留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黔西北青山铅锌矿床主要控矿断裂构造岩-岩相分带模式

宋丹辉 韩润生 王明志 张艳 周威

宋丹辉, 韩润生, 王明志, 等, 2020. 黔西北青山铅锌矿床主要控矿断裂构造岩-岩相分带模式. 地质力学学报, 26 (3): 376-390. DOI: 10.12090/j.issn.1006-6616.2020.26.03.033
引用本文: 宋丹辉, 韩润生, 王明志, 等, 2020. 黔西北青山铅锌矿床主要控矿断裂构造岩-岩相分带模式. 地质力学学报, 26 (3): 376-390. DOI: 10.12090/j.issn.1006-6616.2020.26.03.033
SONG Danhui, HAN Runsheng, WANG Mingzhi, et al., 2020. Model of tectonite-lithofacies zoning in ore-controlling faults of the Qingshan lead-zinc deposit in northwestern Guizhou. Journal of Geomechanics, 26 (3): 376-390. DOI: 10.12090/j.issn.1006-6616.2020.26.03.033
Citation: SONG Danhui, HAN Runsheng, WANG Mingzhi, et al., 2020. Model of tectonite-lithofacies zoning in ore-controlling faults of the Qingshan lead-zinc deposit in northwestern Guizhou. Journal of Geomechanics, 26 (3): 376-390. DOI: 10.12090/j.issn.1006-6616.2020.26.03.033

黔西北青山铅锌矿床主要控矿断裂构造岩-岩相分带模式

doi: 10.12090/j.issn.1006-6616.2020.26.03.033
基金项目: 

国家自然科学基金项目 41572060

云岭学者资助项目 2014

云南省矿产资源预测评价工程实验室 2012

详细信息
    作者简介:

    宋丹辉(1995-), 男, 在读硕士, 地质工程专业。E-mail:806798929@qq.com

    通讯作者:

    张艳(1981-), 女, 讲师, 博士后, 主要从事矿产普查与勘探、矿床学研究。E-mail:78598874@qq.com

  • 中图分类号: P618.4;P613

Model of tectonite-lithofacies zoning in ore-controlling faults of the Qingshan lead-zinc deposit in northwestern Guizhou

  • 摘要: 青山铅锌矿床是黔西北矿集区内威宁-水城成矿亚带的典型矿床之一,矿体产出严格受构造和岩性双重因素控制。含矿断裂带中构造岩既是构造变形作用的载体,也是相应变形环境的受体,其具有显著的分带特征。针对斜落走滑构造环境下弱蚀变构造岩与热液成矿成生联系研究的薄弱环节,基于构造岩-岩相学填图方法以及不同岩相带内节理、裂隙构造解析,系统采集不同构造岩-岩相带内定向构造岩样品,进行显微构造与地球化学分析,剖析不同岩相带内构造岩类型、物质组成、内部结构、构造及其分带特征,构建了该矿床构造岩-岩相分带模式,即从矿体向外,依次为:张裂岩相带→泥化相带(一、三中段及以上)→扭裂岩相带→压裂岩相带。扭裂岩相带内发育黄铁矿化、铅锌矿化、方解石化、弱白云石化,压裂岩相带内主要发育方解石化,矿化蚀变随着远离矿体呈现出从强变弱的变化规律,成矿环境也随着温度逐渐降低,呈现氧化→弱氧化-弱还原→还原的变化特征。同时,结合宏观和显微构造应力场分析,认为矿体外侧不同类型的构造岩是在统一构造应力场作用下,因不同位置的局部应力场变化而形成的不同类型的构造岩,发育在北西向断裂下盘的次级断裂不仅控制了矿体定位和形态产状,也控制了其外侧构造岩-岩相带。

     

  • 图  1  黔西北地质构造略图

    a—黔西北地区地质略图(1—地层界限;2—断层;3—城市;4—研究区矿床位置;5—省界;6—垭都-蟒洞成矿亚带;7—威宁-水城成矿亚带;8—银厂坡-云炉河成矿亚带;据金中国,2008修改)
    b—威宁-水城成矿亚带区域地质图(1—下石炭统;2—上石炭统黄龙组;3—上石炭统马平组;4—下二叠统;5—上二叠统;6—下三叠统;7—中三叠统;8—上三叠统;9—下侏罗统;10—中侏罗统;11—上侏罗统;12—古近系;13—中型铅锌矿床;14—小型铅锌矿床;15—铅锌矿点;16—锌矿点;17—断层;18—向斜;19—背斜;据钱建平,2001修改)

