CHARACTERISTICS OF RARE EARTH AND TRACE ELEMENTS OF STIBNITE FROM THE BIJIASHAN ANTIMONY DEPOSIT, SOUTHWEST YUNNAN: IMPLICATIONS FOR ORE GENESIS
-
摘要: 以笔架山锑矿床为研究对象,在矿床精细解剖基础上,利用辉锑矿金属矿物ICP-MS分析,指示成矿流体来源和性质。研究结果显示,辉锑矿轻稀土强烈富集,分馏程度高,Tb、Dy、Eu呈显著的正异常,显著的正异常稀土配分模式,与喜马拉雅期富碱斑岩的稀土配分模式具有相似性。此外,辉锑矿矿物以其强Sr和Ba正异常的微量元素特征,与喜马拉雅期富碱斑岩中高含量Sr和Ba的特征一致。辉锑矿矿物的Y/Ho比值变化较大,其比值随辉锑矿的氧化程度增大和产出海波高度增高而逐渐增大。对比不同流体系统的Y/Ho比值发现氧化程度较大和海拔较高的辉锑矿Y/Ho比值与现代海水的Y/Ho比值接近,氧化程度较低的辉锑矿Y/Ho比值与莲花山岩体Y/Ho比值接近,指示成矿流体可能是岩浆与大气降水不同程度的混和。H-O同位素研究显示出成矿热液来源于岩浆水和大气降水的混合。Pb同位素显示壳、幔源多源铅的特征。S同位素表明辉锑矿的S主要为生物与岩浆热液来源硫的混合。综合研究认为,该矿床是一个受层间构造破碎带控制的位于岩浆远端的低温热液矿床。Abstract: Taking the Bijiashan antimony deposit as the research object, we reveal the source and nature of ore-forming fluid using ICP-MS analysis of stibnite based on the fine dissection of ore deposits. The REE patterns of stibnite show enrichment of LREE with the intense fractionation, with obvious Tb and Dy positive anomaly and Eu positive anomaly, which is similar with the REE patterns of the Himalayan alkali-rich porphyry. Furthermore, the characteristics of strongly Sr and Ba positive anomaly in the trace element of stibnite, is consistent with that of the Himalayan alkali-rich porphyry. The Y/Ho ratios of stibnite increase along with the increase of altitude and degree of oxidation. The Y/Ho ratios of stibnite with high degree of oxidation is similar with the Y/Ho ratios of sea water and the Y/Ho ratios of stibnite with low degree of oxidation is similar with the Y/Ho ratios of the Lianhuashan alkali-rich porphyry, which suggests that ore-forming fluid may be from the mixture of magmas and atmospheric water and that is also supported by H-O isotope study. Isotope analysis reveals that Pb is from multiple sources and S of stibnite is a mixture of biological sulfur and magmatic sulfur. Results display that the deposit controlled by interformational fracture zone is an epithermal deposit which formed in distal volcanic settings.
-
Key words:
- the Bijiashan antimony deposit /
- ore fabric /
- ICP-MS /
- ore genesis /
- epithermal deposit
-
图 2 巍山笔架山锑矿床矿区构造-蚀变-矿化图[14]
Figure 2. Structure-alteration-mineralization map of the Bijiashan antimony deposit in Weishan, Southwestern China
图 3 巍山笔架山锑矿床矿体特征[39]
a—岩脚灰岩节理裂隙及层间接触带矿体素描图; b—扎花山矿段钻孔剖面图
Figure 3. Orebody characteristics of the Bijiashan antimony deposit in Weishan, Southwestern China
图 6 巍山笔架山锑矿床辉锑矿及莲花山岩体微量元素蛛网图对比(莲花山岩体数据来自文献[6])
Figure 6. Comparion of spider diagram of trace element ratio from the Bijiashan antimony deposit and Lianhuashan alkali-rich porphyry in Weishan, Southwestern China
表 1 笔架山锑矿床矿体特征
Table 1. Orebody characteristics in the Bijiashan antimony deposit in Weishan, Southwestern China
矿段名称 矿体编号 含矿岩石 形态 长度/m 宽度/m 平均品位/% 杨岭梅岗 KTⅠ 硅化硅质岩、硅化黏土岩 薄层状 290 60 2.09 KTⅡ 硅化黏土岩、硅化石英岩 薄层状 340 70 1.93 瓦利 KTⅢ 硅化角砾岩、硅化硅质岩 薄层状 200 80 1.62 KTⅣ 硅化黏土岩、硅化硅质岩 薄层状 182 60 3.69 扎花山 KTⅤ 硅化灰岩、硅化角砾岩 薄层状 585 90 1.52 KTⅥ1 硅化石英岩、硅化角砾岩 薄层状 650 80 1.39 KTⅥ2 硅化灰岩 透镜状 40 36 0.92 KTⅥ3 硅化灰岩 透镜状 98 148 0.68 KTⅥ4 硅化硅质岩 透镜状 40 30 1.52 肚故皮 KTⅦ1 硅化硅质岩、硅化石英岩 似层状 473 250 3.22 KTⅦ2 硅化石英岩 薄层状 308 105 1.95 KTⅧ1 硅化石英岩、硅化硅质岩 薄层状 450 90 1.5 KTⅧ2 硅化石英岩 透镜状 55 45 4.5 KTⅧ3 硅化石英岩、硅化硅质岩 透镜状 96 86 0.07 表 2 巍山笔架山锑矿床辉锑矿微量元素、稀土元素分析结果(×10-6)
