留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渤中25-1低渗透油田地应力分布特征及对开发的影响

廖新武 刘奇 李超 祖克威 周军良 黄凯

廖新武, 刘奇, 李超, 等, 2015. 渤中25-1低渗透油田地应力分布特征及对开发的影响. 地质力学学报, 21 (1): 30-37.
引用本文: 廖新武, 刘奇, 李超, 等, 2015. 渤中25-1低渗透油田地应力分布特征及对开发的影响. 地质力学学报, 21 (1): 30-37.
LIAO Xin-wu, LIU Qi, LI Chao, et al., 2015. DISTRIBUTION OF THE PRESENT STRESS IN LOW PERMEABILITY OILFIELD OF BOZHONG 25-1 AND ITS EFFECT ON DEVELOPMENT. Journal of Geomechanics, 21 (1): 30-37.
Citation: LIAO Xin-wu, LIU Qi, LI Chao, et al., 2015. DISTRIBUTION OF THE PRESENT STRESS IN LOW PERMEABILITY OILFIELD OF BOZHONG 25-1 AND ITS EFFECT ON DEVELOPMENT. Journal of Geomechanics, 21 (1): 30-37.

渤中25-1低渗透油田地应力分布特征及对开发的影响

详细信息
    作者简介:

    廖新武(1972-), 男, 硕士, 主要从事油气田开发地质的研究工作。E-mail: liaoxw@cnooc.com.cn

  • 中图分类号: P553

DISTRIBUTION OF THE PRESENT STRESS IN LOW PERMEABILITY OILFIELD OF BOZHONG 25-1 AND ITS EFFECT ON DEVELOPMENT

  • 摘要: 利用有限元方法, 对渤中25-1低渗透油田现今地应力状态进行数值模拟研究, 并结合低渗透储层地质特征, 分析地应力对油田开发的影响。数值模拟结果表明, 渤中25-1低渗透油田沙二和沙三段的现今地应力为压应力, 以北东东—南西西向为水平最大主应力的主要优势方位, 地应力在平面上受断层、构造起伏和沉积微相控制明显。根据地应力状态, 分析研究区的人工压裂裂缝为垂直裂缝。在远离断层的断块中部, 人工压裂缝的展布方向主要为北东东—南西西方向; 在断层附近, 由于水平最大主应力方向发生偏转, 人工压裂缝的延伸方向也会发生一定偏转, 部署开发井网时需要根据断层附近地应力的实际分布规律进行相应调整。

     

  • 岩石圈7类主要造岩矿物(方解石、石英、长石、黑云母、角闪石、辉石和橄榄石)的塑性变形行为是了解地壳到地幔各层次结构、流变学特征及动力学演化的重要途径[1]。作为了解上地幔力学与流变学表现的重要依据之一,橄榄石塑性变形行为研究具有重要意义,它是窥探上地幔动力学过程的窗口。橄榄石显微构造记录了其所经历的变形变质过程、塑性流动等信息,可以用来估算岩石变形过程中的差异应力、应变速率、温度、压力等流变学参数,定性探讨上地幔变形环境,并总结岩石样品形成与发展过程中的变形机制和变形历史[2]

    前人对天然橄榄岩和实验变形样品的研究揭示,橄榄石在塑性流变过程中形成的结晶学优选方位(Lattice-preferred orientation,LPO)与含水量、差异应力、温度、压力、部分熔融等变形环境有着密切的联系。不同的变形环境下,橄榄石可发育5种组构类型(见图 1),即A型(010)[100]滑移系[3]、B型(010)[001]滑移系[4]、C型(100)[001]滑移系[4]、D型(0kl)[100]滑移系[5~6]和E型(001)[100]滑移系[7]。高压变形实验和天然样品观测结果显示,橄榄石在地幔浅部环境下最易发育A型或E型组构,地幔深部高压环境下主要发育C型组构[8~10],大洋俯冲带发育B型组构[11](见表 1)。因此可以根据橄榄石组构特征来推断岩石形成时大地构造环境,探讨其变形环境条件。

    图  1  典型橄榄石组构及其与滑移系和应力、含水量关系(据Karato等[3],略有修改)
    Figure  1.  Typical olivine fabric and the relationship with dominant slip systems, stress and water content
    表  1  五种LPO类型特征及其形成环境
    Table  1.  Features and formation conditions of five LPO-types
    下载: 导出CSV 
    | 显示表格