    Figure  1.  Geological map of the Weishui metallogenic belt in northwestern Guizhou

    图  2  青山铅锌矿床地质简图

    a—青山铅锌矿床地质图(1—第四系;2—下石炭统大铺租;3—上石炭统黄龙组;4—上石炭统马平组;5—中二叠统梁山组;6—中二叠统阳新组一阶;7—辉绿岩脉;8—矿体;9—实测断层;10—张性断层;11—张扭性断层;12—扭性断层;13—压性断层)
    b—青山铅锌矿床主矿体剖面图(1—灰岩;2—页岩;3—角砾岩;4—矿体;5—角砾状灰岩;6—断裂;7—碎屑岩;据钱建平,2001修改)

    Figure  2.  Simplified geological map of the Qingshan lead-zinc deposit

    图  3  青山铅锌矿床一、三、五中段构造岩-岩相分带平面图

    Figure  3.  Plan of tectonite-lithofacies zoning for the Level 1, 3, 5 in the Qingshan lead-zinc deposit

    图  4  青山铅锌矿床五中段构造岩-岩相分带实测图

    1—矿体(张裂岩相带);2—扭裂岩相带;3—压裂岩相带;4—断层;5—黄铁矿化;6—取样位置;7—节理(白色线条为节理内充填方解石脉);Gn—方铅矿;Cc—方解石;Py—黄铁矿; σ1—最大主应力;σ3—最小主应力;图中产状表示方法为:走向∠倾角倾向(以下类同)

    Figure  4.  Measured map of tectenite-lithofacies zoning for the Level 5 in the Qingshan lead-zinc deposit

    图  5  青山铅锌矿床三中段构造岩-岩相分带实测图

    1—扭裂岩相带;2—泥化相带;3—矿体(张裂岩相带);4—压裂岩相带;5—断层;6—含泥质裂隙;7—节理(白色线条为节理内充填方解石脉);8—泥质胶结灰岩角砾; σ1—最大主应力;σ2—中间主应力;σ3—最小主应力

    Figure  5.  Measured map of tectonite-lithofacies zoning for the Level 3 in the Qingshan lead-zinc deposit

    图  6  青山铅锌矿床一中段构造岩-岩相分带实测图

    1—扭裂岩相带;2—泥化相带;3—矿体(张裂岩相带);4—压裂岩相带;5—断裂;6—含泥质裂隙;7—取样位置; 8—节理(白色线条为节理内充填方解石脉);σ1—最大主应力;σ3—最小主应力

    Figure  6.  Measured map of tectonite-lithofacies zoning for the Level 1 in the Qingshan lead-zinc deposit

    图  7  显微构造变形现象照片

    a—QS-507泥晶砂屑灰岩,J1(118°)张裂隙,J2(145°)扭裂隙;b—QS-507泥晶砂屑灰岩,J3(125°)扭裂隙,压融缝合线(185°),内充填铁质、泥质;c—QS-510球粒灰岩, J4(35°)压扭性裂隙; d—QS-510-3生物碎屑灰岩,J6(358°)扭裂隙;e —QS-511-1球粒灰岩,J7(200°)、J8(220°)扭裂隙;f—QS-511-1球粒灰岩,J9(200°)扭裂隙,J10(140°)张裂隙;g—QS-512生物碎屑灰岩,含少量白云石,J11(128°)、J12(208°)扭裂隙;h—QS-514生物碎屑灰岩,J13(175°)、J14(305°)张裂隙;i—QS-521生物碎屑灰岩,J15(265°)张裂隙,J16(325°)、J17(250°)扭裂隙

    Figure  7.  Photos of the microstructural deformation

    图  8  构造岩稀土元素球粒陨石配分模式图

    Figure  8.  Chondrite-normalized REE distribution patterns for tectonites

    图  9  张扭性破裂面内矿物动力结晶分异方式(杨开庆,1986)

    Figure  9.  Dynamic crystallization differentiation of minerals in tensile torsional fracture surface (Yang, 1986)