Table 2. Trace elements and REE for stibnite of the Bijiashan antimony deposit in Weishan, southwestern China
样品号 Cs Rb Ba Th U Ta Nb Pb Sr Zr Hf Ti Ga Li Cr Sc V Y Co Ni Cu Zn La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu LREE HREE ΣREE LREE/HREE δEu δCe DGP-11-03 0.002 0.028 194.620 0.001 0.040 0.001 0.018 0.020 0.302 0.098 0.061 2.752 0.007 - 0.348 - 0.088 0.010 - - - - 14.704 0.261 0.027 0.009 0.001 0.001 0.003 0.012 0.112 0.001 - 0.001 0.002 0.000 0.30 0.13 15.13 2.30 0.61 0.04 YJ-11-01 0.069 0.080 245.400 0.003 0.031 0.013 0.026 23.660 0.927 0.172 0.046 3.922 0.016 0.183 0.527 - 0.076 0.220 - 0.309 2.660 15.690 16.756 0.328 0.031 0.014 0.003 0.003 0.006 0.018 0.132 0.003 0.009 0.002 0.011 0.002 0.38 0.19 17.32 2.05 0.59 0.04 YJ-11-08 0.054 0.327 874.600 0.046 0.101 0.201 0.252 2.110 0.393 0.249 0.113 4.052 0.106 0.814 48.340 0.040 0.326 0.123 0.076 26.400 11.918 129.460 24.140 0.578 0.050 0.036 0.009 0.037 0.015 0.022 0.176 0.004 0.008 0.002 0.009 0.002 0.71 0.24 25.09 3.01 3.20 0.05 LKD-11-02 0.051 0.183 403.000 0.023 0.204 0.280 0.157 0.221 7.930 0.147 0.117 5.868 0.020 0.318 1.834 0.049 0.505 0.103 - 0.736 22.560 18.138 28.280 0.681 0.056 0.032 0.007 0.005 0.011 0.035 0.200 0.003 0.005 0.001 0.005 0.001 0.78 0.26 29.32 2.99 0.52 0.05 YMS-11-03 0.102 0.170 278.600 0.036 1.653 0.048 0.059 0.139 0.206 1.876 0.148 2.892 0.054 0.516 3.908 0.081 2.044 0.289 - 2.488 3.132 40.920 20.880 0.470 0.040 0.035 0.009 0.003 0.017 0.022 0.167 0.006 0.015 0.003 0.014 0.003 0.56 0.25 21.69 2.27 0.24 0.05 注:-指测试值低于检出限 -
[1] 俞国芬, 薛步高, 俞开基.云南锑(金)成矿带划分及有关成矿问题讨论[J].云南地质, 2009, 28(1):8~15. http://www.cnki.com.cn/Article/CJFDTOTAL-YNZD200901002.htmYU Guo-fen, XUE Bu-gao, YU Kai-ji.Thedivision of Sb (Au) metallogenetic zone and discussion of related metallogenetic problem of Yunnan [J].Yunnan Geology, 2009, 28(1):8~15. http://www.cnki.com.cn/Article/CJFDTOTAL-YNZD200901002.htm [2] 范朝俊.云南巍山锑、汞多金属矿带成矿物质来源初探[J].地球化学, 1991, 4:399~405. doi: 10.3321/j.issn:0379-1726.1991.04.011FAN Chao-jun.A study on the origin of ore-forming materials in the antimony and mercury multiple-metal ore zone at Weishan, Yunnan Province, China [J].Geochimica, 1991, 4:399~405. doi: 10.3321/j.issn:0379-1726.1991.04.011 [3] 董芳浏. 云南巍山—永平矿化集中区铜金多金属矿床成矿条件和成矿潜力研究[D]. 博士学位论文, 北京: 中国地质大学, 2002, 1~123. http://cdmd.cnki.com.cn/Article/CDMD-10616-2002073180.htmDONG Fang-liu.Study on metallogenic condition and potentiality of copper-gold-polymetallic deposits in Weishan-Yongping mineralization district, Yunnan[D].China University of Geosciences, Beijing, 2002, 1~123. http://cdmd.cnki.com.cn/Article/CDMD-10616-2002073180.htm [4] 王勇. 云南巍山—永平铜金多金属矿化集中区成矿流体特征及流体地质填图研究[D]. 博士学位论文, 北京: 中国地质大学, 2002, 1~136. http://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ410.010.htmWANG Yong.Study on the characteristics of metallogenic fluids and fluid-geological mapping in the Weishan-Yongping opper-gold-polymetallic mineralization district, Yunnan [D].Beijing: China University of Geoscience, 2002.1~136. http://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ410.010.htm [5] 常开永.云南巍山笔架山锑矿床成因.云南地质, 2007, 26(2):197~206. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201602011.htmCHANG Kai-yong. On the genesis of Bijiashan Sb deposit in Weishan, Yunnan [J]. Yunan Geology, 2007, 26(2):197~206. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201602011.htm [6] 肖昌浩. 三江中南段低温热液矿床成矿系列研究[D]. 博士学位论文, 北京: 中国地质大学, 2013, 1~154. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201601004012.htmXIAO Chang-hao.The Study on Minerogenic Series of Epithermal Deposits in Mid-southern Segment of the Sanjiang Orogenic Belt, Southwest China [D]. Beijing: China University of Geoscience, 2013, 1~154. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201601004012.htm [7] 刘英俊, 曹励明, 李兆麟.元素地球化学[M].北京:地质出版社, 1984, 1~548.LIU Ying-jun, CAO Li-ming, LI Zhao-lin.Geochemistry of Element [M].geological publishing house, Beijing, 2013, 1~154. [8] ZHANG Qian. Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits [J]. Ore geology review, 1987, 39: 188~217. doi: 10.1007%2FBF02872218.pdf [9] 韩照信.秦岭泥盆系铅锌成矿带中闪锌矿的标型特征[J].西安地质学院学报, 1994, 16(1):12~17. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX401.001.htmHAN Zhao-xin. The typomorphic characteristic of the sphalerite in the qingling Devoniansystem lead-zinc metallogenic belt [J]. Journal of Xi'an college of geology, 1994, 16(1):12~17. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX401.001.htm [10] BEAUDOIN Georges. Acicular sphalerite enriched in Ag, Sb, and Cu embedded within color banded sphalerite from the Kokanee Range, BC[J]. Canadian Mineralogist, 2000, 38: 1387~1398. doi: 10.2113/gscanmin.38.6.1387 [11] GASPAR MariaL, JESCH Stephen A, VISWANATHA Raghuvir, et al. A block in endoplasmic reticulum-to-Golgi trafficking inhibits phospholipid synthesis and induces neutral lipid accumulation[J]. The Journal of Biological Chemistry, 2008, 283:25735~25751. doi: 10.1074/jbc.M802685200 [12] CAMPBELL AndrewR and ROBINSON-COOK Sylveen.Infrared fluid inclusion microthermometry on coexisting wolframite and quartz[J].Economic Geology, 1987, 82(6):1640~1645. doi: 10.2113/gsecongeo.82.6.1640 [13] CAMPBELL AndrewR and PANTER KS.Comparison of fluid inclusions incoexisting (cogenetic?) wolframite, cassiterite, and quartz from St.Michael's Mount and Cligga Head, Cornwall, England[J].Geochimicaet Cosmochimica Acta, 1990, 54(3):673~681. doi: 10.1016/0016-7037(90)90363-P [14] 云南省地质矿产局, 云南省区域地质志, 地质出版社, 1999, 1~137.Bureau of geology and mineral resources in Yunnan Province, Regional geology of Yunnan Province, 1999, 1~137. [15] 张红雨, 苏犁, 秦红, 等.硫化物矿物中多组分元素ICP-MS测定方法研究[J].化学工程与技术, 2012, 2:67~72. http://cdmd.cnki.com.cn/Article/CDMD-10616-1015312781.htm [16] 汪津津, 胡煜昭, 韩润生.贵州晴隆锑矿田微量元素地球化学特征及其对成矿流体的指示意义[J].矿物学报, 2011, 31(3):571~577. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201103037.htmWANG Jin-jin, HU Yu-zhao, HAN Run-sheng.Geochemical characteristics and its implications of trace elements in Qinglong antimony deposit, Guizhou Province, China [J].Acta Mineralogica Sinica, 2011, 31(3):571~577. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201103037.htm [17] 戚学祥, 李天福, 于春林.藏南沙拉岗锑矿稀土和微量元素地球化学示踪及成矿物质来源[J].现代地质, 2008, 22(2):162~172. