留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑断层效应的高铁列车动荷载对地面沉降影响机理研究——以京张高铁怀来段为例

王苗苗 丰成君 戚帮申 孟静 张鹏 任思起 谭成轩

王苗苗, 丰成君, 戚帮申, 等, 2018. 考虑断层效应的高铁列车动荷载对地面沉降影响机理研究——以京张高铁怀来段为例. 地质力学学报, 24 (3): 407-415. DOI: 10.12090/j.issn.1006-6616.2018.24.03.042
引用本文: 王苗苗, 丰成君, 戚帮申, 等, 2018. 考虑断层效应的高铁列车动荷载对地面沉降影响机理研究——以京张高铁怀来段为例. 地质力学学报, 24 (3): 407-415. DOI: 10.12090/j.issn.1006-6616.2018.24.03.042
WANG Miaomiao, FENG Chengjun, QI Bangshen, et al., 2018. REAEARCH ON THE MECHANISM OF THE INFLUENCE OF DYNAMIC LOAD OF HIGH-SPEED TRAIN ON LAND SUBSIDENCE SUBJECTED TO FAULT EFFECT: A CASE STUDY OF THE HUAILAI SECTION OF THE BEIJING-ZHANGJIAKOU HIGH-SPEED RAILWAY. Journal of Geomechanics, 24 (3): 407-415. DOI: 10.12090/j.issn.1006-6616.2018.24.03.042
Citation: WANG Miaomiao, FENG Chengjun, QI Bangshen, et al., 2018. REAEARCH ON THE MECHANISM OF THE INFLUENCE OF DYNAMIC LOAD OF HIGH-SPEED TRAIN ON LAND SUBSIDENCE SUBJECTED TO FAULT EFFECT: A CASE STUDY OF THE HUAILAI SECTION OF THE BEIJING-ZHANGJIAKOU HIGH-SPEED RAILWAY. Journal of Geomechanics, 24 (3): 407-415. DOI: 10.12090/j.issn.1006-6616.2018.24.03.042

考虑断层效应的高铁列车动荷载对地面沉降影响机理研究——以京张高铁怀来段为例

doi: 10.12090/j.issn.1006-6616.2018.24.03.042
基金项目: 

中国地质调查局项目 DD20160267

中国地质科学院地质力学研究所院所长基金 DZLXJK201711

详细信息
    作者简介:

    王苗苗(1986-), 女, 博士, 主要从事岩石力学与工程地质方面研究。E-mail:wmmcugb@163.com

    通讯作者:

    丰成君(1985-), 男, 高级工程师, 主要从事活动断裂、构造应力场、区域地壳稳定性评价。E-mail:feng2010618@aliyun.com

  • 中图分类号: P642.26

REAEARCH ON THE MECHANISM OF THE INFLUENCE OF DYNAMIC LOAD OF HIGH-SPEED TRAIN ON LAND SUBSIDENCE SUBJECTED TO FAULT EFFECT: A CASE STUDY OF THE HUAILAI SECTION OF THE BEIJING-ZHANGJIAKOU HIGH-SPEED RAILWAY

  • 摘要: 京张高铁怀来段位于怀涿、延矾盆地复合部位,盆地内土体工程地质特性的差异及隐伏断裂稳滑活动产生的地面沉降无疑会威胁京张高铁的安全运行。依据工程地质钻孔及地球物理探测资料,构建跨活动断层地基土体二维地层结构模型,通过数值模拟手段开展考虑断层效应的高铁列车动载荷对地面沉降的影响机理研究。研究表明:列车动荷载主要影响50 m深度范围内的土体,随车速增加动荷载造成的土体竖向位移降低,随车重增加竖向位移增加;在列车动荷载和断层滑移双重作用下,随深度增加,土体竖向位移以受列车动荷载影响为主转为以断层滑移影响为主,50 m以下土体竖向位移全部由断层滑移所致,且紧邻断层两侧距离相同位置上盘土体竖向位移大于下盘。

     

