留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

白龙江中游凤安山滑坡26Al暴露年代研究

舒杰 白世彪 崔豫 陈倩 张志刚 王建

熊良宵, 李天斌, 刘勇, 2007. 隧道地震响应数值模拟研究. 地质力学学报, 13 (3): 255-260.
引用本文: 舒杰, 白世彪, 崔豫, 等, 2017. 白龙江中游凤安山滑坡26Al暴露年代研究. 地质力学学报, 23 (6): 914-922.
XIONG Liang-xiao, LI Tian-bin, LIU Yong, 2007. NUMERICAL SIMULATION OF SEISMIC RESPONSE AT THE ENTRANCE OF THE UNSYMMETRICAL LOADING TUNNEL. Journal of Geomechanics, 13 (3): 255-260.
Citation: SHU Jie, BAI Shibiao, CUI Yu, et al., 2017. STUDY ON 26Al EXPOSURE DATING OF FENG'ANSHAN LANDSLIDE IN THE MIDDLE REACHES OF BAILONG RIVER. Journal of Geomechanics, 23 (6): 914-922.

白龙江中游凤安山滑坡26Al暴露年代研究

基金项目: 

2015年省重点研发计划(社会发展)项目 BE2015704

江苏高校优势学科建设工程 164320H101

中国科学院山地灾害与地表过程重点实验室开放基金项目 KLMHESP-17-07

详细信息
    作者简介:

    白世彪(1974-), 博士, 教授, 从事自然地理学和滑坡等自然灾害的相关研究。E-mail:shibiaobai@njnu.edu.cn

    通讯作者:

    舒杰(1993-), 硕士生, 从事滑坡宇生核素暴露年代学研究。E-mail:shujie0122@162.com

  • 中图分类号: P642.22;P597

STUDY ON 26Al EXPOSURE DATING OF FENG'ANSHAN LANDSLIDE IN THE MIDDLE REACHES OF BAILONG RIVER

  • 摘要: 准确地重建滑坡发生年代和复活期次是滑坡灾害风险评估与管理的关键步骤之一。近年来,随着AMS技术的发展,宇宙成因核素测年逐渐成为滑坡年代测定的有效手段之一。以甘肃省东南部白龙江中游的凤安山滑坡作为研究对象,在该滑坡后壁和其下方的大石块上各采集了1个宇生核素暴露年代样品,在综合考虑了遮蔽因子以及对该区域的侵蚀速率估算的基础上,研究了该滑坡的宇生核素26Al暴露年代。结果显示:该滑坡分别大约在0.72~0.75 ka和2.26~2.65 ka左右发生过,后者发生时间与该区公元前186年的地震型滑坡发生时间一致;对于年代越老的样品,侵蚀速率对宇生核素测年的年代结果影响越大。

     

  • 在进行隧道地震响应的数值模拟研究时, 不同的横向计算范围会对计算结果产生很大的影响。陈贵红[1]对沉管隧道进行抗震数值模拟时分析了合理的计算宽度, 认为横向全宽大于6倍洞径时, 其变化对计算结果的影响甚小, 但研究对象为土质隧道, 且为沉管隧道, 得到的结论对于山岭岩质隧道是否也适用呢?高峰等[2]对洞口段做了计算, 也认为横向全宽大于6倍洞径后可满足计算要求, 但并没有对比横向全宽小于或等于6倍洞径时的情况, 其结论的正确性似乎也有待于进一步论证。

    在做动力计算时, 选择不同的人工边界对计算结果也会造成很大的差异, 而人工边界与选用的数值模拟软件有很大关系, 比如用FLAC3D做动力计算时, 程序默认的人工边界有三种, 即截断边界、自由场地边界和粘性边界。采用这三种边界得到的计算结果有何差异呢?选择何种边界比较合理?