    图  10  青山铅锌矿床构造岩-岩相分带模式图

    Figure  10.  Tectonite-lithofacies zoning model of the Qingshan lead-zinc deposit

    表  1  青山铅锌矿床显微构造统计表

    Table  1.   Microstructural statistics of the Qingshan lead-zinc deposit

    样品号 岩性 微观特征 力学机制 主压应力方向σ1 时间 宏观对应性
    QS-507 泥晶砂屑灰岩 J1(118°)裂面锯齿状,为一条张性方解石脉,J2(145°)为J1旁侧构造,裂面平直为一扭性方解石脉,指示J1发生右行扭动,另见一组压融缝合线构造(185°)将J3(125°)右行错断 早期在北西向主压应力作用下形成J1、J2,后期主压应力转变为北东向岩石受到挤压形成缝合线构造并将早期形成的方解石脉右行错断 305°—320°

    55°—70°
    成矿期-成矿后 与F1、F2及北西向层间断裂主压应力方向一致
    QS-510 球粒灰岩 J4(35°)裂面呈缓波状,为一条压扭性方解石脉,J5为J4旁侧构造,裂面呈锯齿状,指示J4发生左行扭动 在北西向主压应力作用下形成压扭性的J4,J4发生左行扭动形成其旁侧构造J5 310°—325° 成矿期 与扭裂岩相带内北东向裂隙主压应力方向一致
    QS-510-3 生物碎屑灰岩 J6(358°)裂面较平直,为一条扭性方解石脉,其旁侧发育多条压性方解石脉,为J6扭动下派生的旁侧构造,指示J6发生左行扭动 在北西向主压应力作用下形成扭压性的J6,J6发生左行扭动派生出旁侧多条压性裂隙并充填方解石脉 305°—320° 成矿期 与扭裂岩相带内北东向裂隙主压应力方向一致
    QS-511-1 球粒灰岩 两条共轭方解石脉J7(200°)、J8(220°)呈小角度相交,J7裂面较平直呈扭性,J8裂面缓波状呈压扭性。J9(200°)裂面较平直,为一条扭性方解石脉,其旁侧发育一条张扭性方解石脉J10(140°),指示J9发生左行扭动 共轭节理呈小角度相交,其钝角角平分线为主压应力方向,同时扭性节理旁侧构造指示方解石脉发生左行扭动,说明该点处裂隙为北西向主压应力下形成 305°—320° 成矿期 与压裂岩相带内共轭方解石脉、北西向层间破碎带主压应力方向一致
    QS-512 生物碎屑灰岩 J11(128°)、J12(208°)为一组共轭方解石脉,脉体形态呈缓波状具有压扭性特征 北东向挤压下形成 55°—70° 成矿后 与北东向层间破碎带主压应力方向一致
    QS-514 生物碎屑灰岩 J13(175°)裂面呈微锯齿状,J14(305°)为其旁侧构造,裂面呈锯齿状,指示J13发生左行扭动,在方解石脉外侧颗粒较为破碎充填泥质 早期在北西向主压应力作用下形成张扭性J13及旁侧J14,后期受到北东向挤压改造,将泥质压入方解石脉外侧 305°—320°

    55°—70°
    成矿期-成矿后 与F1、F2及北西向层间断裂主压应力方向一致
    QS-521 生物碎屑灰岩 J15(265°)裂面呈微锯齿状,具张扭性特征,旁侧扭性方解石脉指示其发生左行扭动,J16(325°)、J17(250°)为两组扭性方解石脉,J15将J16右行错断,J16将J17左行错断 三组方解石脉为三个不同阶段的产物,同在北西向主压应力作用下形成,产生不同的切割关系 305°—320° 成矿期 与F1、F2及北西向层间断裂主压应力方向一致
    下载: 导出CSV

    表  2  青山铅锌矿床五中段各构造岩相带及未蚀变原岩主量元素及Pb、Zn含量

    Table  2.   Main elements and Pb and Zn contents in each tectofacies zone of the Level 5 in the Qingshan lead-zinc deposit