  • 图  1  京张高铁沿线主要活动构造图

    F1—赤诚-尚义断裂;F2—张家口断裂;F3—怀涿盆地北缘断裂;F4—延矾盆地北缘断裂;F5—施庄断裂

    Figure  1.  The active tectonics sketch along the Bejing-Zhangjiakou high-speed railway

    图  2  可控源音频大地电磁测深勘探剖面视电阻率反演等值线图(ZK-06与ZK-09为钻孔编号)

    Figure  2.  Contour map of apparent resistivity by inversion for Controlled Source Audio-frequency Magnetotellurics sounding data

    图  3  延矾盆地北缘断裂F4钻孔剖面图

    Figure  3.  Borehole profile related to F4 on the north edge of the Yanfan Basin

    图  4  考虑活动断层和土层结构的二维地质模型

    Figure  4.  The 2D geological model considering the fault occurrence and stratum structure

    图  5  采用粘弹性人工边界的二维数学模型

    Figure  5.  The 2D mathematical model using consistent viscous-spring artificial boundaries

    图  6  沿高铁线路方向动应力分布曲线

    Figure  6.  Curve of simulated dynamic stress in the direction of high-speed railway

    图  7  沿高铁线路方向不同深度土体竖向位移分布情况

    Figure  7.  Distribution of vertical displacement of soil mass with different depths under the train load

    图  8  不同车速下表层土体竖向位移分布曲线

    Figure  8.  Distribution curves of vertical displacements of surface soil mass with different train speed

    图  9  不同车重下表层土体竖向位移分布曲线

    Figure  9.  Distribution curves of vertical displacements of surface soil mass under different train type

    图  10  断层滑动所致竖向位移分布图

    Figure  10.  The vertical displacements distribution under the slip of the fault

    图  11  断层滑动所致竖向位移分布曲线

    Figure  11.  Distribution of vertical displacements with different depths under the slip of the fault

    图  12  列车动荷载与断层滑动共同作用所致竖向位移分布图

    Figure  12.  The vertical displacements distribution under the dynamic load of the train and the slip of the fault

    图  13  列车动荷载与断层滑动共同作用所致竖向位移分布曲线

    Figure  13.  Distribution curves of vertical displacements with different depths under the dynamic load of the train and the slip of the fault

    图  14  列车动荷载产生竖向位移占总位移的百分比曲线

    Figure  14.  Percentage curves of vertical displacements to total displacements with different depths under the dynamic load of the train

    表  1  断层F4标志性地层

    Table  1.   Characteristics of marked strata of the fault

    标志性地层 上盘厚度/m 下盘厚度/m 断距/m
    中更新统地层 40 25 68
    下更新统地层 169 73 82
    新近系地层 155 57 178
    下载: 导出CSV

    表  2  各层土体采用的计算参数

    Table  2.   Calculation parameters using by each layer of soil

    地层序号 土层类型 厚度/m 弹性模量/MPa 泊松比 密度/(kg/m3) 粘聚力/kPa 摩擦角/(°)
    粉土 上盘:5
    下盘:15
    15 0.30 1750 16 28
    砾石 上盘a:40;10;30
    下盘:5
    40 0.18 2000 10 45
    中粗砂 下盘:10 25 0.22 1800 20 34
    粘土 上盘:40
    下盘:30
    20 0.25 1940 99 27
    粉土 上盘:5 15 0.30 1960 30 33
    粘土 上盘:10 18 0.27 2000 40 25
    有机质粘土 上盘:60
    下盘:70
    20 0.25 2000 106 28
    粉质粘土 下盘:70 30 0.2 2100 125 27
    断层 / 1.5 0.30 1500 / /
    注:a表示②砾石层在上盘有三层,由上而下土层厚度分别为40 m、10 m、30 m
    下载: 导出CSV
  • [1] Pavlides S B, Zouros N C, Fang Z J, et al. Geometry, kinematics and morphotectonics of the Yanqing-Huailai active faults (northern China)[J]. Tectonophysics, 1999, 308(1~2):99~118. doi: 10.1016/S0040-1951(99)00074-8
    [2] 张树轩, 杨为民, 孟华君, 等.京张地区区域地壳稳定性评价[J].地质力学学报, 2018, 24(1):70~77. doi: 10.12090/j.issn.1006-6616.2018.24.01.008

