Deformation characteristics of Early Paleozoic marine shale and their influence on the shale gas preservation in the eastern Sichuan-Wulingshan tectonic belt
-
摘要: 川东-武陵构造带下古生界发育的两套海相页岩层系(下寒武统牛蹄塘组和上奥陶统五峰组—下志留统龙马溪组)不仅是区域内重要的滑脱层,也是页岩气勘探开发的重点层位。通过野外详细的构造解析及室内显微观察,从宏观露头—显微尺度分析了页岩的变形特征,认为页岩至少存在两期构造变形:早期顺层向北西或南东的逆冲和晚期的切层断层作用。页岩的变形强度随着与断裂带距离的变化而发生改变,远离断裂带的地区页岩变形主要表现为近直立的微裂隙,属脆性域;靠近断裂带,页岩的变形特征逐渐表现为脆-韧性过渡,开始发育糜棱化构造;在断裂带内部,页岩强烈面理化,发育大量的糜棱化构造,属韧性域。通过氩离子抛光和扫描电镜技术,分析了变形页岩内部的孔隙演化特征,认为随着变形作用从脆性—脆-韧性过渡—韧性的转变,页岩内部的孔隙类型不仅可以发生转换,而且页岩内部孔隙的大小、分布特征也随之改变。在此基础上,进一步讨论了中国南方复杂构造区下古生界页岩变形对页岩气保存的影响,认为顺层剪切滑脱作用会改变页岩内部的孔隙体系,有利于页岩气的富集;切层的伸展或走滑剪切作用不仅会破坏先前形成的油气圈闭,而且会导致油气沿着断裂带从高势区向低势区运移,进而造成油气散失。Abstract: Two sets of marine shale systems (the Lower Cambrian Niutitang Formation and the Upper Ordovician Wufeng-Lower Silurian Longmaxi Formations) developed in the Lower Paleozoic of the eastern Sichuan-Wuling tectonic belt are not only significant decollement zones,but also key strata for shale gas exploration and development. In this paper,through detailed field structural analysis (macroscopic scale) and indoor microscopic observation (microscopic scale),it is considered that there are at least two stages of structural deformation developed in shale: top-to-the-NW/SE thrusting (D1) and the faults cutting through the bedding (D2). The deformation and strength characteristics of shale are related to the change of distance from the regional fault zones. The deformation characteristics of shale far away from the fault zone are mainly manifested as nearly vertical microcracks,belonging to the brittle domain; near the fault zone,the deformation characteristics of shale gradually show brittle-to-ductile transition and the development of mylonitization structures; within the fault zone,strongly foliated and mylonitization structures developed in the shale indicating the deformation of shale belongs to the ductile domain. By means of ion-milled backscatter SEM,the pore-structure evolution characteristics of deformed shale were analyzed. The result showed that not only the pore types in shale can be transformed,the size and distribution characteristics of pores can also change with the deformation strength. On this basis,the influence of Lower Paleozoic shale deformation on shale gas preservation in the complex structural area of South China is further discussed. It is suggested that the D1 can change the pore system developed in the shale,which is conducive to shale gas enrichment. The extension or strike-slip shearing (D2) can not only destroy the oil and gas traps formed previously,but also cause oil and gas migration from the high potential zone to the low potential zone along the fault zone,thus leading to oil and gas loss.