    岩相分带 样品号 CaO TFe2O3 MgO MnO SiO2 SO3 LOI Zn Pb
    原岩 QS-602 56.40 0.03 0.14 0.01 0.07 0.01 42.51 14 2
    压裂岩相带 QS-61(非矿化) 56.10 0.07 0.26 0.01 0.05 0.04 43.62 86 39
    QS-62(非矿化) 56.30 0.12 0.19 0.15 0.09 0.06 43.55 62 20
    平均值 56.20 0.10 0.23 0.08 0.07 0.05 43.59 74 29
    扭裂岩相带 QS-51(非矿化) 56.50 0.09 0.35 0.01 0.20 0.08 43.35 225 50
    QS-56(矿化) 54.80 0.96 0.21 0.06 0.20 1.12 41.78 0.86 0.35
    QS-70(矿化) 55.60 0.63 0.24 0.01 0.12 1.62 41.86 0.37 0.11
    QS-86(矿化) 50.40 6.03 0.18 0.11 0.32 11.10 32.04 0.32 0.35
    平均值 54.33 1.99 0.25 0.05 0.21 3.84 39.76 0.39 0.20
    张裂岩相(矿石)带 QS-59(矿石) 2.78 39.90 0.20 0.04 0.12 > 50 24.12 19.60 3.78
    注:测试单位为广州澳实分析测试中心(ICP-MS法)测试误差5%以内,主量元素单位为%,非矿化岩石的Pb、Zn单位为10-6,矿化岩石、矿石Pb、Zn单位为%。
    下载: 导出CSV

    表  3  青山铅锌矿床构造岩稀土元素含量

    Table  3.   REE content in tectonites of the Qingshan lead-zinc deposit

    构造岩相带 位置 样品号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE
    压裂岩相带灰岩 一中段 QS-283 1.70 1.50 0.28 1.20 0.24 0.06 0.34 0.06 0.34 0.07 0.20 0.03 0.19 0.03 3.90 6.24
    QS-287 1.10 1.00 0.18 0.80 0.18 0.04 0.20 0.03 0.18 0.04 0.13 0.02 0.12 0.02 2.50 4.04
    五中段 QS-80-2 1.20 1.60 0.22 1.00 0.19 0.05 0.29 0.05 0.30 0.06 0.18 0.03 0.17 0.03 3.20 5.37
    QS-81 0.80 0.70 0.13 0.60 0.10 0.03 0.15 0.03 0.14 0.03 0.09 0.02 0.09 0.01 2.10 2.92
    QS-62 0.90 1.20 0.19 0.70 0.17 0.06 0.21 0.04 0.20 0.03 0.08 0.01 0.07 0.01 1.70 3.87
    扭裂岩相带灰岩 一中段 QS-278 0.80 0.40 0.12 0.50 0.11 0.03 0.12 0.02 0.16 0.04 0.13 0.02 0.13 0.02 2.00 2.60
    QS-276 1.10 1.10 0.20 0.80 0.17 0.05 0.23 0.05 0.32 0.06 0.17 0.03 0.16 0.03 2.60 4.47
    QS-281 0.70 0.70 0.12 0.50 0.12 0.04 0.13 0.03 0.19 0.04 0.13 0.02 0.12 0.02 1.90 2.86
    五中段 QS-52 3.40 4.10 0.61 2.30 0.43 0.13 0.43 0.07 0.39 0.08 0.21 0.03 0.20 0.03 3.40 12.41
    QS-53 2.30 2.20 0.39 1.60 0.27 0.10 0.36 0.06 0.32 0.06 0.15 0.02 0.12 0.02 3.70 7.97
    QS-70 0.90 0.90 0.18 0.80 0.16 0.06 0.26 0.04 0.27 0.06 0.16 0.02 0.13 0.02 3.00 3.96
    QS-70-2 1.00 0.90 0.17 0.80 0.15 0.05 0.22 0.04 0.20 0.04 0.12 0.02 0.14 0.02 2.70 3.87
    QS-86 1.90 3.40 0.52 2.50 0.57 0.17 0.65 0.10 0.63 0.12 0.34 0.05 0.29 0.04 5.60 11.28
    泥化相带 一中段 QS-277-2 11.00 19.80 2.50 10.00 1.50 0.30 1.40 0.20 1.00 0.20 0.60 0.10 0.60 0.10 7.00 49.30
    矿石(张裂岩相带) 五中段 QS-54 1.10 0.80 0.15 0.60 0.08 0.05 0.10 0.02 0.12 0.02 0.06 0.01 0.07 0.01 1.50 3.19
    QS-59 0.70 0.60 0.11 0.40 0.06 0.04 0.06 0.01 0.05 0.01 0.03 0.01 0.03 0.01 0.60 2.12
    QS-66-2 0.70 0.40 0.08 0.40 0.06 0.03 0.12 0.02 0.13 0.03 0.08 0.01 0.07 0.01 0.70 2.14
    下载: 导出CSV