    本文主要通过电子背散射衍射(Electron backscatter diffraction,简称EBSD)技术对祁连山玉石沟方辉橄榄岩中橄榄石进行显微组构测定,并结合其岩石学特征和位错特征,定性分析和校验玉石沟橄榄岩形成时大地构造环境,探讨其变形机制和变形历史。

    本文样品采自北祁连俯冲-碰撞杂岩带中部的玉石沟。北祁连构造带位于青海省北部和甘肃省西南部,处于中朝—塔里木地台的西南边缘,是秦祁昆褶皱系中段祁连褶皱系的一部分[12]。北部为阿拉善地块(中朝地块的一部分),南部依次为中祁连、南祁连,并以柴北缘边界断裂与柴达木地块相隔,西北部以阿尔金走滑断层与塔里木地块相接(见图 2)。

    图  2  祁连山—柴北缘地区地质简图
    1—板岩夹灰岩、灰岩、板岩及中基性火山岩;2—辉长岩;3—滑石菱镁片岩等;4—纯橄榄岩;5—方辉橄榄岩;6—蛇纹岩;7—白云岩、石英片岩;8—UHP terrane;9—北祁连缝合带;10—断裂;11—构造边界;12—取样点
    Figure  2.  Geological sketch map of Qilianshan to northern margin of Qaidam regions

    北祁连造山带可分为东西两段,蛇绿岩主要分布在东段[13]。侯青叶等[14]对北祁连蛇绿岩单元中玄武岩微量元素研究表明,该玄武岩具有印度洋型MORB特征;宋述光等[15]通过流变学和温压条件计算,确定该蛇绿岩底部橄榄岩是大洋岩石圈之下软流圈上涌的产物。蛇绿岩套的层序与大洋岩石圈剖面可以逐层对比,可以把蛇绿岩看作是大洋岩石圈的代表。大洋岩石圈是在洋中脊发展过程中形成的,主要由基性、超基性岩构成,其特点是地壳较薄而致密。地震探测表明,洋壳不是由单一的玄武岩构成,而是可以明显地分为几层:层① 由半固结和固结沉积物组成;层② 由拉斑玄武岩和部分沉积岩组成,其下部可出现辉绿岩岩床和岩墙;层③ 主要由辉长岩等镁铁质火成岩及其变质产物组成,一般认为由辉长岩和角闪岩组成;层③ 之下便是超镁铁质岩石组成的上地幔(见图 3)。

    图  3  洋壳的组合结构[16]
    1—沉积物;2—拉斑玄武岩;3—辉长岩;5—上地幔(橄榄岩)
    Figure  3.  Composition and structure of oceanic crust

    玉石沟橄榄岩主要由南岩体、中岩体、北岩体和小岩体组成,其岩性主要是方辉橄榄岩和纯橄岩以及少量的含辉纯橄岩(见图 4)。其中南岩体、北岩体和小岩体呈不规则细条状,均强烈蛇纹石化;中岩体呈透镜状,主要由方辉橄榄岩(约92%)组成,其边缘为蛇纹石化的纯橄榄岩,中心部位的方辉橄榄岩较新鲜,并被晚期的纯橄榄岩岩脉穿插。

    图  4  玉石沟超基性岩体A-B地质剖面示意图(剖面位置见图 1
    1—北岩体(方辉橄榄岩);2—中岩体(方辉橄榄岩);3—小岩体(纯橄榄岩);4—南岩体(纯橄榄岩)
    Figure  4.  Schematic cross section of ultrabasic rock from Yushigou

    本文选取的实验样品为蛇纹石化程度较低的方辉橄榄岩,手标本上可观察到明显的面理和线理。为了方便进行实验分析,将岩石样品磨制成厚度约为0.03 mm的3组定向薄片(a片垂直于面理且垂直于线理;b片平行于线理且垂直于面理;c片平行于面理且平行于线理),并进行抛光,用于光学显微镜下岩相学观察和岩石组构测定。

    样品中橄榄石的晶格优选方位采用了电子背散射衍射技术,利用中国地质大学(北京)地质过程与矿产资源国家重点实验室S-3400N扫描电子显微镜的EBSD组件完成。工作条件:加速电压为15 kV,工作距离为18.4 mm,样品倾斜70°。测量采用人机交互模式,手动控制分析精度。晶格优选方位极密统计由Channel 5软件完成,数据的表达利用上半球投影的结构平面图,面理平行于XY面,线理平行于X轴。实验中,3个不同方向的橄榄石样品分别收集了159(a片)、175(b片)和213(c片)个颗粒的晶体取向数据。

