INTERLAYERED OXIDATION-ZONE STYLES IN FAULT-FOLD BELTS OF THE NORTHERN TARIM BASIN AND ITS CONTROLLING TO THE FORMATION OF SANDSTONE-TYPE URANIUM DEPOSITS
-
摘要: 塔里木盆地北缘处于强断褶带,缺乏稳定平缓的斜坡带。以中侏罗统、上新统为主的砂岩型铀成矿目的层在断陷区、褶皱区发育不同的层间氧化带样式,形成的铀矿有所不同。已经发现的层间氧化带分为陡倾型和反转型。陡倾型层间氧化带定位于山间残留断陷盆地和山前断裂附近,多数地段氧化带已经剥蚀殆尽,局部有残留。反转型层间氧化带受盆内复背斜(或隆起)的抬升隆起影响使得层间氧化带发生反转掀斜,部分过渡带及铀异常体—矿体被剥蚀出地表。主要的铀矿体呈倒卷状,部分呈透镜状。综合分析表明,研究区铀成矿有利地段为断陷区、盆缘第一级褶皱露头区和隐伏的褶皱带。Abstract: The northern rim of the Tarim basin was strongly deformed, forming series of fault-fold belts, where was lack of stable gentle slope zones which are generally regarded as favorable for the formation of sandstone-type uranium deposits. Most recently discovered sandstone-type uranium deposits hosted in Middle Jurassic and Pliocene are different because of various interlayer oxidation zone styles. The interlayer oxidation-zone styles could be divided into two different types, including steep dipping and inverse transformation. The former type of zones are usually situated in the intermountain residual fault basin, or near the piedmont faults. Most parts of this type of oxidation zones had been denudated and only partially preserved. The latter zones are generally controlled by the uplifting of anticlinorium in the basin. As a result, inversion tilting leads to part of the transition zone and uranium anomaly-bodies eroded out to the surface. Main uranium ore-bodies in these deposits behave as roll-back and part of lenticular in shape. Therefore, comprehensive studies suggest that the favorable uranium mineralization should probably be located at the sag areas, the edge of the first low fault-fold zones, and some other blind fault-fold belts.
-
图 1 中侏罗统层间氧化带发育样式及可能的铀成矿部位
1—白垩系-下更新统;2—中侏罗统;3—下侏罗统;4—三叠系(未确定);5—泥盆系-二叠系;6—泥盆系—石炭系;7—下元古界;8—华力西期花岗岩;9—砂岩层;10—地层接触线;11—推测的或被剥蚀的地层接触线;12—逆冲断裂;13—层间氧化带;14—推测的铀成矿部位;15—已经确定的铀成矿部位
Figure 1. Interlayered oxidation zone style developed in Middle Jurassic and locations of probable uranium mineralization area
图 3 东塔里克矿点克孜勒努尔组灰色砂体及主要层间氧化带分布图
1—第四系;2—吉迪克组b亚组;3—吉迪克组a亚组;4—库姆格列木组;5—卡普沙良群;6—恰克马克组;7—克孜勒努尔组;8—阳霞组;9—阿合组;10—星星峡群;11—石炭纪花岗岩;12—整合接触地质界线;13—角度不整合接触地质界线;14—逆冲断裂;15—张性断裂;16—性质不明断裂;17—地层产状;18—克孜勒努尔组主要灰色砂岩层;19—克孜勒努尔组砂岩编号;20—常年水系;21—季节性水系;22—居民点、煤矿;23—钻孔;24—铀异常钻孔;25—工业铀矿钻孔;26—推测k5砂岩层层间氧化带前锋线;27—推测k7砂岩层层间氧化带前锋线;28—推测k8砂岩层层间氧化带前锋线
Figure 3. Grey sandstone of the Kezilenuer Formation in East Talike uranium-mineralization point and the distribution of the main interlayered oxidation zones
图 6 托云盆地被断裂改造的反转型层间氧化带及其铀成矿部位示意剖面