    表  4  青山铅锌矿床构造岩稀土元素特征值

    Table  4.   REE characteristic values in tectonites of the Qingshan lead-zinc deposit

    构造岩相带 位置 样品号 LREE HREE LREE/HREE LaN/YbN δEu δCe
    压裂岩相带灰岩 一中段 QS-283 4.98 1.26 3.95 6.42 0.64 0.48
    QS-287 3.30 0.74 4.46 6.58 0.64 0.50
    五中段 QS-80-2 4.26 1.11 3.84 5.12 0.64 0.71
    QS-81 2.36 0.56 4.21 6.38 0.74 0.48
    QS-62 3.22 0.65 4.95 9.22 0.97 0.68
    扭裂岩相带灰岩 一中段 QS-278 1.96 0.64 3.06 4.41 0.79 0.28
    QS-276 3.42 1.05 3.26 4.93 0.77 0.53
    QS-281 2.18 0.68 3.21 4.18 0.97 0.54
    五中段 QS-52 10.97 1.44 7.62 12.19 0.91 0.65
    QS-53 6.86 1.11 6.18 13.75 0.98 0.52
    QS-70 3.00 0.96 3.13 4.97 0.90 0.52
    QS-70-2 3.07 0.80 3.84 5.12 0.84 0.49
    QS-86 9.06 2.22 4.08 4.70 0.85 0.82
    泥化相带 一中段 QS-277-2 45.10 4.20 10.74 13.15 0.62 0.89
    矿石(张裂岩相带) 五中段 QS-54 2.78 0.41 6.78 11.27 1.71 0.42
    QS-59 1.91 0.21 9.10 16.74 2.02 0.48
    QS-66-2 1.67 0.47 3.55 7.17 1.06 0.34
    下载: 导出CSV
  • CAO W H, ZHANG S T, GAO Y Z, et al., 2014. REE geochemistry of fluorite from Linxi fluorite deposit and its geological implications, Inner Mongolia Autonomous Region[J]. Geochimica, 43(2):131-140. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201402004
    CHEN C, HAN R S, WANG L, et al., 2019. The generation, development and ore-controlling of structures of the Fulaichang lead-zinc deposit, northeastern Guizhou[J]. Journal of Geomechanics, 25(1):90-104. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201901010
    CHEN D, 1999. Geological feature and controls on Qingshan Pb-Zn deposit in Shuicheng Country, Guizhou[J]. Guizhou Geology, 16(1):35-39. (in Chinese with English abstract) https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD9899&filename=GZDZ199901006&v=MzI2NDJmUGRMS3hGOWpNcm85RllvUjhlWDFMdXhZUzdEaDFUM3FUcldNMUZyQ1VSN3FmWU9kbkZ5cm5WcnpCSWo=
    CONSTANTOPOULOS J, 1988. Fluid inclusions and rare earth element geochemistry of fluorite from South-Central Idaho[J]. Economic Geology, 83(3):626-636. doi: 10.2113-gsecongeo.83.3.626/
    GU S Y, 2006. Characteristics of rare-earth elements composition within lead-zinc deposits in northwestern Guizhou:in addition to a discussion of relationship between lead-zinc deposits and Emeishan Basalts in Northwestern Guizhou[J]. Guizhou Geology, 23(4):274-277. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDZ200604005.htm
    GU S Y, 2007. Study on the sulfur isotopic compositions of lead-zinc deposits in northwestern Guizhou Province[J]. Journal of Guizhou University of Technology (Natural Science Edition), 36(1):8-11. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzgydx200701003
    GUO S, YE K, CHEN Y, et al., 2013. Introduction of mass-balance calculation method for component transfer during the opening of a geological system[J]. Acta Petrologica Sinica, 29(5):1486-1498. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201305003
    HAN R S, WANG F, ZHAO G S, et al., 2010. New progress in deep prospecting of the Zhaotong Maoping lead-zinc deposit in the ore-gathering area of northeast Yunnan[J]. Earth Science Frontiers, 17(3):275. (in Chinese)