    位错构造研究是揭示地幔变形环境、变形机制和变形过程的有效途径,本文采用透射电镜观察方法研究橄榄石的位错特征。薄片在显微镜下观察后送至中国地质科学院进行离子减薄至穿孔为止。透射电镜(Transmission electron microscopy,TEM)观察在日立H-8100型电镜上进行,加速电压200 kV;该仪器配备的X-射线能谱仪(X-ray energy dispersive spectrometry,EDS)为PhilipEDAX-4型,其探测器能鉴定从硼(原子序数为5)到铀(原子序数为92)的所有元素,能量分辨率高。

    方辉橄榄岩呈灰绿色,颜色均匀,块状构造,整体呈半自形—他形,中—粗粒结构,残斑结构(见图 5a),发育2组显微破裂(见图 5b);橄榄石与辉石颗粒之间呈直线、曲线或波浪状接触,这种结构是地幔岩中常见的原始结构;主要由橄榄石(Ol,80%~85%)、斜方辉石(Opx,15%~20%)及少量铬尖晶石(Sp,<1%)、蛇纹石(Serp,<1%)组成。橄榄石为粒状半自形结构,粒径变化较大,最大可达6 mm,最小粒径小于0.1 mm,主要粒径集中在0.5~2.0 mm之间。橄榄石普遍破碎严重,一些橄榄石以120°汇聚为三联点,边界平直,某些颗粒形成初级核幔结构,发育亚晶粒、带状消光、扭折、波状消光现象(见图 5c),前人计算该地区橄榄石牌号Fo介于89~93,属镁橄榄石[17]。斜方辉石,一级干涉色,晶体呈半自形、他形,可见一组完全解理。与橄榄石相比,斜方辉石显微破裂较轻微,发育有扭折、变形纹、出溶叶理现象(见图 5d—5f),并常见包橄结构。铬尖晶石单偏光下不透光或呈棕红色,等轴或不规则粒状,全消光(见图 5g)。

    图  5  玉石沟橄榄岩的显微图像
    a—方辉橄榄岩中残斑结构;b—橄榄石中剪/张破裂;c—橄榄石中消光带、亚晶粒;d—斜方辉石中扭折带;e—斜方辉石中出溶叶理;f—斜方辉石中出溶现象;g—方辉橄榄岩中铬尖晶石
    Figure  5.  Photomicrograph of peridotites from Yushigou

    在3个不同方向的薄片偏光镜下图像中可以看到,c片和b片中发育近于平行的2组剪切破裂,且均近乎平行于X轴,a片中可见呈一定角度相交的共轭剪切破裂j1和j2,以及一组张破裂(见图 5b)。结合里德尔剪切(Riedel Shear)模式图(见图 6),可得样品中发育的2组羽状剪节理J1和J2,其中J2为透入性剪裂面,J1为非透入性剪裂面。MN为主剪裂面,是由羽状微剪裂面J1组合而成。J1组微剪裂面与主剪切面MN夹角为α,约为9°—13°,J2组微剪裂面与MN夹角为γ,约为68°,两者锐夹角均指示本盘错动方向,由此推断橄榄岩样品受到过垂直于X轴的剪切作用,且表现为脆性变形。

    图  6  橄榄岩共轭剪裂面及其受力模式图(里德尔剪切)
    Figure  6.  The conjugate shear fracture surfaces and their force mode in peridotite (Riedel Shear)

    从3个不同方向的方辉橄榄岩样品所得到3组橄榄石颗粒晶体取向极密图(见图 7)可以看出,橄榄石具有明显的晶格优选定向(Lattice-preferred orientation,LPO)。4个样品中橄榄石[100]和[010]轴显示很强的晶格优选方位,[001]和[111]轴优选方位较弱。其中,[100]轴在平行于X轴方向上形成较强点极密,即[100]轴平行于线理(X轴);[010]轴在垂直于面理面(XY面)方向上的近Z轴处形成点极密,即[010]轴近垂直于面理(XY面)、平行于Z轴,[010]轴也形成一些次极密,近似形成一个垂直于面理(XY面)和线理(X轴)的大环带;[001]轴形成了多个极密,亦近似构成一个垂直于面理(XY面)和线理(X轴)的大环带;[111]轴形成多个极密,极密近乎沿着面理方向分布,且形成位于X轴两端、围绕X轴的2个小环带。