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200802003.htmQI Xue-xiang, LI Tian-fu, YU Chun-lin.Rare earth element and trace element geochemistry of Shalagang antimony deposit in the Southern Tibet and Its tracing significancefor the origin ofMetallogenic elements[J].Geoscience, 2008.22(2):162~172. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200802003.htm [18] 张建芳. 北喜马拉雅扎西康铅锌锑银矿床成因研究[D]. 武汉: 中国地质大学, 2010: 1~96.ZHANG Jian-fang.The genesis study of Zhaxikang lead zinc antimony silver deposit, North Himalayan [D].Wuhan:China University of Geoscience, 2010: 1~96. [19] BAU Michael.Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J].Chemical Geology, 1991, 93:219~230. doi: 10.1016/0009-2541(91)90115-8 [20] BAU Michael, DULSKI Peter.Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge:Implications for Y and REE behavior during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J].Chemical Geology, 1999, 155:77~90. doi: 10.1016/S0009-2541(98)00142-9 [21] OUVILLE Eric, BIENVENU Philippe, Charlou Jean-luc, et al.Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J].Geochimica et Cosmochimica Acta, 1999, 63(5):627~643. doi: 10.1016/S0016-7037(99)00024-1 [22] HAN F and Hutchinson R W.Evidence for the exhalative hydrothermal sedimentary origin of the Dachang Sn-polymetallic deposit-trace element and rare earth element geochemistry of the host rocks[J].Mineral Deposits, 1989, 8(3): 33~44. doi: 10.1007/s00710-006-0148-2 [23] LARGE Ross R, BULL Stuart W, COOKE David R, et al.A genetic model for the HYC deposit, Australia: based on regional sedimentology, geochemistry, and sulfide-sediment relationship[J].Economic Geology, 1998, 93:1345~1368. doi: 10.2113/gsecongeo.93.8.1345 [24] PARADIS Suzanne, NELSON Joanne L, IRWIN Steve E B.Age constraints on the Devonian shale-hosted Zn-Pb-Ba deposits, Gataga district, Northeastern British Columbia, Canada[J].Economic Geology, 1998, 93:184~200. doi: 10.2113/gsecongeo.93.2.184 [25] HELLMAN PhillipL, SMITH RaymondE and HENDERSON Paul.Themobility of the rare earth elements:Evidence and implicationsfrom selected terraines affected by burialmetamorphism[J].Contributions to Mineralogy and Petrology, 1979, 71:23~44. doi: 10.1007/BF00371879 [26] FLEET A J. Aqueous and sedimentary geochemistry of the rare earth elements[C]//Henderson Ped. Rare earth element geochemistry. Amsterdam: Elsevier, 1984: 343~373. [27] BENCE A E, TAYLOR B E.Rare earth elementsystematics of West Shasta metavolcanic rocks:petrogenesisand hydrothermal alteration[J]. Economical Geology, 1985, 80: 2164~2176. doi: 10.2113/gsecongeo.80.8.2164 [28] MACLEAN Wallace H.Rare earth element mobility atconstant inter-REE ratios in the alteration zone at thePhelps Dodge massive sulphide deposit, Matagami, Quebec[J].Mineral Deposita, 1988, 23:231~238. doi: 10.1007/BF00206399 [29] LOTTERMOSER Bernd.Rare earth element and hydrothermal ore formation processes[J].Ore Geology Reviews, 1992, 7: 25~41. doi: 10.1016/0169-1368(92)90017-F [30] MILLS Rachel-ann, ELDERFIELD Henry.Rare earth element geochemistry ofhydrothermal deposits from the active TAG Mound, 26°N Mid-Atlantic Ridge[J].Geochimica et Cosmochimica Acta, 1995, 59:3511~3524. doi: 10.1016/0016-7037(95)00224-N [31] German C