    HAN R S, WANG L, FANG W X, et al., 2011. The preliminary discussion on diapir structure-lithofacies zonation model for the Fengshan copper deposit, Yimen area, Yunnan, China[J]. Geological Bulletin of China, 30(4):495-504. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201104006
    HAN R S, HU Y Z, WANG X K, et al., 2012. Mineralization model of rich Ge-Ag-Bearing Zn-Pb polymetallic deposit concentrated district in northeastern Yunnan, China[J]. Acta Geologica Sinica, 86(2):280-294. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201202007
    HAN R S, 2014-11-19. China invention patent: a large scale alteration lithofacies positioning and prediction method for hydrothermal deposits: CN, 201410396700.7[P]. (in Chinese) http://cprs.patentstar.com.cn/Search/Detail?ANE=6AEA3CBA8FCA9GDE9HHG9FGC9EIG9BAB9FEG8BAA3DAA3CBA
    HAN R S, ZHANG Y, WANG F, et al., 2019. Metallogenic mechanism of germanium-rich Pb-Zn deposit and optimization of ore-prospecting target area in the ore-gathering area of northeast Yunnan province[M]. Beijing:Science Press:125-126. (in Chinese)
    HAN R S, WANG M Z, JIN Z G, et al., 2020. Ore-controlling mechanism of NE-trending ore-forming structural system at Zn-Pb polymetallic ore concentration area in northwestern Guizhou[J]. Acta Geologica Sinica, 94(3):850-868. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dizhixb202003013
    JIN Z G, 2008. The metallogenic regularity and prospecting forecast of lead-zinc ore in northwestern Guizhou[M]. Beijing:Metallurgical Industry Press:56-60. (in Chinese)
    LIU H C, LIN W D, 1999. Regularity research of Ag, Zn-Pb ore deposits North-East Yunnan Province[M]. Kunming:Yunnan University Press:45-55. (in Chinese with English abstract)
    LÜ G X, DENG J, GUO T, et al., 1998. Large-scale geological mapping of tectono-deformation-facies features and research of tectonic metallogenesis for the Linglong-Jiaojia type gold deposits[J]. Acta Geoscientia Sinica, 19(2):177-186. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB802.010.htm
    LÜ G X, GUO T, SHU B, et al., 2001. Large-scale mapping of tectonic deformation and facies features and their implications for the prediction of hidden deposits:A case study of the Linglong-Jiaojia style gold deposit, Jiaodong[J]. Regional Geology of China, 20(3):313-321. (in Chinese with English abstract) https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2001&filename=ZQYD200103015&v=MDIzNTdZUjhlWDFMdXhZUzdEaDFUM3FUcldNMUZyQ1VSN3FmWU9kbkZ5cm5Xci9LUHp6U2FyRzRIdERNckk5RVk=
    MICHARD A, 1989. Rare earth element systematics in hydrothermal fluids[J]. Geochimica et Cosmochimica Acta, 53(3):745-750. doi: 10.1016-0016-7037(89)90017-3/
    MÖLLER P, MORTEANI G, 1983. On the geochemical fractionation of rare earth elements during the formation of Ca-minerals and its application to problems of the genesis of ore deposits[C]//AUGUSTITHIS S S. The Significance of Trace Elements in Solving Petrogenetic Problems and Controversies. Athens: Theophrastus Publications: 747-791. https://www.researchgate.net/publication/279907357_On_the_geochemical_fractionation_of_rare_earth_elements_during_the_formation_of_Ca-minerals_and_its_application_to_problems_of_the_genesis_of_ore_deposits