-
图 2 下寒武统牛蹄塘组页岩野外变形表现及采样位置
黄色五角星—采样位置,黄色数字—样品编号;S0—页岩沉积层理,S1—改造后的劈理
a—张家界四都坪田坪村发育的早期顺层滑脱被晚期走滑切断;b—吉首古丈县龙鼻村附近发育的南西向北东逆冲的断层切断早期页岩中发育的S1劈理;c—重庆秀山县孝溪乡彭家屯发育的正断层Figure 2. Field photos showing the structural characteristics and sample locations of the Lower Cambrian Niutitang Formation in the eastern Sichuan-Wulingshan tectonic belt
图 5 川东-武陵构造带下寒武统牛蹄塘组页岩微观变形表现显微镜下照片
a—发育粒序层理的未变形页岩;b—页岩中发育的格里菲斯裂纹;c—页岩中早期的格里菲斯裂纹被晚期方解石脉切割;d—不对称褶皱指示了由南西向北东的逆冲;e—页岩中发育的旋转碎斑指示了南西向北东的剪切;f—页岩中的微剪切应变带内部的不对称褶皱
Figure 5. Microphotos showing the deformation characteristics of the Lower Cambrian Niutitang Formation in the eastern Sichuan-Wulingshan tectonic belt
图 6 川东-武陵构造带上奥陶统五峰组—下志留统龙马溪组页岩微观变形表现显微镜下照片
a—未变形页岩;b—页岩中有机质、黏土类矿物含量高的区域发育的微剪切带;c—酉阳桂花村页岩S-C组构指示了南东向北西的剪切;d—彭水走马村页岩S-C组构及不对称褶皱指示了由北向南的剪切
Figure 6. Microphotos showing the deformation characteristics of the Upper Ordovician Wufeng-Lower Silurian Longmaxi Formations in the eastern Sichuan-Wulingshan tectonic belt
图 7 川东-武陵构造带下古生界海相页岩超显微构造及孔隙分布特征
a—未变形页岩结构,发育不规则有机质孔、脆性矿物间骨架孔、黏土类矿物层间孔;b—具有脆、韧性过渡变形特征页岩中的黏土类矿物定向排列,脆性矿物间骨架孔数量减少;c—具有韧性变形特征页岩中发育的黏土类矿物定向排列,层间孔发育,黄铁矿集合体长轴方向具有优势方位;d—具有韧性变形特征页岩中层间孔合并为微裂隙,黄铁矿集合体等矿物长轴具有优势方位
Figure 7. Characteristics of ultramicroscopic structures and pore distribution of Lower Paleozoic marine shale in the eastern Sichuan-Wulingshan tectonic belt
-
CHEN S B, ZHANG C, LIU Y, 2018. Research progress and prospect of shale gas occurrence and its molecular simulation[J]. Coal Science and Technology, 46 (10):36-44. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-MTKJ201801005.htm FENG X Y, MENG X G, SHAO Z G, et al., 2003. A preliminary discussion on features and dynamics of sequence deformation in South China and neighboring area[J]. Acta Geoscientia Sinica, 24 (2):115-120. (in Chinese with English abstract) http://www.oalib.com/paper/1559704 GE M N, PANG F, BAO S J, 2019. Micro pore characteristics of Wufeng-Longmaxi shale and their control on gas content:a case study of well Anye 1 in Zunyi area, Guizhou Province[J]. Petroleum Geology and Experiment, 41 (1):23-30. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SYSD201901005.htm GUO T L, ZHANG H R, 2014. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 41 (1):28-36. (in Chinese with English abstract) http://www.cnki.com.cn/article/cjfdtotal-skyk201401003.htm GUO Y Y, LIANG M L, WANG Z X, et al., 2019. Organic geochemistry and mineral composition characteristics in shales of Niutitang Formation northwestern Hunan[J]. Journal of Geomechanics, 25 (3):392-399. (in Chinese with English abstract) http://www.cqvip.com/QK/98414X/20193/7002243788.html HU Z Q, ZHU G, LIU G S, et al., 2009. The folding time of the Eastern Sichuan Jura-type fold belt:evidence from unconformity[J]. Geological Review, 55 (1):32-42. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200901006.htm JIAO S J, ZHANG H, XUE D C, 2016. Application and comparison of fresh fracture secondary electron SEM and ion-milled backscatter SEM for shale sample preparation[J]. Journal of Chinese Electron Microscopy Society, 35 (6):544-549. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZXV201606014.htm LI J, HE D F, 2014. Palaeogeography and tectonic-depositional environment evolution of the Cambrian in Sichuan Basin and adjacent areas[J]. Journal of Palaeogeography, 16 (4):441-460. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/gdlxb201404002 LI J H, DONG S W, CAWOOD P A, et al., 2018. An Andean-type retro-arc foreland system beneath northwest South China revealed by SINOPROBE profiling[J]. Earth and Planetary Science Letters, 490:170-179. doi: 10.1016/j.epsl.2018.03.008 LI Q W, TANG L, PANG X Q, 2020. Dynamic evolution model of shale gas occurrence and quantitative evaluation of gas-bearing capacity[J]. Geological Review, 66 (2):457-466. (in Chinese with English abstract) LI S J, LI J M, ZHOU Y, et al., 2011. Fission track evidence for Mesozoic-Cenozoic uplifting in the southeastern margin of Sichuan Basin[J]. Acta Petrologica et Mineralogica, 30 (2):225-233. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-mineralogica_thesis/0201254450253.html LI X J, PAN R F, YAN J, et al., 2016. Absorptivity and influential factors of Lower Silurian Longmaxi gas-bearing shale in Changning-Weiyuan Area, Sichuan Basin[J]. Marine Origin Petroleum Geology, 21 (4):60-66. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ201604007.htm LIANG M L, WANG Z X, GAO L, et al., 2017. Evolution of pore structure in gas shale related to structural deformation[J]. Fuel, 197:310-319. doi: 10.1016/j.fuel.2017.02.035 LIU S Z, 1995. My opinion of structural pattern of thin-skinned structure in east Sichuan[J]. Acta Geologica Sichuan, 15 (4):264-267. (in Chinese with English abstract) http://www.researchgate.net/publication/284147319_My_opinion_of_structural_pattern_of_thin-skinned_structure_in_East_Sichuan LIU Y, XIA X H, LI W, et al., 2015. Pore characteristics and relation with shale gas in the Longmaxi Formation shale reservoir[J]. Natural Gas Geoscience, 26 (8):1576-1603. (in Chinese with English abstract) http://www.researchgate.net/publication/283103960_Pore_characteristics_and_relation_with_shale_gas_in_the_Longmaxi_Formation_shale_reservoir MA Y, ZHONG N N, HAN H, et al., 2014. Definition and structure characteristics of pores in mylonitized organic-rich shales[J]. Science China Earth Sciences, 57(12):3027-3034. doi: 10.1007/s11430-014-4968-3 MA Y, ZHONG N N, CHENG L J, et al., 2015. Pore structure of two organic-rich shales in southeastern Chongqing area:Insight from focused ion beam scanning electron microscope (FIB-SEM)[J]. Petroleum Geology & Experiment, 37 (1):109-116. (in Chinese with English abstract) http://qikan.cqvip.com/Qikan/Article/Detail?id=663784745 MEI L F, LIU Z Q, TANG J G, et al., 2010. Mesozoic intra-continental progressive deformation in Western Hunan-Hubei-Eastern Sichuan Provinces of China:evidence from apatite fission track and balanced cross-section[J]. Earth Science-Journal of China University of Geosciences, 35 (2):161-174. (in Chinese with English abstract) doi: 10.3799/dqkx.2010.017 WANG P F, JIANG Z X, YANG C H, et al., 2019. Organic pore development characteristics of Longmaxi and Niutitang shales in the periphery of Chongqing[J]. Lithologic Reservoirs, 31 (3):27-36. (in Chinese with English abstract) WANG Z X, ZHANG J, LI T, et al., 2010. Structural analysis of the multi-layer detachment folding in Eastern Sichuan Province[J]. Acta Geologica Sinica (English Edition), 84 (3):497-514. doi: 10.1111/j.1755-6724.2010.00269.x WANG Z X, ZHANG J, LI T, et al., 2012. Structural traps in detachment folds:a case study from the 'comb- and trough-like' deformation zone/s, East Sichuan, China[J]. Acta Geologica Sinica (English Edition), 86 (4):828-841. doi: 10.1111/j.1755-6724.2012.00709.x WANG Z X, ZHANG J, GUAN H M, et al., 2012. A discussion on the structural deformation and oil/gas traps on the western side of the Xuefeng Mountain[J]. Geological Bulletin of China, 31 (11):1812-1825. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201211007.htm WANG Z X, LI C L, LI H J, et al., 2019. Tectonic architecture and evolution of the eastern Sichuan-Wulingshan area, South China[J]. Journal of Geomechanics, 25 (5):827-839. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905013.htm XIONG L, 2019. The characteristics of pore development of the Lower Cambrian organic-rich shale in Sichuan Basin and its periphery[J]. Natural Gas Geoscience, 25 (3):1319-1331. (in Chinese with English abstract) XU E S, LI Z M, YANG Z H, 2015. Thermal and hydrocarbon generation history of Wufeng and Longmaxi shales in Pengshui area, eastern Sichuan Basin:A well PY1 case study[J]. Petroleum Geology and Experiment, 38(4):4594-4599. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_petroleum-geology-experiment_thesis/0201218207643.html XU L H, CHEN J F, LU S F, et al., 2008. Study on hydrocarbon-generating history of hydrocarbon source rock in upper Permian East Sichuan Basin with hydrocarbon-generating kinetics[J]. Journal of Jilin University (Earth Science Edition), 38 (4):594-599. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200804008.htm YAN D P, WANG X W, LIU Y Y, 2000. Analysis of fold style and it's formation mechanism in the area of boundary among Sichuan, Hubei and Hunan[J]. Geoscience, 14 (1):37-43. (in Chinese with English abstract) http://www.researchgate.net/publication/307557663_Analysis_of_fold_style_and_its_formation_mechanism_in_the_area_of_boundary_among_Sichuan_Hubei_and_Hunan YAN D P, ZHOU M F, Song H L, et al., 2003. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block (South China)[J]. Tectonophysics, 361 (3-4):239-254. doi: 10.1016/S0040-1951(02)00646-7 YAN D P, JIN Z L, ZHANG W C, et al., 2008. Rock mechanical characteristics of the multi-layer detachment fault system and their controls on the structural deformation style of the Sichuan-Chongqing-Hunan-Hubei thin-skinned belt, South Gansu China[J]. Geological Bulletin of China, 27 (10):1687-1697. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200810012.htm YAN D P, ZHANG B, ZHOU M F, et al., 2009. Constraints on the depth, geometry and kinematics of blind detachment faults provided by fault-propagation folds:an example from the Mesozoic fold belt of South China[J]. Journal of Structural Geology, 2009, 31 (2):150-162. doi: 10.1016/j.jsg.2008.11.005 YAN J P, JIA X J, SHAO D Y, et al., 2015. Characterization of organic matter-hosted pores by SEM method and their formation mechanisms for shales of Longmaxi Formation, Sichuan Basin[J]. Natural Gas Geoscience, 26 (8):1540-1546. (in Chinese with English abstract) http://www.researchgate.net/publication/283735439_Characterization_of_organic_matter-hosted_pores_by_SEM_method_and_their_formation_mechanisms_for_shales_of_Longmaxi_Formation_Sichuan_basin ZHAI G J, BAO S J, PANG F, et al., 2016. Breakthrough of the natural gas of Paleozoic marine strata in Wuling Mountain complex tectonic zone[J]. Acta Geoscientica Sinica, 37 (6):657-662. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geoscientica-sinica_thesis/0201253091800.html ZHAI G Y, BAO S J, PANG F, et al., 2017. Peservoir-forming pattern of "four-storey" hydrocarbon accumulation in Anchang syncline of northern Guizhou Province[J]. Geology in China, 44 (1):1-12. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201701002.htm ZHANG X W, LI J J, LU S F, et al., 2018. Effects of structural deformation on shale pore structure and adsorption[J]. Special Oil & Gas Reservoirs, 25 (3):32-36. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-TZCZ201803007.htm ZHANG Y F, 2020. Study of pore structure and permeability characteristics of marine shale in typical area of South China[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract) ZHU Y Q, WANG X Z, FENG M Y, et al., 2016. Lithofacies classification and its relationship with reservoir of the Lower Paleozoic Wufeng-Longmaxi Formation in the eastern Sichuan Basin[J]. Lithologic Reservoirs, 28 (5):59-66. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YANX201605007.htm 陈尚斌, 张楚, 刘宇, 2018.页岩气赋存状态及其分子模拟研究进展与展望[J].煤炭科学技术, 46 (1):36-44. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201801005.htm 冯向阳, 孟宪刚, 邵兆刚, 等, 2003.华南及邻区有序变形及其动力学初探[J].地球学报, 24 (2):115-120. doi: 10.3321/j.issn:1006-3021.2003.02.004 葛明娜, 庞飞, 包书景, 2019.贵州遵义五峰组-龙马溪组页岩微观孔隙特征及其对含气性控制:以安页1#为例[J].石油实验地质, 41 (1):23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201901005.htm 郭彤楼, 张汉荣, 2014.四川盆地焦石坝页岩气田形成与富集高产模式[J].石油勘探与开发, 41 (1):28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm 郭永岩, 梁明亮, 王宗秀, 等, 2019.湘西北地区下寒武统牛蹄塘组页岩有机地球化学与矿物组成特征[J].地质力学学报, 25 (3):392-399. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190309&journal_id=dzlxxb 胡召齐, 朱光, 刘国生, 等, 2009.川东"侏罗山式"褶皱带形成时代:不整合面的证据[J].地质论评, 55 (1):32-42. doi: 10.3321/j.issn:0371-5736.2009.01.004 焦淑静, 张慧, 薛东川, 2016.泥页岩样品自然断面与氩离子抛光扫描电镜制样方法的比较与应用[J].电子显微学报, 35 (6):544-549. doi: 10.3969/j.issn.1000-6281.2016.06.013 李皎, 何登发, 2014.四川盆地及邻区寒武纪古地理与构造-沉积环境演化[J].古地理学报, 16 (4):441-460. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201404002.htm 李倩文, 唐令, 庞雄奇, 2020.页岩气赋存动态演化模式及含气性定量评价[J].地质论评, 66 (2):457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002017.htm 李双建, 李建明, 周雁, 等.四川盆地东南缘中新生代构造隆升的裂变径迹证据[J].岩石矿物学杂志, 30 (2):225-233. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201102009.htm 李笑天, 潘仁芳, 鄢杰, 等, 2016.四川盆地长宁-威远页岩气示范区下志留统龙马溪组泥页岩吸附特征及影响因素分析[J].海相油气地质, 21 (4):60-66. doi: 10.3969/j.issn.1672-9854.2016.04.007 刘尚忠, 1995.川东薄皮构造模式之我见[J].四川地质学报, 15 (4):264-267. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB504.004.htm 刘宇, 夏筱红, 李伍, 等, 2015.重庆綦江地区龙马溪组页岩孔隙特征与页岩气赋存关系探讨[J].天然气地球科学, 26 (8):1576-1603. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508022.htm 马勇, 钟宁宁, 韩辉, 等, 2014.糜棱化富有机质页岩孔隙结构特征及其含义[J].中国科学:地球科学, 44 (10):2202-2209. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201410009.htm 马勇, 钟宁宁, 程礼军, 等, 2015.渝东南两套富有机质页岩的孔隙结构特征-来自FIB-SEM的新启示[J].石油实验地质, 37 (1):109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201501019.htm 梅廉夫, 刘昭茜, 汤济广, 等, 2010.湘鄂西-川东中生代陆内递进扩展变形:来自裂变径迹和平衡剖面的证据[J].地球科学-中国地质大学学报, 35 (2):161-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201002000.htm 王朋飞, 姜振学, 杨彩虹, 等, 2019.重庆周缘龙马溪组和牛蹄塘组页岩有机质孔隙发育特征[J].岩性油气藏, 31 (3):27-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201903004.htm 王宗秀, 张进, 关会梅, 等, 2012.雪峰山西侧地区构造形变与油气圈闭[J].地质通报, 31 (11):1812-1825. doi: 10.3969/j.issn.1671-2552.2012.11.006 王宗秀, 李春麟, 李会军, 等, 2019.川东-武陵地区构造格局及其演化[J].地质力学学报, 25 (5):827-839. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190512&journal_id=dzlxxb 熊亮, 2019.四川盆地及周缘下寒武统富有机质页岩孔隙发育特征[J].天然气地球科学, 30 (9):1319-1331. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201909009.htm 徐二社, 李志明, 杨振恒, 2015.彭水地区五峰-龙马溪组页岩热演化史及生烃史研究:以PY1井为例[J].石油实验地质, 37(4):4594-4599. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201504014.htm 徐立恒, 陈践发, 卢双舫, 等, 2008.应用生烃动力学法研究川东上二叠统烃源岩生烃史[J].吉林大学学报(地球科学版), 38 (4):594-599. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200804008.htm 颜丹平, 汪新文, 刘友元, 2000.川鄂湘边区褶皱构造样式及其成因机制分析[J].现代地质, 14 (1):37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200001007.htm 颜丹平, 金哲龙, 张维宸, 等, 2008.川渝湘鄂薄皮构造带多层拆离滑脱系的岩石力学性质及其对构造变形样式的控制[J].地质通报, 27 (10):1687-1697. doi: 10.3969/j.issn.1671-2552.2008.10.011 闫建萍, 贾详娟, 邵德勇, 等. 2015.四川盆地龙马溪组页岩有机孔隙SEM表征及成因分析[J].天然气地球科学, 26 (8):1540-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508015.htm 翟刚毅, 包书景, 庞飞, 等, 2016.武陵山复杂构造区古生界海相油气实现重大突破[J].地球学报, 37 (6):657-662. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201606002.htm 翟刚毅, 包书景, 庞飞, 等, 2017.贵州遵义地区安场向斜"四层楼"页岩油气成藏模式研究[J].中国地质, 44 (1):1-12. doi: 10.3969/j.issn.1006-9372.2017.01.001 章新文, 李吉君, 卢双舫, 等, 2018.构造变形对页岩孔隙结构及吸附性的影响[J].特种油气藏, 25 (3):32-36. doi: 10.3969/j.issn.1006-6535.2018.03.007 张艺凡, 2020.中国南方典型地区海相页岩储层孔隙特征与渗透性研究[D].北京: 中国地质大学(北京). 朱逸青, 王兴志, 冯明友, 等, 2016.川东地区下古生界五峰组-龙马溪组页岩岩相划分及其与储层关系[J].岩性油气藏, 28 (5):59-66. doi: 10.3969/j.issn.1673-8926.2016.05.007