    结合上述两个问题, 本文以黄草坪隧道为研究对象, 采用FLAC3D对其进行地震响应的数值模拟研究, 在计算时将横向全宽取为洞径的5倍、6倍、7倍、8倍、9倍和10倍, 通过比较追踪点的应力来获得合理的计算宽度, 同时分别取上述三种人工边界进行计算, 来得到合理的边界。

    黄草坪隧道位于四川省甘孜州巴塘县境内, 是国道318线海子山至竹巴笼段改建工程的控制性工程, 共2座, 其中1号隧道长1221m, 2号隧道长917m。受地形地质条件的限制, 隧道必须在距全新世的巴塘活动断裂约300 ~ 400m和中更新世的党巴活动断裂仅100 ~ 200m米的地方通过, 隧道轴线与活断裂带均近于平行。其中巴塘断裂斜切金沙江构造带主体, 具有明显的近代活动性, 具备未来发生7级左右强震的可能性, 场地基本地震烈度设计为Ⅷ度。如何分析该隧道的抗震稳定性能, 为其抗震加固提供科学依据, 成了该隧道工程的关键技术问题。

    以黄草坪2号隧道洞身埋深最浅段K313+502~K313+522为地质原型, 该处隧道埋深仅64m, 灰色中薄层强风化结晶灰岩夹绿泥石片岩, 呈碎裂状压碎结构。掌子面发育有三组节理裂隙, 间距10 ~ 15cm, 长度1. 5 ~ 3m, 缝宽1 ~ 2mm, 有铁锈状充填物。岩体风化强烈, 受地质构造作用严重, 无地下水出露。现场确认该段为Ⅲ类弱围岩, 设计采用Ⅲ加强支护, 图 1为具体支护图。

    图  1  隧道支护结构图
    Figure  1.  Tunnel support structure

    图 2为计算模型图, 横向范围为80m、竖向范围为80m、隧道轴向范围为3m。单元总数2592、节点总数3460, 能够满足计算的精度要求。地层岩性为结晶灰岩Ⅲ弱类, 变形模量为280MPa, 泊松比为0. 25, 容重为0. 0278MN/m3, 内聚力为0. 5Mpa, 内摩擦角为29°, 抗拉强度为0. 2MPa。隧道设计采用Ⅲ加强支护, 初期支护的变形模量为20000MPa, 剪切模量为11500MPa, 体积模量为9500MPa, 厚度为25cm。

    图  2  隧道计算模型图
    Figure  2.  Numerical model of the tunnel
    2.3.1   截断边界

    采用截断边界模拟时, 需要把模型的边界取得足够远, 把模型的范围取得足够大, 从而使边界反射的影响尽可能小, 但模型范围取得过大, 则需要较大的计算机存储能量和较长的计算时间。

    2.3.2   粘性边界

    粘性边界由Lysmer等于1969年提出[3], 是最早的局部人工边界, 它利用有粘性阻尼器耗能的原理, 在有限元模型的假想边界处设置阻尼器, 利用其产生的与运动速度成正比的粘性阻尼力吸收逸散波的能量。以P波入射粘性边界为例, 粘性边界上的法向应力σn和剪应力σs分别为:

    (1)

    (2)

    式中:vn———边界上速度的正向分量;

    vs———边界上速度的切向分量;

    ρ———为介质的密度;

    Cp———P波在介质中传播速度;

    Cs———S波在介质中传播速度。

    在动力计算时, 动荷载的输入可采用加速度时程、速度时程、位移时程和应力时程四种方式, 但对于粘性边界条件, 则必须采用应力时程。对于加速度时程, 首先通过积分转化成速度时程, 再利用式(1)和(2)转化为相应的应力输入。

    2.3.3   自由场地边界

    在FLAC3D中, 可以通过使用Apply ff (free-field)在模型四周施加自由场地边界[4]。它的原理是采用粘滞阻尼器与自由场耦合来模拟静止边界, 即也是粘性边界(图 3)。因此, 采用FLAC3D自由场地边界和粘性边界的计算效果基本一致。但若采用自由场地边界计算, 动荷载的输入可以采用加速度时程, 不需要转化。

    图  3  FLAC3D自由场地边界示意图
    Figure  3.  Free-field boundaries of FLAC3D

    FLAC3D中, 可以采用两种阻尼, 即瑞利阻尼和局部阻尼。局部阻尼是在静力计算中使结构达到最终平衡的, 也可以用来进行动力分析。瑞利阻尼是结构分析和弹性体分析中用来抑制系统自振的, 通常可以用下式来表示:

    (3)

    式中:α———质量阻尼常数;

    β———刚度阻尼常数。

    在FLAC3D中, 使用瑞利阻尼时, 一般设置两个参数, 即临界最小阻尼比和中心频率, 可以由式(4)、(5)和(6)确定:

    (4)

    (5)

    (6)

    式中:ξmin———质量阻尼常数;