1—古近系-下更新统;2—古近系-上新统;3—古近系-中新统;4—克孜勒苏群;5—杨叶组与塔尔尕组并层;6—塔里特库里组;7—角度不整合接触地质界线;8—整合接触地质界线;9—已经剥蚀的地质界线;10—压性断裂;11—砂岩层;12—层间氧化带;13—已经确定的铀成矿部位;14—推测的铀成矿部位;15—钻孔;16—砂岩层编号
Figure 6. Interlayered oxidation zone transformed by faults in the Tuoyun Basin and schematic prefile of locations of the uranium mineralization area
-
[1] 鲁克改, 李刚, 王元元, 等.新疆塔里木盆地北缘乌什-轮台地区铀矿地质编图与选区[R].乌鲁木齐: 核工业二一六大队, 2018, 156~203.LU Kegai, LI Gang, WANG Yuanyuan, et al. Geological mapping and target selection of uranium deposits in Wushi-Luntai area, northern edge of the Tarim Basin[R]. Urumqi: No. 216 Team, CNNC, 2018, 156~203(in Chinese). [2] 刘刚, 王国荣, 阿种明.塔里木盆地北部新生代构造演化与铀成矿作用[J].新疆地质, 2010, 28(1):95~98. doi: 10.3969/j.issn.1000-8845.2010.01.018LIU Gang, WANG Guorong, A Zhongming. Relations between the structural evolution in Cenozoic and uranium metallogeny in the north of Talimu Basin[J]. Xinjiang Geology, 2010, 28(1):95~98. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8845.2010.01.018 [3] 王招明, 钟端, 赵培荣, 等.库车前陆盆地露头区油气地质[M].北京:石油工业出版社, 2002, 206~231.WANG Zhaoming, ZHONG Duan, ZHAO Peirong, et al. Petroleum geology of outcrops areas in Kuche foreland basin[M]. Beijing:Petroleum Industry Press, 2002, 206~231. (in Chinese with English abstract) [4] 李伟, 陈书平, 云金表, 等.陡倾逆断层形成机制——以塔里木盆地色力布亚断层为例[J].地质力学学报, 2018, 24(1):1~8. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180101&journal_id=dzlxxbLI Wei, CHEN Shuping, YUN Jinbiao, et al. Formation mechanism of steeply inclined reverse fault:take the Serikbuya fault in Tarim basin as an example[J]. Journal of Geomechanics, 2018, 24(1):1~8. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180101&journal_id=dzlxxb [5] 陈亚军, 付广, 包迎春, 等.铲式断层空间特征研究进展综述[J].地质力学学报, 2017, 23(3):451~458. doi: 10.3969/j.issn.1006-6616.2017.03.012CHEN Yajun, FU Guang, BAO Yingchun, et al. A review on the research progress of spatial characteristics of listric fault[J]. Journal of Geomechanics, 2017, 23(3):451~458. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2017.03.012 [6] 周志毅.塔里木盆地各纪地层[M].北京:科学出版社, 2001, 208~294.ZHOU Zhiyi. Stratigraphy of the Tarim Basin[M]. Beijing:Science Press, 2001, 208~294. (in Chinese) [7] 贾承造, 魏国齐, 肖安成, 等.塔里木盆地中新生代构造特征与油气[M].北京:石油工业出版社, 2004, 11~20.JIA Chengzao, WEI Guoqi, XIAO Ancheng, et al. Mesozoic-Cenozoic structural characteristics and oil & gas in the Tarim Basin[M]. Beijing:Petroleum Industry Press, 2004, 11~20. (in Chinese) [8] 郭召杰, 陈正乐, 舒良树, 等.中国西部中亚型造山带中新生代陆内造山过程与砂岩型铀矿成矿作用[M].