    图  7  方辉橄榄岩中橄榄石晶格优先定向
    Figure  7.  Lattice-preferred orientation of olivine in harzburgite

    在不同的温度、压力、应变速率和含水量条件下,橄榄石分别对应着不同的组构[18]。Carter等[19]研究发现温度和应变速率是控制橄榄石位错滑移系的主要因素,随着温度升高和应变速率降低,橄榄石的主控滑移系从(110)[001](<900 ℃)转变成为(0k1)[100](900~1200 ℃),然后变成(010)[100](>1200 ℃)。因此,在上地幔的变形环境下橄榄石发育(010)[100]滑移系,这与天然橄榄岩中普遍发育(010)[100]滑移系一致。近年来高温高压变形实验已经定义了5种橄榄石组构类型,而橄榄石中最常见的以(010)[100]为滑移系的A型组构形成于低应力和低含水量条件下[20]。样品橄榄岩中橄榄石组构的测量结果显示,[100]轴平行于线理方向(X轴),[010]轴最强极密垂直于面理(XY面),即(010) 面平行于面理,经与前人研究结果对比分析,该样品中橄榄石发育原生A型组构,表明祁连山玉石沟方辉橄榄岩形成于高温(>1200 ℃)、低应力(<350 MPa)、低应变速率、低含水量的地幔浅部环境条件下(见图 1)。

    除[100]、[010]轴表现很强的点极密外,[010]轴另外发育有一些次极密,[001]和[111]轴均发育多个极密,且[010]、[001]和[111]等3个轴均形成接近垂直于[110](X轴)的环带。通过绘制橄榄石晶体在岩石样品中的简易定向图(见图 8)发现,这3个晶轴可能曾沿垂直于[110](X轴)的面发生旋转,因此形成垂直于[110](X轴)的环带,推测是由于岩石样品受到垂直于X轴的剪切而引起的橄榄石晶体绕[100](X轴)旋转或橄榄石发生轻微塑性变形而改造原生A型组构并形成次生组构。根据极密图中[010]、[001]轴形成的环带,对比前人研究结果,揭示样品中橄榄石发育D型次生组构,即(0kl)[100]滑移系,且形成于高温(900~1200 ℃)、高应力(400~500 MPa)、低应变速率、贫水的环境条件下。

    图  8  橄榄石晶体在样品中简易定向图
    ①—镁橄榄石矿物晶体形态及光率体主轴与结晶轴关系示意图;②—橄榄石晶体简易图;③—橄榄石晶体在样品中的定向;④—岩石样品定向薄片磨制
    Figure  8.  Simple directed graph of olivine crystals in the sample

    透射电镜下观察到样品大部分区域未出现位错,只有局部可见少量的刃型位错聚集,密度较低。所有位错均为直线型,长度较短,呈定向排列(见图 9)。

    图  9  透射电镜下橄榄岩位错组态及晶体弯曲
    Figure  9.  TEM images of dislocation configuration and crystal bend in olivine

    亚晶粒的形成有2种情况,一种是刃型位错攀移,滑动重排形成位错壁,在晶体内分割出若干亚晶粒;另一种是以位错扭折条带为边界形成亚晶粒。透射电镜下样品中呈直线型、定向排列的刃型位错构成了亚晶界,使相邻亚晶粒之间在正交偏光下显示出不同消光位,将晶体分割成若干亚晶粒。亚晶粒本身经历晶格回复使内部位错很少,位错集中在亚晶界上[21]

    消光带和亚晶粒并没有本质的区别,都是由位错壁分割的不同消光区,只是消光带为拉长状的亚晶粒。亚晶粒构造是高温稳态流动显微构造的重要标志,是动态恢复作用的结果,它指示了高温位错蠕变[22]。亚晶粒、消光带构造在玉石沟橄榄岩样品中比较普遍(见图 5),并且亚晶界、消光带边界平直、连续,并未因橄榄岩显微剪、张裂隙而发生明显错断,表明橄榄岩显微破裂和亚晶界、消光带属同一时期的构造运动中形成。