    ωmin———角频率;

    fmin———中心频率。

    本文采用瑞利阻尼, 各参数值分别为α=0. 08、β=0. 03125、ξmin=0. 05和fmin=0. 25。

    四川省地震局以地震危险性概率分析得到的基岩加速度峰值和基岩加速度反应谱-基岩地震相关反应谱作为目标谱。用人工数值模拟方法合成基岩地震波, 并以此作为场地地震反应计算的输入地震波。本文采用黄草坪隧道按50年超越概率10 %概率水准合成的基岩设计加速度时程, 对应地震烈度为Ⅷ度。若直接使用未经基线调整的地震加速度时程, 则会造成计算结果的位移偏大, 夸大隧道的地震响应, 这是地震积分位移时程漂移所造成的[5]。因此, 本文利用Matlab的小波工具箱对原始地震加速度进行了基线校正, 图 4为调整后的地震加速度时程、速度时程和位移时程图[6]。地震波从模型底部输入, 介质的振动方向为竖直垂直洞轴线向上, 为P波。

    图  4  地震动加速度时程、速度时程和位移时程
    Figure  4.  Seismic dynamic acceleration time-history, velocity time-history and displacement time-history

    为了研究横向计算范围对隧道地震动力响应的影响, 人工边界采用自由场地边界, 横向范围分别考虑5倍、6倍、7倍、8倍、9倍、10倍隧道直径, 计算时间为5秒, 取拱顶围岩和拱顶衬砌为追踪点。

    图 5可知, 当横向计算全宽为洞径的5至7倍时, 拱顶围岩和衬砌的最大和最小主应力随模型范围的增大而变化较大, 但为7至10倍洞径时, 计算结果不随模型的增大而发生很明显的变化, 这说明将横向计算全宽取为7至8倍洞径是合理的。

    图  5  隧道围岩和衬砌的主应力对比图
    Figure  5.  Contrast of principal stresses of surrounding rocks and lining

    在3.1节的基础上, 将横向计算全宽取为洞径的8倍, 其它条件与3. 1一致, 但采用截断边界和粘性边界进行计算。截断边界指的是将底部竖向约束去除, 四周仍然采用静力计算时的固定边界; 粘性边界指的是将底部和四周均取为粘性边界。

    图 6可知, 采用截断边界计算得到的内力偏大, 这是由于未考虑无限地基的影响, 造成能量聚积而引起的, 从而夸大了隧道的地震响应。而采用自由场地边界或粘性边界能使地震波动能量向地基远域逸散, 因此结果更加精确。采用自由场地边界和粘性边界计算的内力也比较接近, 因此, 在计算时采用自由场地边界或粘性边界均可满足计算要求, 只是地震动输入的方式不同而已。

    图  6  隧道围岩和衬砌的主应力对比图
    Figure  6.  Contrast of principal stresses of surrounding rocks and lining

    (1) 在对山岭岩质隧道进行地震响应计算时, 将横向计算全宽取为洞径的7至8倍时, 即可满足计算精度要求。

    (2) 在用FLAC3D进行隧道地震动力计算时, 采用截断边界会夸大地震响应结果, 而采用自由场地边界和粘性边界得到的结果比较接近, 也相对比较合理。

    在对隧道进行地震动力响应的数值模拟研究中也存在一些其他问题, 还有待于进一步分析。

  • 图  1  凤安山滑坡区地质图[11]

    Figure  1.  Geological map of Feng'anshan landslide area[11]

    图  2  凤安山滑坡主剖面图[9]

    (五角星标注位置为采样位置)

    Figure  2.  Principle profile map of Feng'anshan landslide[9]

    图  3  凤安山滑坡及采样点

    a-滑坡全貌图; b-滑坡后壁全貌图; c-局部滑坡后壁图; d-采样点位置图

    Figure  3.  Feng'anshan landslide and sampling location

    表  1  凤安山滑坡样品26Al浓度

    Table  1.   26Al concentration of the samples from Feng'anshan landslide

    样品编号 石英质量/g 26Al/27Al/×10-15 AMS26Al测量相对误差/% 26Al浓度/×104atoms/g
    Fas-1 29.76048 22.7569 19.10 2.56±0.49
    Fas-2 24.15329 14.6552 24.25 7.56±1.83
    *B3 - 1.39007
    注:-表示该数据为空,*表示所标注的样品为空白样
    下载: 导出CSV

    表  2  不同侵蚀速率下凤安山滑坡TCN 26Al暴露年代数据

    Table  2.   TCN 26Al Exposure ages in Feng'anshan landslide at different erosion rates

