STUDY ON THE FLUID INCLUSION PHYSICOCHEMICAL CONDITIONS OF BOLONG PORPHYRY COPPER-GOLD DEPOSIT IN TIBET
-
摘要: 应用英国Linkam THNSG600型冷热台测试和前人的经验公式,对西藏波龙斑岩铜金矿床在岩浆晚期、磁铁矿-辉钼矿阶段、黄铜矿-黄铁矿阶段和硬石膏-黄铁矿阶段等4个成矿阶段利于主成矿元素Cu迁移的流体包裹体的一般特征及物理化学条件进行研究。研究结果表明,该矿床流体包裹体类型以含石盐和硫化物子矿物的三相包裹体为主,为高温(232~549 ℃)、低压(1.40×105~234.41×105 Pa)、高盐度(NaCl质量分数28.65%~52.16%)、中—高密度(1.0683~1.1598 g/cm3)的流体;随着成矿进程的发展,各阶段流体逸度和活度均逐渐降低,pH值和Eh值逐渐升高,铜主要以Cu(H2S)(HS)2-形式存在,说明Cu在高温酸性流体中易成矿。Abstract: Using Linkam THNSG600 dating and calculating by experience formulas, this paper discusses the fluid inclusion characteristics of Bolong porthyry copper-gold deposit in Tibet, which is beneficial to the migration of the main ore-forming element Cu, and the metallogenic process includes four periods: magma-advanced stage, magnetite-molybdenite period, chalcopyrite-pyrite period and anhydrite-pyrite period. It shows that the type of fluid inclusion is mainly the three-phases inclusion including NaCl and metal sulfide daughter minerals. The ore-forming fluid forms in high temperature (232~549 ℃) and low pressure (1.40×105~234.41×105 Pa), with high salinity (28.65~52.16wt% NaCl) and middle-high density (1.0683~1.1598 g/cm3). Along with the metallogenic process, the fluid fugacity and activity gradually reduce in each stages, while the values of pH and Eh increase. The element Cu mainly exits in the form of Cu(H2S)(HS)2-, which shows that Cu is easier to mineralization in high tempreture and acidic fluids.
-
Key words:
- fluid inclusion /
- physicochemistry conditions /
- porphyry copper-gold deposit /
- Bolong
-
图 1 多龙矿集区构造背景简图(a)、地质简图(b)和波龙矿床地质简图(c)[4]
Figure 1. Tectonic and geological maps of Duolong metallogenic district and geological map of Bolong porphyry Cu-Au deposit
表 1 波龙铜金矿床流体包裹体均一温度、盐度、密度及压力测定结果
Table 1. Homogenization temperature, salinity, density and pressure of fluid inclusions in Bolong Cu-Au deposit
成矿阶段 主矿物 均一温度/℃ 盐度/% 密度/(g·cm-3) 压力/105Pa 变化范围 平均 变化范围 平均 变化范围 平均 变化范围 平均 岩浆晚期 斑晶石英 334~549 467 38.24~52.16 41.86 1.0683~1.1067 1.0761 58.76~234.41 102.47 磁铁矿-辉钼矿 石英 312~533 429 34.56~50.49 42.34 1.0683~1.0975 1.0771 26.72~212.69 109.59 黄铜矿-黄铁矿 石英 262~502 388 29.47~40.79 35.01 1.0683~1.1494 1.0930 3.14~86.81 33.54 硬石膏-黄铁矿 硬石膏石英 232~471 332 28.65~36.90 32.48 1.0765~1.1598 1.1153 1.40~45.74 17.68 表 2 波龙铜金矿床流体逸度
Table 2. Fugacity of fluid inclusion in Bolong Cu-Au deposit, Tibet
样号 lgfO2 lgfCO2 lgfS2 阶段 BL002 -27.280 1.851 -3.284 磁铁矿-辉钼矿 BL019 -28.778 1.295 -3.865 黄铜矿-黄铁矿 BL045 -30.167 1.177 -4.323 BL058 -29.946 1.254 -4.227 表 3 波龙铜金矿床流体pH和Eh值
Table 3. The values of pH and Eh of the fluid inclusions in Bolong Cu-Au deposit, Tibet
样号 pH Eh 阶段 BL002 5.149 0.009 磁铁矿-辉钼矿 BL019 5.427 0.013 黄铜矿-黄铁矿 BL045 5.486 0.018 BL058 5.448 0.016 表 4 波龙铜金矿床总硫、总碳活度计算结果
Table 4. Activity of total sulphur and total carbon in Bolong Cu-Au deposit, Tibet