    ZHANG Shuxuan, YANG Weimin, MENG Huajun, et al. Regional crustal stability evaluation in Beijing-Zhangjiakou area[J]. Journal of Geomechanics, 2018, 24(1):70~77. (in Chinese with English abstract) doi: 10.12090/j.issn.1006-6616.2018.24.01.008
    [3] 张向营, 张春山, 孟华君, 等.基于GIS和信息量模型的京张高铁滑坡易发性评价[J].地质力学学报, 2018, 24(1):96~105. doi: 10.12090/j.issn.1006-6616.2018.24.01.011

    ZHANG Xiangying, ZHANG Chunshan, MENG Huajun, et al. Landslide susceptibility assessment of new Jing-Zhang high-speed railway based on GIS and information value model[J]. Journal of Geomechanics, 2018, 24(1):96~105. (in Chinese with English abstract) doi: 10.12090/j.issn.1006-6616.2018.24.01.011
    [4] 梁波, 孙常新.高速铁路路基动力响应中的双峰现象分析[J].土木工程学报, 2006, 39(9):117~122. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201306010.htm

    LIANG Bo, SUN Changxin. A study on the sudden changes or double peaks in the dynamic response of subgrade of high speed railway[J]. China Civil Engineering Journal, 2006, 39(9):117~122. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201306010.htm
    [5] 董亮, 赵成刚, 蔡德钩, 等.高速铁路路基的动力响应分析方法[J].工程力学, 2008, 25(11):231~236, 240. https://www.wenkuxiazai.com/doc/e39d541514791711cc791796.html

    DONG Liang, ZHAO Chenggang, CAI Degou, et al. Method for dynamic response of subgrade subjected to high-speed moving load[J]. Engineering Mechanics, 2008, 25(11):231~236, 240. (in Chinese with English abstract) https://www.wenkuxiazai.com/doc/e39d541514791711cc791796.html
    [6] 周镇勇. 武广客运专线路基动力响应特性试验及数值模拟分析[D]. 长沙: 中南大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10533-2010188758.htm

    ZHOU Zhenyong. Test analysis and numerical simulation of dynamic performance of subgade of Wuhan-Guangzhou passenger dedicated line[D]. Changsha: Central South University, 2010. (in Chinese with English abstract) http://cdmd.cnki.com.cn/Article/CDMD-10533-2010188758.htm
    [7] 刘晓红. 高速铁路无砟轨道红黏土路基动力稳定性研究[D]. 长沙: 中南大学, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1918485

    LIU Xiaohong. Research on dynamic stability of red clay subgrade under ballastless track of high-speed railway[D]. Changsha: Central South University, 2010. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1918485
    [8] 屈畅姿. 高速铁路相邻过渡段路基动响应及长期动力稳定性研究[D]. 长沙: 中南大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10533-1013358081.htm

    QU Changzi. Dynamic response and long-term dynamic stability of closely spaced transition sections subgrade for high-speed railway[D]. Changsha: Central South University, 2013. (in Chinese with English abstract) http://cdmd.cnki.com.cn/Article/CDMD-10533-1013358081.htm
    [9] 郭志广, 魏丽敏, 周镇勇, 等.高铁路基动应力数值模拟和现场试验研究[J].水文地质工程地质, 2013, 40(5):51~57. http://www.cqvip.com/QK/90596X/201305/1002102003.html

    GUO Zhiguang, WEI Limin, ZHOU Zhenyong, et al. Numerical simulation and field test of the dynamic stress of ballastless track subgrade[J]. Hydrogeology and Engineering Geology, 2013, 40(5):51~57. (in Chinese with English abstract) http://www.cqvip.com/QK/90596X/201305/1002102003.html
    [10] 王晅, 张家生, 王启云.无砟轨道路基列车动载激励及动力响应三维数值模拟[J].地震工程学报, 2014, 36(4):857~867. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb201404015