    样品编号 Fas-1 Fas-2
    采样深度/cm 3 4
    遮蔽因素 0.58 0.58
    26Al浓度 25658.104 75633.413
    不同侵蚀速率情境下基于Lal(1991)/Stone(2000)模型所换算得到的年代(10Be, ka) ε=0 mm/ka 0.69±0.14 2.02±0.52
    ε=8 mm/ka 0.70±0.15 2.05±0.54
    ε=11 mm/ka 0.70±0.15 2.06±0.54
    ε=29 mm/ka 0.71±0.15 2.12±0.58
    ε=60 mm/ka 0.72±0.16 2.26±0.65
    ε=130 mm/ka 0.75±0.17 2.65±0.92
    注:ε代表侵蚀速率
    下载: 导出CSV
  • [1] 袁兆德. 帕米尔活动造山带东北部大型滑坡体特征与年代[D]. 北京: 中国地震局地质研究所, 2012.

    YUAN Zhaode. Nature and timing of large landslides within an active orogeny, NE Pamir, China[D]. Beijing:Institute of Geology, China Earthquake Administration, 2012. (in Chinese with English abstract)
    [2] 杨丽娟, 李华亮, 易顺华.陕西五曲湾滑坡发育特征和14C测龄[J].灾害学, 2010, 25(3):49~52. http://d.wanfangdata.com.cn/Periodical/zhx201003010

    YANG Lijuan, LI Hualiang, Yi Shunhua. Development characteristics and 14C dating of a landslide in Wuquwan in Shaanxi Province[J]. Journal of Catastrophology, 2010, 25(3):49~52. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/zhx201003010
    [3] 洪婷, 白世彪, 王建.树轮地貌学重建滑坡事件研究进展[J].地质论评, 2014, 60(4):755~764. http://www.oalib.com/paper/4884591

    HONG Ting, BAI Shibiao, WANG Jian. A review on study of landslide activities using Dendrogeomorphological methods[J]. Geological Review, 2014, 60(4):755~764. (in Chinese with English abstract) http://www.oalib.com/paper/4884591
    [4] 田婷婷, 吴中海, 张克旗, 等.第四纪主要定年方法及其在新构造与活动构造研究中的应用综述[J].地质力学学报, 2013, 19(3):242~266. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20130302&flag=1

    TIAN Tingting, WU Zhonghai, ZHANG Keqi, et al. Overview of quaternary dating methods and their application in neotectonics and active tectonics research[J]. Journal of Geomechanics, 2013, 19(3):242~266. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20130302&flag=1
    [5] Sewell R J, Barrows T T. Exposure dating (10Be, 26Al) of natural terrain landslides in Hong Kong, China[J]. Special Paper of the Geological Society of America, 2006, 415:131~146. https://pubs.geoscienceworld.org/books/book/570/chapter/3803210/Exposure-dating-10Be-26Al-of-natural-terrain
    [6] Dortch J M, Owen L A, Haneberg W C, et al. Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India[J]. Quaternary Science Reviews, 2009, 28(11/12):1037~1054. https://www.sciencedirect.com/science/article/pii/S0277379108001169
    [7] Hewitt K, Gosse J, Clague J J. Rock avalanches and the pace of late Quaternary development of river valleys in the Karakoram Himalaya[J]. Geological Society of American Bulletin, 2011, 123(9/10):1836~1850. http://gsabulletin.gsapubs.org/content/123/9-10/1836.abstract
    [8] Pánek T. Recent progress in landslide dating:A global overview[J]. Progress in Physical Geography, 2015, 39(2):168~198. doi: 10.1177/0309133314550671
    [9] 谌文武, 赵志福, 刘高, 等.兰州~海口高速公路甘肃段工程地质问题研究[M].兰州:兰州大学出版社, 2006. 70~73.

    ZHAN Wenwu, ZHAO Zhifu, LIU Gao, et al. Geoengineering Question in Gansu Province of the Highwar Form Lanzhou to Haikou[M]. Lanzhou:Lanzhou University Press, 2006. 70~73. (in Chinese)
    [10] 刘高, 张帆宇, 李新召, 等. 凤安山滑坡地质过程研究[A]. 第二届全国岩土与工程学术大会[C]. 北京: 科学出版社, 2006.