mol/L 样品编号 lgfS2 lgfO2 lgaH2S lgaHS- lgaS2- lgaHSO4- lgaSO42- lgaΣS aΣS lgfCO2 lgaCO2 lgaH2CO3 lgaHCO3- lgaCO32- lga∑C aΣC 阶段 BL002 -3.284 -26.714 -0.785 -4.636 -11.587 1.135 -0.596 1.148 14.067 1.851 0.151 0.231 -3.530 -10.811 0.494 3.121 磁铁矿-辉钼矿 BL019 -3.865 -28.152 -0.357 -3.930 -10.603 -1.033 -2.486 -0.271 0.536 1.295 -0.405 -0.325 -3.808 -10.811 -0.062 0.867 黄铜矿-黄铁矿 BL045 -4.323 -29.691 0.184 -3.330 -9.944 -3.512 -4.906 0.184 1.529 1.177 -0.523 -0.443 -3.867 -10.811 -0.180 0.660 BL058 -4.227 -29.513 0.143 -3.409 -10.062 -3.235 -4.667 0.143 1.391 1.254 -0.446 -0.366 -3.829 -10.811 -0.103 0.788 表 5 铜络离子活度及铜的总溶解度
Table 5. Activity of Cu complex ion and total solubility
样品编号 lgaCu(HS)2- lgaCu(H2S)(HS)2- lgaCu+ lgaCuCl0 lgaCuCl2- lgaCuCl32- lgaCu2+ lgaCuCl+ lgaCuCl20 lgaCuCl3- lgaCuCl42- lgaΣCu 阶段 BL002 -6.674 -7.148 -6.428 -14.607 -20.786 -30.765 -13.955 -18.834 -29.214 -40.093 -51.372 -6.183 磁铁矿-辉钼矿 BL019 -5.753 -5.800 -7.065 -21.923 -34.780 -51.438 -15.230 -26.788 -43.845 -61.403 -79.361 -5.464 黄铜矿-黄铁矿 BL045 -4.883 -4.389 -7.509 -12.438 -15.366 -22.095 -16.117 -17.746 -24.875 -32.504 -40.533 -4.268 BL058 -4.983 -4.530 -7.426 -13.964 -18.502 -26.841 -15.951 -19.190 -27.928 -37.167 -46.805 -4.398 -
[1] 曹圣华, 罗小川, 唐峰林, 等.班公湖—怒江结合带南侧弧-盆系时空结构与演化特征[J].中国地质, 2004, 31(1):51~56. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200401006.htmCAO Sheng-hua, LUO Xiao-chuan, TANG Feng-lin, et al. Time-space structure and evolution of the arc-basin system on the southern side of the Bangong Co-Nujiang junction zone [J]. Geology in China, 2004, 31(1):51~56. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200401006.htm [2] 曲晓明, 辛洪波.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境[J].地质通报, 2006, 25 (7):792~799. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200607005.htmQu Xiao-ming, XIN Hong-bo. Ages and tectonic environment of the Bangong Co porphyry copper belt in western Tibet, China [J]. Geological Bulletin of China, 2006, 25 (7):792~799. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200607005.htm [3] 李光明, 李金祥, 秦克章, 等.西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据[J].岩石学报, 2007, 23(5):935~952. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705009.htmLI Guang-ming, LI Jin-xiang, QIN Ke-zhang, et al. High temperature, salinity and strong oxidation ore-forming fluid at Duobuza gold-rich porphyry copper deposit in the Bangonghu tectonic belt, Tibet: Evidence from fluid inclusions [J]. Acta Petrologica Sinica, 2007, 23(5):935~952. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705009.htm [4] 祝向平, 陈华安, 马东方, 等.西藏波龙斑岩铜金矿床的Re-Os同位素年龄及其地质意义[J].岩石学报, 2011, 27(7):2159~2164. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107024.htmZHU Xiang-ping, CHEN Hua-an, MA Dong-fang, et al. Re-Os dating for the molybdenite from porphyry copper-gold deposit in Tibet, China and its geological significance [J]. Acta Petrologica Sinica, 2011, 27(7):2159~2164. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107024.htm [5] 祝向平, 陈华安, 马东方, 等.西藏波龙斑岩铜金矿床钾长石和绢云母40Ar/39Ar年龄及其地质意义[J].矿床地质, 2013, 32(5):954~962. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201305007.htmZHU Xiang-ping, CHEN Hua-an, MA Dong-fang, et al. 40Ar/39Ar dating of hydrothermal K-feldspar and hydrothermal sericite from Bolong porphyry Cu-Au deposit in Tibet [J]. Mineral Deposits, 2013, 32(5):954~962. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201305007.htm [6] 陈华安, 祝向平, 马东方, 等.西藏波龙斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义[J].地质学报, 2013, 87(10):1593~1611. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310009.htmCHEN Hua-an, ZHU Xiang-ping, MA Dong-fang, et al. Geochronology and geochemistry of the Bolong porphyry Cu-Au deposit, Tibet and tis mineralizing significance [J]. Acta Geologica Sinica, 2013, 87(10):1593~1611. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310009.htm [7] 周玉, 温春齐, 周雄, 等.西藏波龙铜矿区含矿斑岩主量元素特征及地质意义[J].矿物学报, 2011, 31(S1):444. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1225.htmZHOU Yu, WEN Chun-qi, ZHOU Xiong, et al. The main elements characteristics and geological significance of ore-bearing porphyry in Bolong copper mining area, Tibet [J]. Acta Mineralogica Sinica, 2011, 31(S1):444. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1225.htm [8] 周玉. 西藏波龙铜矿区含矿斑岩元素地球化学研究[D]. 成都: 成都理工大学, 2012.ZHOU Yu. Elements Geochemistry of Ore-bearing Porphyry in the Bolong Copper Mine District, Tibet [D]. Chengdu: Chengdu University Technology, 2012. [9] 周玉, 多吉, 温春齐, 等.西藏波龙铜矿床S-Pb同位素地球化学特征[J].矿物岩石, 2013, 33(23):43~49. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201302007.htmZHOU Yu, DUO Ji, WEN Chun-qi, et al. Geochemical characteristics of Sulfur and Lead isotopes from the Bolong copper deposit, Tibet [J]. Journal of Mineralogy and Petrology, 2013, 33(23):43~49. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201302007.htm [10] 周玉, 多吉, 温春齐, 等.西藏波龙铜矿区变质岩特征及地质意义[J].矿物学报, 2013(S1):378~379. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2013S2213.htmZHOU Yu, DUO Ji, WEN Chun-qi, et al. The metamorphic rocks' characteristics and geological significance of Bolong copper mining area, Tibet [J]. Acta Mineralogica Sinica, 2013(S1):378~379. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2013S2213.htm [11] 倪曦, 刘志鹏, 杨蜜蜜.西藏波龙矿区含矿岩体地质特征[J].四川有色金属, 2016, 1:30~32. doi: 10.3969/j.issn.1006-4079.2016.01.008NI Xi, LIU Zhi-peng, YANG Mi-mi. Geological characteristics of ore-bearing rock mass in Bolong mining area, Tibet [J]. Sichuan Nonferrous Metals, 2016, 1:30~32. doi: 10.3969/j.issn.1006-4079.2016.01.008 [12] 李丹, 温春齐, 费光春, 等.西藏波龙铜矿床的砂岩成分与构造环境探讨[J].矿物学报, 2011, 31(S1):311~312. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1182.htmLI Dan, WEN Chun-qi, FEI Guang-chun, et al. The discussion of sandstone composition and tectonic environment in Bolong copper deposit, Tibet [J]. Acta Mineralogica Sinica, 2011, 31(S1):311~312. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1182.htm [13] 周玉. 西藏波龙铜矿床成矿作用研究[D]. 成都: 成都理工大学, 2015.ZHOU Yu. Research on metallization of the Bolong copper deposit in Tibet, China [D]. Chengdu:Chengdu University of Technology, 2015. [14] 李海宾. 西藏波龙铜(金)矿矿体地质要素特征研究[D]. 成都: 成都理工大学, 2015. http://epub.cqvip.com/articledetail.aspx?id=1000000246271LI Hai Bin. Study on the Characteristics of Geological Factors of Cooper and Gold Ore Deposit in Bolong, Tibet [D]. Chengdu:Chengdu University of Technology, 2015. http://epub.cqvip.com/articledetail.aspx?id=1000000246271 [15] 李丹. 