    WANG Xuan, ZHANG Jiasheng, WANG Qiyun. Three-dimensional numerical simulation for vehicle dynamic load and dynamic response of ballastless track subgrade[J]. China Earthquake Engineering Journal, 2014, 36(4):857~867. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb201404015
    [11] 孔祥辉, 蒋关鲁, 李安洪, 等.基于三维数值模拟的铁路路基动力特性分析[J].西南交通大学学报, 2014, 49(3):406~411. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnjtdxxb201403006

    KONG Xianghui, JIANG Guanlu, LI Anhong, et al. Analysis of dynamic characteristics of railway subgrade based on three-dimensional numerical simulation[J]. Journal of Southwest Jiaotong University, 2014, 49(3):406~411. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnjtdxxb201403006
    [12] 黄强兵. 地裂缝对地铁隧道的影响机制及病害控制研究[D]. 西安: 长安大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-11941-2009176736.htm

    HUANG Qiangbing. Study on effect of the active ground fissure on metro tunnel and its hazards control[D]. Xi'an: Chang'an University, 2009. (in Chinese with English abstract) http://cdmd.cnki.com.cn/Article/CDMD-11941-2009176736.htm
    [13] 贺凯, 彭建兵, 黄强兵, 等.近距离平行通过地裂缝的地铁隧道模拟试验研究[J].岩石力学与工程学报, 2014, 33(S2):4086~4095. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2014z2086

    HE Kai, PENG Jianbing, HUANG Qiangbing, et al. Simulation test of metro tunnel parallels ground fissure with short distance[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2):4086~4095. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2014z2086
    [14] 孟振江, 彭建兵, 黄强兵, 等.三类勘察场地地裂缝活动对地铁隧道的影响[J].交通运输工程学报, 2017, 17(2):41~51. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY201411003040.htm

    MENG Zhenjiang, PENG Jianbing, HUANG Qiangbing, et al. Influence of ground fissure activity on subway tunnel in third-kind surveying site[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2):41~51. (in Chinese with English abstract) http://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY201411003040.htm
    [15] 戚帮申. 张家口地区地壳稳定性研究[D]. 北京: 中国地质科学院, 2017. http://cdmd.cnki.com.cn/Article/CDMD-82501-1017055359.htm

    QI Bangshen. Assessment and zonation of regional crustal stability in Zhangjiakou region[D]. Beijing: Chinese Academy of Geologecal Sciences, 2017. (in Chinese with English abstract) http://cdmd.cnki.com.cn/Article/CDMD-82501-1017055359.htm
    [16] 徐锡伟, 于贵华, 冉永康, 等.中国城市活动断层概论[M].北京:地震出版社, 2015.

    XU Xiwei, YU Guihua, RAN Yongkang, et al. The introduction to urban active faults in China[M]. Beijing:Seismological Press, 2015. (in Chinese)
    [17] 刘晶波, 谷音, 杜义欣.一致粘弹性人工边界及粘弹性边界单元[J].岩土工程学报, 2006, 28(9):1070~1075. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract12156.shtml

    LIU Jingbo, GU Yin, DU Yixin. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9):1070~1075. (in Chinese with English abstract) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract12156.shtml
    [18] Liu J B, Du Y X, Du X L, et al. 3D viscous-spring artificial boundary in time domain[J]. Earthquake Engineering and Engineering Vibration, 2006, 5(1):93~102. doi: 10.1007/s11803-006-0585-2
    [19] 陈绍绪, 张跃刚, 乔子云, 等.晋冀蒙交界地区主要断裂的现今活动[J].华北地震科学, 2003, 21(2):16~22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdzkx200302003

    CHEN Shaoxu, ZHANG Yuegang, QIAO Ziyun, et al. The current activity of main faults in the joint area of Shanxi, Hebei and Inner Mongolia[J]. North China Earthquake Sciences, 2003, 21(2):16~22. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdzkx200302003
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  464
  • HTML全文浏览量:  255
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-19
  • 修回日期:  2018-03-28
  • 刊出日期:  2018-06-01

目录

    /

    返回文章
    返回