    当晶体受力发生弹性弯曲时,晶体中的应力感生位错发生攀移、重排形成位错壁,从而使晶粒内相互间具有很小晶体学位向差(2°—3°)的小晶块,即亚晶粒(见图 9),表现塑性变形。因此,亚晶粒可以代表晶体在应力作用下发生了微折曲,并可以通过镜下薄片中亚晶界的排布统计,进行应力初步分析探讨。

    对a片中亚晶界的排布统计得到的应力分析结果与前述显微破裂的应力分析结果相同(见图 10),橄榄石晶体在σ1压应力作用下发生弯曲以及位错重排形成位错壁,这也进一步证明样品中亚晶粒、消光带和显微破裂属同期形成。

    图  10  应力作用下的橄榄石晶体弯曲
    Figure  10.  Olivine crystals bend under compressive stress

    对玉石沟橄榄岩中橄榄石组构进行测定,并结合镜下显微构造观察及TEM位错观察结果,发现样品中橄榄石发育明显的A型原生组构,玉石沟橄榄岩具有明显的残斑结构,综合分析玉石沟橄榄岩来源于高温(>1200 ℃)、低应力(<350 MPa)、低应变速率、低含水量的上地幔环境。

    玉石沟橄榄岩中发育有2组共轭剪节理,橄榄石普遍发育显微破裂,应力应变分析显示样品曾受到剪切作用而发生脆性变形。另外样品中普遍发育亚晶粒、扭折带显微构造,透射电镜观察超微构造发现一些呈直线型定向排列的自由位错,表现为韧性变形。分析认为亚晶粒、扭折带、消光带和显微破裂指示相同的应力场,属同期形成,岩石主要表现为脆-韧性变形,此阶段变形一定程度上影响了橄榄岩中橄榄石原生A型组构,使橄榄石晶体[010]、[001]轴在极密图中形成环带而表现为D型次生组构。这表明在玉石沟橄榄岩发育过程中,该地区发生过强烈的构造运动。

    变形机制分析发现,玉石沟橄榄岩中发育有以显微破裂为主的脆性变形和以位错蠕变为主导的塑性变形,并表现有明显的A型原生组构及D型次生组构,结合前人对祁连山缝合带构造演化的研究,本文将玉石沟橄榄岩变形过程分为上地幔演化和造山运动时脆-韧性变形2个阶段:上地幔演化阶段发育明显的A型原生组构;造山运动时脆-韧性变形阶段橄榄石变形主控因素为动态恢复作用,普遍发育亚晶粒、消光带和扭折显微构造等相关组构,并与透射电镜下所观察到的位错排对应,同时还发育以微破裂为主的一套脆性变形组构,表现出2组共轭剪破裂和另一组张性破裂等现象,此阶段变形叠加和改造了A型原生组构。

    蛇绿岩套中橄榄岩形成及演化过程复杂,其显/超微构造往往反映了多期构造事件,为能够更详细地研究其变形机制、变形历史,进而深入研究其在大地构造运动过程及应力应变分析中的指示和校验意义,还需要开展以下工作:

    ① 系统制作透射电镜样品,进一步详细研究其位错组态发育及分布等情况,分析其差应力等流变参数。

    ② 在野外系统采集定向的祁连山玉石沟地幔橄榄岩样品,测定其岩组类型,系统地进行应力应变分析,详细厘定其变形期次,结合前人研究进展,总结后期构造运动对原生构造的影响,初步探讨祁连山玉石沟地区大地构造运动情况。

    致谢: 感谢中国地质大学(北京)透射电镜实验室韩勇老师、岩组实验室张若愚硕士以及中国地质科学院地质研究所陈方远老师在样品分析过程中的指导。
  • 图  1  渤中25-1油田区域构造图[9]

    Figure  1.  The regional structure map of Bozhong 25-1 Oilfield

    图  2  沙二段地应力数值模拟主应力方位示意图

    Figure  2.  The sketch map of in-situ stress direction in the second member of Shahezi Formation

    图  3  沙二段数值模拟地应力分布栅状图

    Figure  3.  The in-situ stress distribution grid map of numerical modeling in the second member of Shahezi Formation

    表  1  地应力大小数值模拟结果检验

    Table  1.   Comparative the simulation results and principal stress calculated by logging data

