Effect of shear on the development and adsorption capacity of organic pores in shale
-
摘要: 有机质孔是高成熟页岩储层中吸附气和游离气赋存的主要储集空间类型。中国南方海相页岩地层经历了多期构造改造,滑脱构造广泛发育。为了认识剪切作用对页岩有机质孔微观结构和吸附能力的影响,以张家界三岔地区下寒武统牛蹄塘组页岩为例,通过大量扫描电镜图像观测统计,对比分析了滑脱带页岩、邻近滑脱带页岩和远离滑脱带页岩有机质孔的发育特征,同时对这三类样品进行了甲烷等温吸附测试。研究结果表明,有机质内孔发育在有机质内部,孔径一般<20 nm;位于有机质与矿物接触边缘的复合孔孔径整体大于有机质内孔,主要发育在滑脱带页岩中包裹有矿物碎片的有机质中。受剪切作用影响,这两类有机质孔均沿一定优势方向发生形变,形态更趋于狭长且定向性增强;同时页岩甲烷吸附能力变差,从滑脱带向远离滑脱带方向这种影响逐渐减弱。剪切作用对页岩储集性能和含气性具有重要控制作用,对认识复杂构造区页岩气保存条件和富集规律具有重要意义。Abstract: Organic pore is the most important type of storage space for adsorbed gas and free gas in highly mature shale reservoirs. The marine shale formations in South China experienced complex structural deformations and the detachment structures widely developed. To investigate the effect of shear-induced deformation on the microscopic structure and adsorption capacity of organic pores in shale,the lower Cambrian Niutitang shales in the Sancha outcrop in Zhangjiajie were taken as an example. Based on scanning electron microscope observations and statistical parameter analysis of pore images,the development characteristics of organic pores from the detachment belt,the near-by detachment belt and the far-away detachment belt were compared. The methane isothermal adsorption tests were also carried out on the three types of samples. The results show that the pores developed within the organic matters have dominant pore sizes less than 20 nm and the organic matter-mineral related pores have larger pore sizes and mainly developed in the organic matter encapsulating mineral fragments in the detachment belt. The organic pores experienced directional elongation and flattening under shear. The adsorption capacity of shales decreased under shear and the degree of such influence gradually decreased as the distance from the detachment belt increased. The shear has an important controlling effect on shale storage and gas-bearing capacity,which is significant to the understandings on shale gas preservation conditions and accumulation patterns.
-
Key words:
- shale /
- detachment structure /
- organic pore /
- microscopic characteristics /
- pore structure /
- adsorption capacity
-
表 1 样品位置、类型及其总有机碳含量和矿物组成
Table 1. Positions and types of samples and their TOC
wt% 样号 样品类型 与滑脱带顶面距离/m TOC/% 石英/% 粘土矿物/% 碳酸盐矿物/% 其他矿物/% SC1 滑脱带 / 7.72 52 36 5 7 SC2 邻近滑脱带 0.4 7.05 54 28 8 10 SC3 远离滑脱带 1.5 8.29 50 30 15 5 表 2 页岩有机质孔形态学参数统计结果
Table 2. Statistical results of morphological parameters of organic pores in shale
样号 样品类型 有机质内孔 有机质-矿物复合孔 中值孔径/nm 中值长宽比 中值孔径/nm 中值长宽比 SC1 滑脱带 14.2 1.92 23.0 2.38 SC2 邻近滑脱带 16.5 1.79 20.1 2.11 SC3 远离滑脱带 18.3 1.63 18.6 2.01 -
BAI D Y, NI Y J, LI S W, et al., 2009. A geometrical and kinematic analysis of the Early-Mesozoic Yueyang-Chibi fold-thrust belt in southern Jiangnan orogen[J]. Geology in China, 36(5):996-1009. (in Chinese with English abstract) CARDOTT B J, LANDIS C R, CURTIS M E, 2015. Post-oil solid bitumen network in the Woodford Shale, USA-A potential primary migration pathway[J]. International Journal of Coal Geology, 139:106-113. doi: 10.1016/j.coal.2014.08.012 CHEN Z Y, SONG Y, JIANG Z X, et al., 2019. Identification of organic matter components and organic pore characteristics of marine shale:A case study of Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Marine and Petroleum Geology, 109:56-69. doi: 10.1016/j.marpetgeo.2019.06.002 CURTIS J B, 2002. Fractured shale-gas systems[J]. AAPG Bulletin, 86(11):1921-1938. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg13/ref13&dbid=16&doi=10.1139%2Fcjes-2014-0188&key=10.1306%2F61EEDDBE-173E-11D7-8645000102C1865D CURTIS M E, CARDOTT B J, SONDERGELD C H, et al., 2012. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 103:26-31. doi: 10.1016/j.coal.2012.08.004 DESBOIS G, HÖHNE N, URAI J L, et al., 2017. Deformation in cemented mudrock (Callovo-Oxfordian Clay) by microcracking, granular flow and phyllosilicate plasticity:Insights from triaxial deformation, broad ion beam polishing and scanning electron microscopy[J]. Solid Earth, 8(2):291-305. doi: 10.5194/se-8-291-2017 GUO Y Y, LIANG M L, WANG Z X, et al., 2019. Organic geochemistry and mineral composition characteristics in shales of Niutitang Formation, Northwestern Hunan[J]. Journal of Geomechanics, 25(3):392-399. (in Chinese with English abstract) http://www.cqvip.com/QK/98414X/20193/7002243788.html HU G, PANG Q, JIAO K, et al., 2020. Development of organic pores in the Longmaxi Formation overmature shales:Combined effects of thermal maturity and organic matter composition[J]. Marine and Petroleum Geology, 116:104314. doi: 10.1016/j.marpetgeo.2020.104314 HUANG Y R, XIAO Z H, JIAO P, et al., 2018. Comparison of factors for shale gas accumulation in Niutitang formation wells in northwestern Hunan and its implications[J]. Journal of Central South University (Science and Technology), 49(9):2240-2248. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZNGD201809017.htm JU Y W, SUN Y, TAN J Q, et al., 2018. The composition, pore structure characterization and deformation mechanism of coal-bearing shales from tectonically altered coalfields in eastern China[J]. Fuel, 234:626-642. doi: 10.1016/j.fuel.2018.06.116 LI J Q, GAO Y Q, HUA C X, et al., 2014. Marine shale gas evaluation system of regional selection in South China:enlightenment from North American exploration experience[J]. Petroleum Geology and Recovery Efficiency, 21(4):23-27, 32. (in Chinese) http://www.cqvip.com/QK/90849A/201404/661932733.html LI M C, DING H, JIAO K, et al., 2012. Organic petrology of Niutitang Formation in Sancha, western Hunan province, China[J]. Natural Gas Geoscience, 23(6):1077-1089. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201206015.htm LIANG M L, WANG Z X, GAO L, et al., 2017. Evolution of pore structure in gas shale related to structural deformation[J]. Fuel, 197:310-319. doi: 10.1016/j.fuel.2017.02.035 LIU B, SCHIEBER J, MASTALERZ M, 2017. Combined SEM and reflected light petrography of organic matter in the New Albany shale (Devonian-Mississippian) in the Illinois Basin:a perspective on organic pore development with thermal maturation[J]. International Journal of Coal Geology, 184:57-72. doi: 10.1016/j.coal.2017.11.002 LOUCKS R G, REED R M, RUPPEL S C, et al., 2009. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal Sediment Research, 79(12):848-861. doi: 10.2110/jsr.2009.092 LOUCKS R G, REED R M, RUPPEL S C, et al., 2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 96(6):1071-1098. doi: 10.1306/08171111061 LUO P, ZHONG N N, 2020. The role of residual bitumen on the pore structure of organic-rich shales from low to over mature:Insight from shale and coal samples after the hydrous pyrolysis[J]. International Journal of Coal Geology, 226:103515. doi: 10.1016/j.coal.2020.103515 MA Y, ARDAKANI O H, ZHONG N N, et al., 2020. Possible pore structure deformation effects on the shale gas enrichment:An example from the Lower Cambrian shales of the Eastern Upper Yangtze Platform, South China[J]. International Journal of Coal Geology, 217:103349. doi: 10.1016/j.coal.2019.103349 MEI L F, LIU Z Q, TANG J G, et al., 2010. Mesozoic intra-continental progressive deformation in Western Hunan-Hubei-Eastern Sichuan Provinces of China:Evidence from apatite fission track and balanced cross-section[J]. Earth Science-Journal of China University of Geosciences, 35(2):161-174. (in Chinese with English abstract) doi: 10.3799/dqkx.2010.017 MIAO F B, PENG Z Q, WANG C S, et al., 2019. Gas-Bearing Capacity and Controlling Factors of Niutitang Formation Shale in Well XZD-1, Western Margin of Xuefeng Uplift[J]. Earth Science, 44(11):3662-3677. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911007.htm MIAO Y N, LI X F, LEE J, et al., 2018. Characterization of hydrocarbon/pores generation and methane adsorption in shale organic matter[J]. Petroleum Science and Technology, 36(15):1187-1193. doi: 10.1080/10916466.2018.1465967 MILLIKEN K L, RUDNICKI M, AWWULLER D N, et al., 2013. Organic matter-hosted pore system, Marcellus formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 97(2):177-200. doi: 10.1306/07231212048 MOSHER K, HE J J, LIU Y Y, et al., 2013. Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems[J]. International Journal of Coal Geology, 109-110:36-44. doi: 10.1016/j.coal.2013.01.001 ROSS D J K, BUSTIN R M, 2009. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 26(6):916-927. doi: 10.1016/j.marpetgeo.2008.06.004 TANG L J, CUI M, 2011. Key tectonic changes, deformation styles and hydrocarbon preservations in Middle-Upper Yangtze region[J]. Petroleum Geology & Experiment, 33(1):12-16. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_petroleum-geology-experiment_thesis/0201218225470.html WANG A M, CAO D Y, LI J, et al., 2017. A new discovery on the deformation behavior of shale gas reservoirs affecting pore morphology in the Juhugeng Coal Mining Area of Qinghai province, Northwest China[J]. Acta Geologica Sinica (English Edition), 91(5):1932-1933. doi: 10.1111/1755-6724.13429 WANG Y, ZHU Y M, CHEN S B, et al., 2013. Formation conditions of shale gas in Lower Cambrian Niutitang Formation, Northwestern Hunan[J]. Journal of China University of Mining & Technology, 42(4):586-594. (in Chinese with English abstract) WANG Z X, ZHANG J, GUAN H M, et al., 2012. A discussion on the structural deformation and oil/gas traps on the western side of the Xuefeng mountain[J]. Geological Bulletin of China, 31(11):1812-1825. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201211007.htm XIAO Z H, WANG C H, YANG R F, et al., 2013. Reservoir conditions of shale gas in the Lower Cambrian Niutitang Formation, Northwestern Hunan[J]. Acta Geologica Sinica, 87(10):1612-1623. (in Chinese with English abstract) YANG X, LIU X W, WANG Y D, et al., 2011. The tectonic controls on the distribution of marine oil and gas in the adjacent areas of Xuefeng Mountain[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 33(4):7-12. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-XNSY201104004.htm ZHANG P, HUANG Y Q, ZHANG J C, et al., 2019. Fractal characteristics of pore in marine shale and marine-continental transitional shale in northwest Guizhou[J]. Geology and Exploration, 55(4):1073-1081. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZKT201904018.htm ZHANG W T, HU W X, BORJIGIN T, et al., 2020. Pore characteristics of different organic matter in black shale:A case study of the Wufeng-Longmaxi Formation in the Southeast Sichuan Basin, China[J]. Marine and Petroleum Geology, 111:33-43. doi: 10.1016/j.marpetgeo.2019.08.010 ZHANG X W, LI J J, LU S F, et al., 2018. Effects of structural deformation on shale pore structure and adsorption[J]. Special Oil & Gas Reservoirs, 25(3):32-36. (in Chinese with English abstract) ZHOU L, WANG Z X, LI H J, et al., 2018. Accumulation pattern of organic matter in shales of the Lower Cambrian Niutitang Formation, Chuandong-Wulingshan area[J]. Journal of Geomechanics, 24(5):617-626. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201805064.htm ZHU H J, JU Y W, QI Y, et al., 2018. Impact of tectonism on pore type and pore structure evolution in organic-rich shale:Implications for gas storage and migration pathways in naturally deformed rocks[J]. Fuel, 228:272-289. doi: 10.1016/j.fuel.2018.04.137 ZHU H J, JU Y W, HUANG C, et al., 2019. Pore structure variations across structural deformation of Silurian Longmaxi Shale:An example from the Chuandong Thrust-Fold Belt[J]. Fuel, 241:914-932. doi: 10.1016/j.fuel.2018.12.108 柏道远, 倪艳军, 李送文, 等, 2009.江南造山带北部早中生代岳阳-赤壁断褶带构造特征及变形机制研究[J].中国地质, 36(5):996-1009. doi: 10.3969/j.issn.1000-3657.2009.05.005 郭永岩, 梁明亮, 王宗秀, 等, 2019.湘西北地区下寒武统牛蹄塘组页岩有机地球化学与矿物组成特征[J].地质力学学报, 25(3):392-399. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190309&journal_id=dzlxxb 黄俨然, 肖正辉, 焦鹏, 等, 2018.湘西北牛蹄塘组探井页岩气富集要素的对比和启示[J].中南大学学报(自然科学版), 49(9):2240-2248. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201809017.htm 李健青, 高玉巧, 花彩霞, 等, 2014.北美页岩气勘探经验对建立中国南方海相页岩气选区评价体系的启示[J].油气地质与采收率, 21(4):23-27, 32. doi: 10.3969/j.issn.1009-9603.2014.04.006 李苗春, 丁海, 焦堃, 等, 2012.湘西三岔地区牛蹄塘组黑色岩系有机岩石学特征[J].天然气地球科学, 23(6):1077-1089. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201206015.htm 梅廉夫, 刘昭茜, 汤济广, 等, 2010.湘鄂西-川东中生代陆内递进扩展变形:来自裂变径迹和平衡剖面的证据[J].地球科学-中国地质大学学报, 35(2):161-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201002000.htm 苗凤彬, 彭中勤, 王传尚, 等, 2019.雪峰隆起西缘湘张地1井牛蹄塘组页岩含气性特征及控制因素[J].地球科学, 44(11):3662-3677. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911007.htm 汤良杰, 崔敏, 2011.中上扬子区关键构造变革期、构造变形样式与油气保存[J].石油实验地质, 33(1):12-16. doi: 10.3969/j.issn.1001-6112.2011.01.002 王阳, 朱炎铭, 陈尚斌, 等, 2013.湘西北下寒武统牛蹄塘组页岩气形成条件分析[J].中国矿业大学学报, 42(4):586-594. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201304013.htm 王宗秀, 张进, 关会梅, 等, 2012.雪峰山西侧地区构造形变与油气圈闭[J].地质通报, 31(11):1812-1825. doi: 10.3969/j.issn.1671-2552.2012.11.006 肖正辉, 王朝晖, 杨荣丰, 等, 2013.湘西北下寒武统牛蹄塘组页岩气储集条件研究[J].地质学报, 87(10):1612-1623. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310010.htm 杨鑫, 刘兴旺, 王亚东, 等, 2011.构造活动对雪峰山邻区海相油气分布的控制[J].西南石油大学学报(自然科学版), 33(4):7-12. doi: 10.3863/j.issn.1674-5086.2011.04.002 张鹏, 黄宇琪, 张金川, 等, 2019.黔西北海相、海陆过渡相页岩孔隙分形特征对比研究[J].地质与勘探, 55(4):1073-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201904018.htm 章新文, 李吉君, 卢双舫, 等, 2018.构造变形对页岩孔隙结构及吸附性的影响[J].特种油气藏, 25(3):32-36. doi: 10.3969/j.issn.1006-6535.2018.03.007 周磊, 王宗秀, 李会军, 等, 2018.川东-武陵山地区下寒武统牛蹄塘组页岩有机质富集模式[J].地质力学学报, 2018, 24(5):617-626. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180504&journal_id=dzlxxb