R, Klinkhammer G P, Edmond J M, et al.Hydrothermal scavenging of rare earth elementsin the ocean[J].Nature, 1990, 345:516~518. doi: 10.1038/345516a0 [32] MÖLLER Peter, PAREKH P P, and SCHNEIDER H J.The application of Tb/Ca-Tb/La abundance ratios to problems of Fluorspar Genesis[J].Mineral Deposita, 1976, 11:111~116. doi: 10.1007/BF00203098 [33] KLINKHAMMER G-P, ELDERFIELD H, EDMOND J-M, MITRA A.Geochemicalimplications of rare earth element patterns in hydrothermal fluidsfrom mid-ocean ridges[J].Geochimica et Cosmochimica Acta, 1994, 58:5105~5113. doi: 10.1016/0016-7037(94)90297-6 [34] HAAS Jonson R, SHOCK Everett L, SASSANI David C.Rare earth elements inhydrothermal systems:estimates of standard partialmolalthermodynamic properties of aqueous complexes of the rare earthelements at high pressures and temperature[J]. Geochimica et Cosmochimica Acta, 1995, 59: 4329~4350. doi: 10.1016/0016-7037(95)00314-P [35] PAPIKE J J, FOWLER G W, SHEARER C K, et al.Ionmicroprobe investigation of plagioclase and orthopyroxene fromlunar Mg-suite norites: Implications for calculating parental melt REE concentrations and for assessing postcrystallization REE redistribution[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3967~3978. doi: 10.1016/0016-7037(96)00212-8 [36] SHANNON Robert D.Revised effective ionic radii and systematic studies ofinteratomic distances in halides and chalcogenides[J].Acta Cryst, 1976, A32:751~767. http://www.academia.edu/299902/Revised_Effective_Ionic_Radii_and_Systematic_Studies_of_Interatomic_Distances_In_Halides_and_Chalcogenides [37] 王勇, 侯增谦, 莫宣学, 等.云南巍山—永平碰撞造山带走滑拉分盆地铜金多金属成矿流体系统:稳定同位素特征及热液来源[J].矿床地质, 2006, 25(1):60~70. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200601007.htmWANG Yong, HOU Zeng-qian, MO Xuan-xue, et al. Stable isotope characteristics and origin of ore-forming fluids in copper-goldpolymetallic deposits within strike-slip pull-apart basin of Weishan-Yongping continental collision orogenic belt, Yunnan Province, China [J]. Mineral Deposits, 2006, 25(1): 60~70. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200601007.htm [38] 侯增谦, 宋玉财, 李政, 等.青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型[J].矿床地质, 2008, 27(2):420~441. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200802002.htmHOU Zeng-qian, SONG Yu-cai, LI Zheng, et al.Thrust-controlled, sediments-hosted Pb-Zn-Ag-Cu deposits in eastern and northernmargins of Tibetan orogenic belt:Geological features and tectonic model[J].Mineral Deposits, 2008, 27(2):420~441. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200802002.htm [39] LEACH DL, SANGSTERDF, KELLEY KD, et al.Sediment-hosted lead-zincdeposits:A global perspective[J].Economic Geology, 2005, 100:561~607. http://www.sciencedirect.com/science/article/pii/B9780080959757011098 [40] DENG Jun, WANG Qing-fei, LI Gong-jian, et al.Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiangregion, SW China[J].Gondwana Research, 2014a, 26(2):419~437. doi: 10.1016/j.gr.2013.08.002 [41] DENG Jun, WANG Qing-fei, SANTOSH M.Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China[J].Earth-Science Reviews, 2014b, 138:268~299. doi: 10.1016/j.earscirev.2014.05.015