    LIU Gao, ZHANG Fanyu, LI Xinzhao, et al. Study on geological process of the Feng'anshan Landslide[A]. National Geotechnical and Engineering Conference[C]. Beijing:Science Press, 2006. (in Chinese)
    [11] 原俊红. 白龙江中游滑坡堵江问题研究[D]. 兰州: 兰州大学, 2007.

    YUAN Junhong. Study on the landslide damming of river in the middle reaches of the Bailong River[D]. Lanzhou:Lanzhou University, 2007. (in Chinese with English abstract)
    [12] 郭长宝, 张永双, 王涛, 等.南北活动构造带中段地质灾害与重大工程地质问题概论[J].地质力学学报, 2017, 23(5):707~722. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170508&flag=1

    GUO Changbao, ZHANG Yongshuang, Wang Tao, et al. Discussion on geological hazards and major engineering geological problems in the north-south active tectonic zone, China[J]. Journal of Geomechanics, 2017, 23(5):707~722. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20170508&flag=1
    [13] 郑龙, 王文丽, 马紫娟.宕昌县地震活动性分析与评价[J].甘肃科技, 2016, 32(2):12~16. http://www.cqvip.com/QK/90793A/201602/667998090.html

    ZHENG Long, Wang Liwen, MA Zijuan. Analysis and evaluation of seismic activity in Dangchang[J]. Gansu Science and Technology, 2016, 32(2):12~16. (in Chinese) http://www.cqvip.com/QK/90793A/201602/667998090.html
    [14] 温晓婧.甘肃省陇南市宕昌县山洪灾害现状、防治存在问题及治理措施研究[J].西北水电, 2011, (4):12~14. http://www.cqvip.com/QK/98045X/201104/39014483.html

    WEN Xiaojing. Study on status of mountain flood disasters in Tuochang county of Gansu province and counter measures[J]. Northwest Hydropower, 2011, (4):12~14. (in Chinese with English abstract) http://www.cqvip.com/QK/98045X/201104/39014483.html
    [15] 胡凯, 方小敏, 赵志军, 等.宇宙成因核素10Be揭示的北祁连山侵蚀速率特征[J].地球科学进展, 2015, 30(2):268~275. doi: 10.11867/j.issn.1001-8166.2015.02.0268

    HU Kai, FANG Xiaomin, ZHAO Zhijun, et al. Erosion rates of northern Qilian Mountains revealed by cosmogenic 10Be[J]. Advances in Earth Science, 2015, 30(2):268~275. (in Chinese with English abstract) doi: 10.11867/j.issn.1001-8166.2015.02.0268
    [16] Lal D. Cosmic ray labeling of erosion surfaces:in situ nuclide production rates and erosion models[J]. Earth & Planetary Science Letters, 1991, 104(2/4):424~439. https://www.sciencedirect.com/science/article/pii/0012821X9190220C
    [17] Dunai T J. Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides[J]. Earth & Planetary Science Letters, 2001, 193(1~2):197~212. http://adsabs.harvard.edu/abs/2001E%26PSL.193..197D
    [18] Gosse J C, Phillips F M. Terrestrial in situ cosmogenic nuclides:theory and application[J]. Quaternary Science Reviews, 2001, 20(14):1475~1560. doi: 10.1016/S0277-3791(00)00171-2
    [19] 张志刚, 王建, 徐孝彬, 等.利用宇生核素10Be暴露测年技术重建冰川漂砾运动历史[J].山地学报, 2017, (4):590~597. http://www.geog.com.cn/CN/abstract/abstract39694.shtml

    ZHANG Zhigang, WANG Jian, XU Xiaobin, et al. Reconstructing movement history of glacial boulders by using10Be exposure dating method[J]. Mountain Research, 2017, (4):590~597. (in Chinese with English abstract) http://www.geog.com.cn/CN/abstract/abstract39694.shtml
    [20] Ivy-Ochs S, Kober F. Surface exposure dating with cosmogenic nuclides[J]. Quaternary Science Journal, 2008, 57(1/2):179~209.
    [21] Brown E T, Edmond J M, Raisbeck G M, et al. Examination of surface exposure ages of Antarctic moraines using in situ, produced 10Be and 26Al[J]. Geochimica et Cosmochimica Acta, 1991, 55(8):2269~2283. doi: 10.1016/0016-7037(91)90103-C
    [22] Kohl C P, Nishiizumi K. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides[J]. Geochimica et Cosmochimica Acta, 1992, 56(9):3583~3587. doi: 10.1016/0016-7037(92)90401-4
    [23] 徐孝彬, 王建, 陈仕涛.陆面岩石中生成的同位素10Be与26Al的实验室提取方法[J].南京师大学报(自然科学版), 2003, 26(1):111~115. http://image.hanspub.org:8080/xml/17644.xml

