China:Evidence from apatite fission track and balanced cross-section[J]. Earth Science-Journal of China University of Geosciences, 35(2):161-174. (in Chinese with English abstract) doi: 10.3799/dqkx.2010.017
    MIAO F B, PENG Z Q, WANG C S, et al., 2019. Gas-Bearing Capacity and Controlling Factors of Niutitang Formation Shale in Well XZD-1, Western Margin of Xuefeng Uplift[J]. Earth Science, 44(11):3662-3677. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911007.htm
    MIAO Y N, LI X F, LEE J, et al., 2018. Characterization of hydrocarbon/pores generation and methane adsorption in shale organic matter[J]. Petroleum Science and Technology, 36(15):1187-1193. doi: 10.1080/10916466.2018.1465967
    MILLIKEN K L, RUDNICKI M, AWWULLER D N, et al., 2013. Organic matter-hosted pore system, Marcellus formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 97(2):177-200. doi: 10.1306/07231212048
    MOSHER K, HE J J, LIU Y Y, et al., 2013. Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems[J]. International Journal of Coal Geology, 109-110:36-44. doi: 10.1016/j.coal.2013.01.001
    ROSS D J K, BUSTIN R M, 2009. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 26(6):916-927. doi: 10.1016/j.marpetgeo.2008.06.004
    TANG L J, CUI M, 2011. Key tectonic changes, deformation styles and hydrocarbon preservations in Middle-Upper Yangtze region[J]. Petroleum Geology & Experiment, 33(1):12-16. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_petroleum-geology-experiment_thesis/0201218225470.html
    WANG A M, CAO D Y, LI J, et al., 2017. A new discovery on the deformation behavior of shale gas reservoirs affecting pore morphology in the Juhugeng Coal Mining Area of Qinghai province, Northwest China[J]. Acta Geologica Sinica (English Edition), 91(5):1932-1933. doi: 10.1111/1755-6724.13429
    WANG Y, ZHU Y M, CHEN S B, et al., 2013. Formation conditions of shale gas in Lower Cambrian Niutitang Formation, Northwestern Hunan[J]. Journal of China University of Mining & Technology, 42(4):586-594. (in Chinese with English abstract)
    WANG Z X, ZHANG J, GUAN H M, et al., 2012. A discussion on the structural deformation and oil/gas traps on the western side of the Xuefeng mountain[J]. Geological Bulletin of China, 31(11):1812-1825. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201211007.htm
    XIAO Z H, WANG C H, YANG R F, et al., 2013. Reservoir conditions of shale gas in the Lower Cambrian Niutitang Formation, Northwestern Hunan[J]. Acta Geologica Sinica, 87(10):1612-1623. (in Chinese with English abstract)
    YANG X, LIU X W, WANG Y D, et al., 2011. The tectonic controls on the distribution of marine oil and gas in the adjacent areas of Xuefeng Mountain[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 33(4):7-12. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-XNSY201104004.htm
    ZHANG P, HUANG Y Q, ZHANG J C, et al., 2019. Fractal characteristics of pore in marine shale and marine-continental transitional shale in northwest Guizhou[J]. Geology and Exploration, 55(4):1073-1081. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZKT201904018.htm
    ZHANG W T, HU W X, BORJIGIN T, et al., 2020. Pore characteristics of different organic matter in black shale:A case study of the Wufeng-Longmaxi Formation in the Southeast Sichuan Basin, China[J]. Marine and Petroleum Geology, 111:33-43. doi: 10.1016/j.marpetgeo.2019.08.010