北京:地质出版社, 2006, 320~322.GUO Zhaojie, CHEN Zhengle, SHU Liangshu, et al. Mesozoic-Cenozoic intracontinental orogeny and mineralization of the sandstone-type uranium deposit in the central Asian orogenic belt, northwest China[M]. Beijing:Geological Publishing House, 2006, 320~322. (in Chinese with English abstract) [9] 鲁克改, 王国荣, 郑恩玖, 等.塔里木盆地北缘、准噶尔盆地南缘铀成矿地质条件调查[R].乌鲁木齐.核工业二一六大队, 2009, 91~107.LU Kegai, WANG Guorong, ZHENG Enjiu, et al. Investigation on the metallogenic condition of uranium deposits in northern edge of the Tarim basin and southern edge of the Junggar Basin[R]. No. 216 Team, CNNC, Urumqi, 2009, 91~107. (in Chinese) [10] 阿种明, 李盛富, 罗星刚, 等.塔里木盆地乌什-轮台地区1: 250000铀资源区域评价[R].乌鲁木齐.核工业二一六大队, 2007, 58~88. AZhongming, LI Shengfu, LUO Xiangang, et al. Regional evaluation of uranium resources (1: 250, 000) in Wushi-Luntai area, northern edge of the Tarim basin[R]. No. 216 Team, CNNC, Urumqi, 2007, 58~88. (in Chinese) [11] 阿种明, 王军堂, 杨小强, 等.塔里木盆地北缘塔里克铀矿点矿化成因及其找矿方向[J].世界核地质科学, 2008, 25(3):139~142, 156. doi: 10.3969/j.issn.1672-0636.2008.03.003A Zhongming, WANG Juntang, YANG Xiaoqiang, et al. Prospecting direction and the genesis of Talike uranium ore occurrence in the northern Tarim Basin[J]. World Nuclear Geoscience, 2008, 25(3):139~142, 156. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-0636.2008.03.003 [12] 李炎龙, 邬力生, 司基红, 等.新疆塔里木盆地塔里克地区铀矿资源调查评价[R].乌鲁木齐.核工业二一六大队, 2015, 56~87.LI Yanlong, WU Lisheng, SI Jihong, et al. Investigation and evaluation of uranium resources in Tarike area, Tarim Basin, Xinjiang[R]. No. 216 Team, CNNC, Urumqi, 2015, 56~87. (in Chinese) [13] 王强强, 张明正, 唐云涛, 等.新疆温泉县托云地区铀矿资源调查评价[R].乌鲁木齐.核工业二一六大队, 2018, 79~93.WANG Qiangqiang, ZHANG Mingzheng, TANG Yuntao, et al. Investigation and evaluation of uranium resources in Tuoyun area, Wenquan city, Xinjiang[R]. No. 216 Team, CNNC, Urumqi, 2018, 79~93. (in Chinese) [14] 阿种明, 罗星刚, 张广辉, 等.塔里木盆地库车坳陷南部日达里克铀矿床成因探讨[A].天山地质矿产资源学术讨论会[C].乌鲁木齐: 中国地质学会, 2008, 458~462. AZhongming, LUO Xinggang, ZHANG Guanghui, et al. Discussion on the metallogeny of the Ridalike uranium deposit in south of the Kuche-Baicheng depression in Tarim Basin[A]. Academic Seminar on the Geology and Mineral Resources of the Tianshan Orogeny[C]. Urumqi: Geological Society of China, 2008, 458~462. (in Chinese) [15] 庄红红, 毛自强, 张涛, 等.塔里木盆地库车坳陷砂岩型铀矿成矿潜力分析[J].西安科技大学学报, 2015, 35(3):356~362. http://d.old.wanfangdata.com.cn/Periodical/xakyxyxb201503014ZHUANG Honghong, MAO Ziqiang, ZHANG Tao, et al. Analysis on mineralization potentiation of sandstone type uranium in Kuche depression of Tarim Basin[J]. Journal of Xi'an University of Science and Technology, 2015, 35(3):356~362. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/xakyxyxb201503014 -