    XU Xiaobin, WANG Jian, CHEN Shitao. Samples selection in terrestrial cosmogenic isotopes dating and extraction of 10Be and 26Al[J]. Journal of Nanjing Normal University (Natural Science), 2003, 26(1):111~115. (in Chinese with English abstract) http://image.hanspub.org:8080/xml/17644.xml
    [24] 张志刚. 稻城古冰帽第四纪冰川年代学研究[D]. 南京: 南京师范大学, 2014.

    ZHANG Zhigang. Quaternary glacial chronology of Paleo-Daocheng ice cap, Southeastern Tibetan plateau, China[D]. Nanjing:Nanjing Normal University, 2014. (in Chinese with English abstract)
    [25] 徐孝彬, 王建, Yiou F, 等.地貌学与第四纪研究的新手段——陆地宇生核素研究[J].地理科学, 2002, 22(5):587~591. http://www.cqvip.com/qk/95809x/2002005/6992860.html

    XU Xiaobin, WANG Jian, Yiou F, et al. New means in the study of geomorphology and quaternary-research of terrestrial cosmogenic isotopes[J]. Scientia Geographica Sinica, 2002, 22(5):587~591. (in Chinese with English abstract) http://www.cqvip.com/qk/95809x/2002005/6992860.html
    [26] 李英奎, Harbor J, 刘耕年, 等.宇宙核素地学研究的应用现状与存在问题[J].水土保持研究, 2005, 12(4):146~152. http://d.wanfangdata.com.cn/Periodical_stbcyj200504042.aspx

    LI Yingkui, Jon Harbor, LIU Gengnian, et al. Applications and limitations of in-situ cosmogenic nuclides in earth sciences[J]. Research of Soil and Water Conservation, 2005, 12(4):146~152. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical_stbcyj200504042.aspx
    [27] Dunne J, Elmore D, Muzikar P. Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces[J]. Geomorphology, 1999, 27(1/2):3~11. https://www.sciencedirect.com/science/article/pii/S0169555X98000865
    [28] Gillespie A R, Bierman P R. Precision of terrestrial exposure ages and erosion rates estimated from analysis of cosmogenic isotopes produced in situ[J]. Journal of Geophysical Research Atmospheres, 1995, 100(B12):24637~24650. doi: 10.1029/95JB02911
    [29] Zerathe S, Braucher R, Lebourg T, et al. Dating chert (diagenetic silica) using in-situ-produced 10Be:Possible complications revealed through a comparison with 36Cl applied to coexisting limestone[J]. Quaternary Geochronology, 2013, 17(3):81~93. http://www.sciencedirect.com/science/article/pii/S1871101413000046
    [30] Zerathe S, Lebourg T, Braucher R, et al. Mid-Holocene cluster of large-scale landslides revealed in the Southwestern Alps by 36Cl dating. Insight on an Alpine-scale landslide activity[J]. Quaternary Science Reviews, 2014, 90:106~127. doi: 10.1016/j.quascirev.2014.02.015
    [31] Balco G, Stone J O, Lifton N A, et al. A complete and easily accessible means of calculating surface exposure ages or erosion rates from Be and Al measurements[J]. Quaternary Geochronology, 2008, 3(3):174~195. doi: 10.1016/j.quageo.2007.12.001
    [32] Desilets D, Zreda M. Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in situ cosmogenic dating[J]. Earth & Planetary Science Letters, 2003, 206(1/2):21~42. https://www.sciencedirect.com/science/article/pii/S0012821X02010889
    [33] Desilets D, Zreda M, Prabu T. Extended scaling factors for in situ cosmogenic nuclides:New measurements at low latitude[J]. Earth & Planetary Science Letters, 2006, 246(3/4):265~276. https://www.sciencedirect.com/science/article/pii/S0012821X06002871
    [34] Lifton N A, Bieber J W, Clem J M, et al. Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications[J]. Earth & Planetary Science Letters, 2005, 239(1/2):140~161. http://www.sciencedirect.com/science/article/pii/S0012821X05004437
    [35] Stone J O. Air pressure and cosmogenic isotope production[J]. Journal of Geophysical Research Solid Earth, 2000, 105(B10):23753~23759. doi: 10.1029/2000JB900181
    [36] Hein A S, Hulton N R J, Dunai T J, et al. The chronology of the Last Glacial Maximum and deglacial events in central Argentine Patagonia[J]. Quaternary Science Reviews, 2010, 29(9/10):1212~1227. http://www.sciencedirect.com/science/article/pii/S0277379110000326
    [37] Owen L A, Frankel K L, Knott J R, et al. Beryllium-10 terrestrial cosmogenic nuclide surface exposure dating of Quaternary landforms in Death Valley[J]. Geomorphology, 2011, 125(4):541~557. doi: 10.1016/j.geomorph.2010.10.024
    [38] Hippolyte J C, Bourlès D, Braucher R, et al. Cosmogenic 10Be dating of a sackung and its faulted rock glaciers, in the Alps of Savoy (France)[J]. Geomorphology, 2009, 108(3/4):312~320. http://www.sciencedirect.com/science/article/pii/S0169555X09000828
    [39] Lebourg T, Zerathe S, Fabre R, et al. A Late Holocene deep-seated landslide in the northern French Pyrenees[J]. Geomorphology, 2014, 208(2):1~10. https://www.sciencedirect.com/science/article/pii/S0169555X13005849
    [40] Portenga E W, Bierman P R. Understanding Earth's eroding surface with 10Be[J]. GSA Today, 2011, 21(8):4~10. doi: 10.1130/G111A.1
    [41] 许刘兵, 周尚哲.基于宇宙成因核素10Be的青藏高原东南部地区末次间冰期以来地表岩石剥蚀速率研究[J].地质学报, 2009, 83(4):487~495. http://www.geog.com.cn/CN/abstract/abstract39334.shtml