西藏波龙铜矿床流体包裹体研究[D]. 成都: 成都理工大学, 2012.LI Dan. Study on the Fluid Inclusions of the Bolong Copper Deposit, Tibet [D]. Chengdu:Chengdu University of Technology, 2012. [16] 周玉, 多吉, 温春齐, 等.西藏波龙铜矿区成矿流体来源示踪[J].中国矿业, 2015, 24(3):76~80. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201503017.htmZHOU Yu, DUO Ji, WEN Chun-qi, et al. The source of ore-forming fluids in the Bolong copper mine area, Tibet [J]. China Mining Magazine, 2015, 24(3):76~80. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201503017.htm [17] 邵洁涟.金矿找矿矿物学[M].北京:中国地质大学出版社. 1988.SHAO Jie-lian. Prospecting mineralogy of gold ore[M].Beijing:China University of Geosciences Press.1988. [18] Hall D L, Sterner S M, Bodnar R J. Freezing point depression of NaCl-KCl-H2O solutions[J]. Economic Geology, 1988, 83(1): 197~202. doi: 10.2113/gsecongeo.83.1.197 [19] 刘斌, 沈昆.流体包裹体热力学[M].北京:地质出版社, 1999.LIU Bin, SHEN Kun. Thermodynamics of fluid inclusions [M]. Beijing:Geological Publishing House, 1999. [20] 徐文炘, 陈民扬, 喻铁阶, 等.矿物包裹体成分数据的热力学计算方法及应用[J].矿产与地质, 1985, 1:35~50. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD198501004.htmXU Wen-xi, CHEN Ming-yang, YU Tie-jie, et al. Thermodynamic calculation methods and applications of mineral inclusion composition data [J]. Mineral Resources and Geology, 1985, 1:35~50. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD198501004.htm [21] Crerar D A, Susak N J, Borcsik M, et al. Solubility of the buffer assemblage pyrite+pyrrhotite+magnetite in NaCl solutions from 200 to 350 degrees C [J]. Geochimica et Cosmochimica Acta, 1978, 42(9):1427~1438. doi: 10.1016/0016-7037(78)90048-0 [22] 李葆华, 蔡建明, 刘若兰.矿物包裹体学(下册)[M].成都:成都地质学院矿床教研室(内部教材), 1991.LI Bao-hua, CAI Jian-ming, LIU Ruo-lan. Mineral inclusion study(Part Ⅱ)[M]. Chengdu:Chengdu Institute of Geology and Mineral Deposits (internal teaching materials), 1991. [23] Helgeson H C. Thermodynamics of hydrothermal systems at elevated temperatures and pressures[J]. American Journal of Science, 1969, 267(7): 729~804. doi: 10.2475/ajs.267.7.729 [24] Crerar D A, Barnes H L. Ore solution chemistry, V, Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200 degrees to 350 degrees C[J]. Economic Geology, 1976. 71(4): 772~794. doi: 10.2113/gsecongeo.71.4.772 [25] 金章东, 李福春.斑岩型铜矿床成矿过程中铜的迁移与沉淀机制研究新进展[J].矿产与地质, 1998, 12(2):73~78. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD802.000.htmJIN Zhang-dong, LI Fu-chun. New progress of copper mingation and precipitation mechanism during porphyry ore-forming process[J].Mineral Resources and Geology, 1998, 12(2):73~78. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD802.000.htm [26] 李福春, 刘源, 金章东, 等.流体在金属成矿过程中的作用[J].矿产与地质, 1999, 13(3):129~134. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD903.000.htmLI Fu-chun, LIU Yuan, JIN Zhang-dong, et al. Role of fluid in the metal forming process of ore deposit [J]. Mineral Resources and Geology, 1999, 13(3):129~134. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD903.000.htm