    PENG J T, HU R Z, QI L, et al., 2002. REE geochemistry of fluorite from the Qinglong antimony deposit and its geological implications[J]. Chinese Journal of Geology, 37(3):277-287. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200203003
    QIAN J P, 2001. Tectono-dynamic mineralization in Weining-Shuicheng Pb-Zn ore belt, Northwestern Guizhou[J]. Geology-Geochemistry, 29(3):134-139. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdqhx200103024
    TAN W, HAN R S, WANG L, et al., 2016. REE geochemical of gold-polymetallic deposit in Beiya, western Yunnan Province[J]. Journal of the Chinese Society of Rare Earths, 34(1):113-128. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/zgxtxb201601017
    WANG L Q, CHENG W B, LUO M C, et al., 2012. A study of metallic sulfides, quartz REE composition characteristics and genesis of the Mengya'a lead-zinc deposit[J]. Geology in China, 39(3):740-749. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201203015
    WANG M Z, HAN R S, ZHOU W, et al., 2019. Ore-forming structure analysis of the Liangyan lead-zinc mining area in northwestern Guizhou deposit concentration district, China[J]. Journal of Geomechanics, 25(2):187-197. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201902005
    XIAO X G, HUANG Z L, ZHOU J X, et al., 2011. Several Problems Involved in Genetic Studies on the Pb-Zn Deposits, Northwest Guizhou Province, China[J]. Acta Mineralogica Sinica, 31(3):419-424. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/kwxb201103015
    YANG K Q, 1986. Reasurch subjects and orientation on the theory of tectono-petrogenesis and tectono-metallogenesis[J]. Bulletin of the Institute of Geomechanics CAGS(7):1-14. (in Chinese) https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CCJD&dbname=CCJDLAST1&filename=DZLY198601003&v=MDY2NDRSN3FmWU9kbkZ5cm5XN3pNSVRmSGQ3S3hGdGZNcm85Rlo0UjhlWDFMdXhZUzdEaDFUM3FUcldNMUZyQ1U=
    ZHANG K Q, YANG Y, 2002. Introduction of the Method for mass balance calculation in altered rocks[J]. Geological Science and Technology Information, 21(3):104-107. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200203021
    ZHANG Q H, GU S Y, MAO J Q, 1999. Geochemical study on Qingshan lead-zinc deposit in Shuicheng, Guizhou province[J]. Geology-Geochemistry, 27(1):15-20. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900079482
    ZHAO F Y, XIAO C G, ZHANG B Q, et al., 2018. REE and isotopic features of the Jiadi gold deposit in Panxian county of Guizhou province and its ore-forming material source[J]. Geology and Exploration, 54(3):465-478. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzykt201803003
    ZHONG Z Q, GUO B L, 1991. Tectonic rocks and microstructures[M]. Wuhan:China University of Geosciences Press:1-128. (in Chinese)
    ZHOU M F, MALPAS J, SONG X Y, et al., 2002. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction[J]. Earth and Planetary Science Letters, 196(3-4):113-122. doi: 10.1016/S0012-821X(01)00608-2
    ZHU D G, WANG Z S, 1995. Genetic classification and nomenclature of tectonites based on textures[J]. Bulletin of the Institute of Geomechanics GAGS(16):55-76. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX199400005.htm
    曹华文, 张寿庭, 高永璋, 等, 2014.内蒙古林西萤石矿床稀土元素地球化学特征及其指示意义[J].地球化学, 43(2):131-140. http://d.old.wanfangdata.com.cn/Periodical/dqhx201402004