    XU Liubing, ZHOU Shangzhe. Quantifying erosion rates in the southeastern Tibetan plateau since the last interglacial using in-situ cosmogenic radionuclide 10Be[J]. Acta Geologica Sinica, 2009, 83(4):487~495. (in Chinese with English abstract) http://www.geog.com.cn/CN/abstract/abstract39334.shtml
    [42] Small E E, Anderson R S, Repka J L, et al. Erosion rates of alpine bedrock summit surfaces deduced from in situ 10Be and 26Al[J]. Earth & Planetary Science Letters, 1997, 150(3/4):413~425. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V61-4177RWJ-K&_user=6894003&_coverDate=08%2F31%2F1997&_rdoc=17&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info(%23toc%235801%231997%23998499996%23567143%23FLP%23display%2
    [43] 刘蓓蓓, 张威, 崔之久, 等.青藏高原东北缘玛雅雪山晚第四纪冰川发育的气候和构造耦合[J].冰川冻土, 2015, 37(3):701~710. http://d.wanfangdata.com.cn/Periodical/bcdt201503017

    LIU Beibei, ZHANG Wei, CUI Zhijiu, et al. Climate-tectonics coupling effect on late quaternary glaciation in the Mayaxue Shan, Gansu Province[J]. Journal of Glaciology and Geocryology, 2015, 37(3):701~710. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/bcdt201503017
    [44] Clapp E M, Bierman P R, Caffee M, et al. Using 10Be and 26Al to determine sediment generation rates and identify sediment source areas in aft arid region drainage basin[J]. Geomorphology, 2002, 45(1/2):89~104. doi: 10.1086/598945
    [45] Kong P, Na C G, Fink D, et al. Erosion in northwest Tibet from in-situ-produced cosmogenic 10Be and 26Al in bedrock[J]. Earth Surface Processes and Landforms, 2007, 32(1):116~125. doi: 10.1002/(ISSN)1096-9837
    [46] Lal D, Harris N B W, Sharma K K, et al. Erosion history of the Tibetan Plateau since the last interglacial:constraints from the first studies of cosmogenic 10Be from Tibetan bedrock[J]. Earth & Planetary Science Letters, 2003, 217(1/2):33~42. http://www.sciencedirect.com/science/article/pii/S0012821X03006009
    [47] 顾功叙.中国地震目录(公元前1831年~公元1969年)[M].北京:科学出版社, 1983.

    GU Gongxu. China Seismic Catalogue (1831BC~1969AD)[M]. Beijing:Science Press, 1983. (in Chinese)
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  211
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-06
  • 刊出日期:  2017-12-01

目录

/

返回文章
返回