    井号 实测水平最大主应力/MPa 实测水平最小主应力/MPa 数值模拟最大主应力/MPa 数值模拟最小主应力/MPa 最大主应力误差/% 最小主应力误差/%
    BZ25-1-A13 70.68 55.91 70.91 52.65 0.33 5.83
    BZ25-1-A4 77.91 63.00 78.34 62.06 0.55 1.49
    BZ25-1-A20 76.07 60.60 75.69 58.98 0.50 2.67
    BZ25-1-A22 82.63 61.40 80.07 61.36 3.10 0.07
    BZ25-1-C13 67.85 61.50 71.68 53.62 5.64 12.81
    BZ25-1-C125 96.41 70.30 88.04 70.86 8.68 0.80
    下载: 导出CSV

    表  2  地应力方位数值模拟结果检验

    Table  2.   Comparative the simulation results and the orientations of principal stress by measurements

    井号 实测水平最大主应力方位/(°) 数值模拟主应力方位/(°) 绝对误差/(°) 相对误差/%
    BZ25-1-1 60 59 1 1.7
    BZ25-1-3 50 54 4 8.0
    BZ25-1-4 60 67 7 11.7
    BZ25-1-5 80 76 4 5.0
    BZ25-1-A13 80 83 3 3.8
    下载: 导出CSV
  • [1] 景锋, 盛谦, 张勇慧.我国原位地应力测量与地应力场分析研究进展[J].岩土力学, 2011, 32(S2):51~58. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2008.htm

    JING Feng, SHENG Qian, ZHANG Yong-hui. Study advance on in-site geostress measurement and analysis of initial geostress field in China [J]. Rock and Soil Mechanics, 2011, 32(S2): 51~58. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2008.htm
    [2] 谢润成, 周文, 邓虎成, 等.现今地应力场特征评价一体化研究[J].石油钻采工艺, 2008, 30(4):32~35. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZC200804014.htm

    XIE Run-cheng, ZHOU Wen, DENG Hu-cheng, et al. Integrated research methods of in-situ stress field characteristics [J]. Oil Drilling and Production Technology, 2008, 30(4): 32~35. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZC200804014.htm
    [3] 曾联波, 肖淑蓉, 罗安湘.陕甘宁盆地靖安油田现今应力场三维有限元数值模拟及其开发意义[J].地质力学学报, 1998, 4(3):58~63. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19980334&journal_id=dzlxxb

    ZENG Lian-bo, XIAO Shu-rong, LUO An-xiang. The three-dimensional finite element numerical simulation of modern sress field and its significance in the oil development of the Jing'an area in the central Shaanxi-Gansu-Ningxia basin [J]. Journal of Geomechanics, 1998, 4(3): 58~63. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19980334&journal_id=dzlxxb
    [4] 曾联波, 田崇鲁.构造应力场与低渗透油田开发[J].石油勘探与开发, 1998, 25(3):91~93. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK803.025.htm

    ZENG Lian-bo, TIAN chong-lu. Tectonic stress field and the development of low permeability [J]. Petroleum Exploration and Development, 1998, 25(3): 91~93. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK803.025.htm
    [5] James A T. Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components [J]. AAPG Bulletin, 1983, 67(7): 1176~1991. http://archives.datapages.com/data/bulletns/1982-83/data/pg/0067/0007/1150/1176.htm?q=%2BtextStrip%3Aalberta+textStrip%3Adevonian
    [6] 曾联波, 漆家福.油气田开发阶段的构造地质学研究[J].地质科技情报, 2006, 25(4):15~20. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200604003.htm

    ZENG Lian-bo, QI Jia-fu. Structural geology in stage of reservoir development [J]. Geological Science and Technology Information, 2006, 25(4): 15~20. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200604003.htm
    [7] 杨玉卿, 潘福熙, 田洪, 等.渤中25-1油田沙河街组低渗透储层特征及分类评价[J].现代地质, 2010, 24(4):685~693. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201004008.htm

    YANG Yu-qing, PAN Fu-xi, TIAN Hong, et al. Characteristics and Classification and Evaluation of Low Porosity and Permeability Reservoir in Shahejie Formation of BZ25-1 Oilfield [J]. Geoscience, 2010, 24(4): 685~693. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201004008.htm
    [8] 邓运华, 李建平.渤中25-1油田勘探评价过程中地质认识的突破[J].石油勘探与开发, 2007, 34(6):646~652. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200706003.htm

    DENG Yun-hua, LI Jian-ping. Breakthroughs of geological concepts in exploration and evaluation of BZ25-1 field [J]. Petroleum Exploration and Development, 2007, 34(6): 646~652. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200706003.htm
    [9] 孙永河. 渤中坳陷新生代构造特征及其对油气运聚的控制[D]. 大庆: 大庆石油学院, 2008.