    陈大, 1999.水城青山铅锌矿床地质特征及控矿因素初探[J].贵州地质, 16(1):35-39. http://www.cqvip.com/Main/Detail.aspx?id=3404413
    成晨, 韩润生, 王雷, 等, 2019.黔西北福来厂铅锌矿床构造成生发展及其控矿作用[J].地质力学学报, 25(1):90-104. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190109&journal_id=dzlxxb
    顾尚义, 2006.黔西北铅锌矿稀土元素组成特征:兼论黔西北地区铅锌矿成矿与峨眉山玄武岩的关系[J].贵州地质, 23(4):274-277. http://d.old.wanfangdata.com.cn/Periodical/gzdz200604006
    顾尚义, 2007.黔西北地区铅锌矿硫同位素特征研究[J].贵州工业大学学报(自然科学版), 36(1):8-11. http://d.old.wanfangdata.com.cn/Periodical/gzgydx200701003
    韩润生, 王峰, 赵高山, 等, 2010.滇北东矿集区昭通毛坪铅锌矿床深部找矿新进展[J].地学前缘, 17(3):275. http://www.cqvip.com/QK/71135X/201107/34219828.html
    韩润生, 王雷, 方维萱, 等, 2011.初论云南易门地区凤山铜矿床刺穿构造岩-岩相分带模式[J].地质通报, 30(4):495-504. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201104006
    韩润生, 胡煜昭, 王学焜, 等, 2012.滇东北富锗银铅锌多金属矿集区矿床模型[J].地质学报, 86(2):280-294. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201202007
    韩润生, 2014-11-19.一种热液矿床的大比例尺蚀变岩相定位预测方法: 中国, 201410396700.7[P]. http://cprs.patentstar.com.cn/Search/Detail?ANE=6AEA3CBA8FCA9GDE9HHG9FGC9EIG9BAB9FEG8BAA3DAA3CBA
    韩润生, 张艳, 王峰, 等, 2019.滇东北矿集区富锗铅锌矿床成矿机制与隐伏矿定位预测[M].北京:科学出版社:125-126.
    韩润生, 王明志, 金中国, 等, 2020.黔西北铅锌多金属矿集区成矿构造体系及其控矿机制[J].地质学报, 94(3):850-868. http://d.old.wanfangdata.com.cn/Periodical/dizhixb202003013
    金中国, 2008.黔西北地区铅锌矿控矿因素、成矿规律与找矿预测[M].北京:冶金工业出版社:56-60.
    柳贺昌, 林文达, 1999.滇东北铅锌银矿床规律研究[M].云南:云南大学出版社:45-55.
    吕古贤, 邓军, 郭涛, 等, 1998.玲珑-焦家式金矿构造变形岩相形迹大比例尺填图与构造成矿研究[J].地球科学, 19(2):177-186. http://www.cnki.com.cn/Article/CJFDTotal-DQXB802.010.htm
    吕古贤, 郭涛, 舒斌, 等, 2001.构造变形岩相形迹的大比例尺填图及其对隐伏矿床地质预测:以胶东玲珑-焦家式金矿为例[J].中国区域地质, 20(3):313-321. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200103016
    彭建堂, 胡瑞忠, 漆亮, 等, 2002.晴隆锑矿床中萤石的稀土元素特征及其指示意义[J].地质科学, 37(3):277-287. http://d.old.wanfangdata.com.cn/Periodical/dzkx200203003
    钱建平, 2001.黔西北威宁-水城铅锌矿带动力成矿作用研究[J].地质地球化学, 29(3):134-139. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx200103024
    谭威, 韩润生, 王雷, 等, 2016.滇西北北衙金多金属矿床稀土元素地球化学[J].中国稀土学报, 34(1):113-128. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb201601017
    王立强, 程文斌, 罗茂澄, 等, 2012.西藏蒙亚啊铅锌矿床金属硫化物、石英稀土元素组成特征及其成因研究[J].中国地质, 39(3):740-749. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201203015
    王明志, 韩润生, 周威, 等, 2019.黔西北矿集区亮岩铅锌矿区成矿构造解析[J].地质力学学报, 25(2):187-197. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190204&journal_id=dzlxxb
    肖宪国, 黄智龙, 周家喜, 等, 2011.黔西北铅锌矿床成因研究中的几个问题[J].矿物学报, 31(3):419-424. http://d.old.wanfangdata.com.cn/Periodical/kwxb201103015
    杨开庆, 1986.动力成岩成矿理论的研究内容和方向[J].中国地质科学院地质力学研究所所刊(7):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000001777519
    张启厚, 顾尚义, 毛健全, 1999.贵州水城青山铅锌矿床地球化学研究[J].地质地球化学, 27(1):15-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900079482
    赵富远, 肖成刚, 张兵强, 等, 2018.贵州盘县架底金矿稀土元素和同位素特征及成矿物质来源探讨[J].地质与勘探, 54(3):465-478. http://d.old.wanfangdata.com.cn/Periodical/dzykt201803003
    钟增球, 郭宝罗, 1991.构造岩与显微构造[M].武汉:中国地质大学出版社:1-128.
    朱大岗, 王治顺, 1995.构造岩的结构成因分类与命名[J].中国地质科学院地质力学研究所所刊(16):55-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000002240949
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  64
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-25
  • 修回日期:  2020-05-11
  • 刊出日期:  2020-06-30

目录

    /

    返回文章
    返回