    ZHANG X W, LI J J, LU S F, et al., 2018. Effects of structural deformation on shale pore structure and adsorption[J]. Special Oil & Gas Reservoirs, 25(3):32-36. (in Chinese with English abstract)
    ZHOU L, WANG Z X, LI H J, et al., 2018. Accumulation pattern of organic matter in shales of the Lower Cambrian Niutitang Formation, Chuandong-Wulingshan area[J]. Journal of Geomechanics, 24(5):617-626. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201805064.htm
    ZHU H J, JU Y W, QI Y, et al., 2018. Impact of tectonism on pore type and pore structure evolution in organic-rich shale:Implications for gas storage and migration pathways in naturally deformed rocks[J]. Fuel, 228:272-289. doi: 10.1016/j.fuel.2018.04.137
    ZHU H J, JU Y W, HUANG C, et al., 2019. Pore structure variations across structural deformation of Silurian Longmaxi Shale:An example from the Chuandong Thrust-Fold Belt[J]. Fuel, 241:914-932. doi: 10.1016/j.fuel.2018.12.108
    柏道远, 倪艳军, 李送文, 等, 2009.江南造山带北部早中生代岳阳-赤壁断褶带构造特征及变形机制研究[J].中国地质, 36(5):996-1009. doi: 10.3969/j.issn.1000-3657.2009.05.005
    郭永岩, 梁明亮, 王宗秀, 等, 2019.湘西北地区下寒武统牛蹄塘组页岩有机地球化学与矿物组成特征[J].地质力学学报, 25(3):392-399. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190309&journal_id=dzlxxb
    黄俨然, 肖正辉, 焦鹏, 等, 2018.湘西北牛蹄塘组探井页岩气富集要素的对比和启示[J].中南大学学报(自然科学版), 49(9):2240-2248. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201809017.htm
    李健青, 高玉巧, 花彩霞, 等, 2014.北美页岩气勘探经验对建立中国南方海相页岩气选区评价体系的启示[J].油气地质与采收率, 21(4):23-27, 32. doi: 10.3969/j.issn.1009-9603.2014.04.006
    李苗春, 丁海, 焦堃, 等, 2012.湘西三岔地区牛蹄塘组黑色岩系有机岩石学特征[J].天然气地球科学, 23(6):1077-1089. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201206015.htm
    梅廉夫, 刘昭茜, 汤济广, 等, 2010.湘鄂西-川东中生代陆内递进扩展变形:来自裂变径迹和平衡剖面的证据[J].地球科学-中国地质大学学报, 35(2):161-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201002000.htm
    苗凤彬, 彭中勤, 王传尚, 等, 2019.雪峰隆起西缘湘张地1井牛蹄塘组页岩含气性特征及控制因素[J].地球科学, 44(11):3662-3677. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911007.htm
    汤良杰, 崔敏, 2011.中上扬子区关键构造变革期、构造变形样式与油气保存[J].石油实验地质, 33(1):12-16. doi: 10.3969/j.issn.1001-6112.2011.01.002
    王阳, 朱炎铭, 陈尚斌, 等, 2013.湘西北下寒武统牛蹄塘组页岩气形成条件分析[J].中国矿业大学学报, 42(4):586-594. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201304013.htm
    王宗秀, 张进, 关会梅, 等, 2012.雪峰山西侧地区构造形变与油气圈闭[J].地质通报, 31(11):1812-1825. doi: 10.3969/j.issn.1671-2552.2012.11.006
    肖正辉, 王朝晖, 杨荣丰, 等, 2013.湘西北下寒武统牛蹄塘组页岩气储集条件研究[J].地质学报, 87(10):1612-1623. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310010.htm
    杨鑫, 刘兴旺, 王亚东, 等, 2011.构造活动对雪峰山邻区海相油气分布的控制[J].西南石油大学学报(自然科学版), 33(4):7-12. doi: 10.3863/j.issn.1674-5086.2011.04.002
    张鹏, 黄宇琪, 张金川, 等, 2019.黔西北海相、海陆过渡相页岩孔隙分形特征对比研究[J].地质与勘探, 55(4):1073-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201904018.htm
    章新文, 李吉君, 卢双舫, 等, 2018.构造变形对页岩孔隙结构及吸附性的影响[J].特种油气藏, 25(3):32-36. doi: 10.3969/j.issn.1006-6535.2018.03.007
    周磊, 王宗秀, 李会军, 等, 2018.川东-武陵山地区下寒武统牛蹄塘组页岩有机质富集模式[J].地质力学学报, 2018, 24(5):617-626. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180504&journal_id=dzlxxb
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  414
  • HTML全文浏览量:  136
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-20
  • 修回日期:  2020-10-15
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回