    SUN Yong-he. Cenozoic structural characteristics and its control to migration and accumulation of hydrocarbon in Bozhong depression [D]. Daqing: Daqing Petroleum Institute, 2008.
    [10] 朱守彪, 石耀霖.用遗传有限单元法反演川滇下地壳流动对上地壳的拖曳作用[J].地球物理学报, 2004, 47(2):232~239. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200402008.htm

    ZHU Shou-biao, SHI Yao-lin. Genetic algorithm finite element inversion of drag forces exerted by the lower grust on the upper crust in the Sichuan-Yunnan area [J]. Chinese Journal of Geophysics, 2004, 47(2): 232~239. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200402008.htm
    [11] 桑广森, 夏斌, 张胜利, 等.松辽盆地徐家围子三维构造应力场数值模拟研究[J].大地构造与成矿学, 2010, 34(2):196~203. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201002007.htm

    SANG Guang-sen, XIA Bin, ZHANG Sheng-li, et al. Numerical modeling of 3D tectonic stress field for the Xujiaweizi fault depression of Songliao basin [J]. Geotectonica et Metallogenia, 2010, 34(2): 196~203. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201002007.htm
    [12] 陈运平, 赵崇斌, 林舸.深部岩石力学性质及其在大陆构造变形过程研究中的作用[J].大地构造与成矿学, 2008, 32(3):276~284. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200803004.htm

    CHEN Yun-ping, ZHAO Chong-bin, LIN Ge. Mechanical properties of deep earth rocks and their roles in the investigation of continental deformation processes [J]. Geotectonica et Metallogenia, 2008, 32(3): 276~284. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200803004.htm
    [13] 宋胜利, 吴田忠.ANSYS曲壳模型计算复杂断块现今地应力场[J].石油钻采工艺, 2004, 26(5):13~15. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZC200405004.htm

    SONG Sheng-li, WU Tian-zhong. Determining the crustal stress field using ANSYS curved shell model [J]. Oil Drilling and Production Technology, 2004, 26(5): 13~15. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZC200405004.htm
    [14] 王双喜, 宋惠珍, 刘洁.塔里木盆地构造应力场的数值模拟及其对油气聚集的意义[J].地震地质, 1990, 21(3):268~273. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ199903010.htm

    WANG Shuang-xi, SONG Hui-zhen, LIU Jie. Numerical modeling of tectonic stress field for Tarim Basin and its implication to oil-gas accumulation [J]. Seismology and Geology, 1990, 21(3): 268~273. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ199903010.htm
    [15] 陈波, 田崇鲁.储层构造裂缝数值模拟技术的应用实例[J].石油学报, 1998, 19(4):50~54. doi: 10.7623/syxb199804009

    CHEN Bo, TIAN Chong-lu. Numerical simulation technique for structural fractures in a reservoir: Case studies [J]. Acta Petrolei Sinica, 1998, 19(4): 50~54. doi: 10.7623/syxb199804009
    [16] 万晓龙, 高春宁, 王永康, 等.人工裂缝与天然裂缝耦合关系及其开发意义[J].地质力学学报, 2009, 15(3):245~252. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20090305&journal_id=dzlxxb

    WAN Xiao-long, GAO Chun-ning, WANG Yong-kang, et al. Coupled relationship between created and natural fractures and its implication to development [J]. Journal of Geomechanics, 2009, 15(3): 245~252. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20090305&journal_id=dzlxxb
    [17] 曾联波.低渗透砂岩储层裂缝形成与分布[M].北京:科学出版社, 2008.

    ZENG Lian-bo. Formation and distribution of fractures in low permeability sandstone reservoirs[M]. Beijing: Science Press, 2008.
    [18] 陈凤, 罗美娥, 张维平, 等.大庆外围油田地应力特征及人工裂缝形态分析[J].断块油气田, 2006, 13(3):13~15. http://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200603003.htm

    CHEN Feng, LUO Mei-e, ZHANG Wei-ping, et al. Terrestrial stress characteristics and artificial fracture pattern analysis of Daqing periphery oilfield [J]. Fault-Block Oil and Gas Field, 2006, 13(3): 13~15. http://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200603003.htm
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  160
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-23
  • 刊出日期:  2015-03-01

目录

/

返回文章
返回